L. W. Cooper T. M. Beasley X.-L. Zhao C. Soto K. L. Vinogradova K. H. Dunton

lodine-129 and plutonium isotopes in Arctic kelp as historical indicators of transport of nuclear fuel-reprocessing wastes from mid-to-high latitudes in the Atlantic Ocean

Received: 10 November 1997 / Accepted: 24 February 1998

Abstract Iodine-129:iodine-127 ratios were determined using accelerator mass spectrometry in 34 Arctic marine algae collected between 1930 and 1993. A smaller set (5) of marine algae were also analyzed mass spectrometrically to determine plutonium-isotope ratios. The ¹²⁹I:¹²⁷I ratio increased as much as three orders of magnitude from a mean of $< 1 \times 10^{-11}$ (atom/atom) in the pre-nuclear era (before 1945) to nearly 1000×10^{-11} in 1993 for marine algae collected from the Novava Zemlya archipelago separating the Barents and Kara Seas. The predominant basis for the higher ratios in the Novaya Zemlya kelps appears to be upcurrent sources of ¹²⁹I from nuclear fuel-reprocessing facilities at Sellafield (UK) and La Hague (France). Relatively high ²⁴¹Pu:²³⁹Pu ratios (compared to observed bomb fallout at boreal latitudes, decay corrected to the date of collection) also corroborate the influence of non-fallout sources. The small size of the data set precludes determining if there are significant contributions of ¹²⁹I and other radionuclides from Russian sources. In contrast,

Communicated by N.H. Marcus, Tallahassee

L.W. Cooper (🖂) Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA

T.M. Beasley U. S. Department of Energy, 201 Varick Street, 5th Floor, New York, New York 10014, USA

X.-L. Zhao · C. Soto IsoTrace Laboratory, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada

K.L. Vinogradova Komarov Botanical Institute, 2 Professor Popova Street, 197376 St. Petersburg, Russia

K.H. Dunton Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA marine algae collected between 1969 and 1993 in the Bering, Beaufort and East Siberian Seas had much lower $^{129}\mathrm{I}:^{127}\mathrm{I}$ ratios (mean = $14.04\times10^{-11}\pm3.15\,\mathrm{SD}$) than those observed in the European Arctic. The narrow range of ratios in Ameriasian Arctic kelps, and the modest change over that time period, indicate that there were no major contributions of non-fallout $^{129}\mathrm{I}$ to North American Arctic surface waters at the time that the algae were collected. The potential for timing the transport of fuel-reprocessed $^{129}\mathrm{I}$ through analysis of additional archived samples is outlined.

Introduction

The capacity for some marine algae, particularly kelps and other members of the Laminariales, to concentrate iodine, is well known (e.g. Grimm 1952; Chapman 1970; Saenko et al. 1978; Bollard 1983). On a dry weight basis, iodine can make up 1% of the weight of the kelp Laminaria digitata, and concentrations can reach four to five orders of magnitude over the concentration of iodine in seawater (Shaw 1959; Pais and Jones 1997). This capacity for bioaccumulation has been used to study the mechanisms for iodine uptake in marine algae (e.g. Shaw 1959). The short-term uptake of 131 I (half-life 8 d) by marine algae world-wide after the accident at the Chernobyl nuclear reactor in 1986 (Druehl et al. 1988) provided a field example of the use of marine algae to trace the transport and fate of anthropogenically-derived radioiodine. The development of accelerator massspectrometry (AMS) techniques (Elmore and Phillips 1987; Kilius et al. 1992) for the more routine measurement of another, much longer-lived isotope, 129I (halflife 15.7 million years), has presented the possibility that archived marine algae collected at appropriate times and locations might provide a useful record of the dispersal of anthropogenic ¹²⁹I since the beginning of the nuclear era. Given the potential for long-distance dispersal of a semi-conservative element such as iodine in seawater, an appropriately constructed record of ¹²⁹I accumulation in archived marine algae could help elucidate the timing and transport of the element in surface ocean waters. Although¹²⁹I is a nuclear fission product and was dispersed globally during the atmospheric bomb-testing era, discharges from nuclear fuel-reprocessing plants, including atmospheric releases, are currently the dominant source, and are larger than the bomb-fallout contribution (Wagner et al. 1996). Water-borne disposal of the radionuclide from the Sellafield (UK) and La Hague (France) nuclear fuel-reprocessing plants is providing a temporally varying point source of the radionuclide in the north Atlantic Ocean; contributions from the La Hague plant in particular increased in the late 1980s/ early 1990s period (Raisbeck et al. 1995). Raisbeck et al. recently used ¹²⁹I measurements in archived marine algae and contemporaneous water samples to show the dispersal of ¹²⁹I as a tracer plume northward from

Sellafield and La Hague in the Norwegian Coastal

Current into the Barents and Kara Seas of the Arctic

Ocean (see Fig. 1). We have expanded upon this work both geographically (Fig. 1) and temporally (Fig. 2) by measuring the ratios of ¹²⁹I relative to stable iodine (¹²⁷I) in Arctic marine algae from archived sources dating back to before the nuclear era, when only a very low background of natural ¹²⁹I was present from cosmic ray spallation of atmospheric xenon and natural fission sources. The focus on Arctic marine algae is the result of interest in the magnitude of contributions of western European nuclear fuel-reprocessing discharges in the Arctic Ocean relative to discharges from Russian nuclear fuel-cycle plants on the Ob and Yenesei Rivers, and the enclosed, estuarine nature of the Arctic Ocean. The Arctic has no deep (>50 m) connections to any ocean other than the Atlantic, and flow through Bering Strait is predominantly northward from the Pacific (Roach et al. 1995). Dispersal of ¹²⁹I from point sources in the north Atlantic can therefore be approximated as plume dispersal within a single reservoir. This approximation neglects the permanently stratified nature of the Arctic Ocean (Aagaard and Carmack 1989), but since marine macroalgae are only present in surface waters, temporal and geographical differences in ¹²⁹I:¹²⁷I ratios in Arctic marine algae should reflect the impact of the north Atlantic point source plume on Arctic surface-water dispersal of ¹²⁹I. Mass balance considerations can be used to separate and constrain the relative sizes of the contributions to Arctic Ocean surface waters of ¹²⁹I from atmospheric bombtesting and other sources (e.g. Chernobyl) compared to western European fuel-reprocessing plants (Beasley et al. 1998a).

In addition to the analyses of ¹²⁹I:¹²⁷I ratios, we were also interested in the plutonium-isotope ratios of a subset of the samples. As with radioiodine, plutonium isotopes can be a sensitive indicator of non-fallout sources of anthropogenic radionuclides, and we expected that these analyses might also corroborate indications of the transport of ¹²⁹I from western European sources. These ratios might also assist in the identification of

Russian sources of anthropogenic radionuclides, given the slower dispersal of particle-reactive plutonium and the presence of several potential local sources in the Novaya Zemlya archipelago. Both ²⁴⁰Pu:²³⁹Pu and ²⁴¹Pu:²³⁹Pu ratios can be used for identifying non-fallout ratio material, but we expected that decay-corrected ²⁴¹Pu:²³⁹Pu ratios would be the more sensitive indicator of Sellafield-derived plutonium. This expectation was based on the greater differences between decay-corrected bomb-fallout²⁴¹Pu:²³⁹Pu ratios (~0.0051 in the 1980s) decay-corrected, Sellafield-origin ²⁴¹Pu:²³⁹Pu and (~0.020) (Kershaw and Baxter 1995; Kershaw et al. 1995a) relative to the difference between bomb-fallout ²⁴⁰Pu:²³⁹Pu (~0.18) and Sellafield-derived ²⁴⁰Pu:²³⁹Pu ratios. The Sellafield-derived ²⁴⁰Pu:²³⁹Pu ratio increased from 0.06 to 0.25 between the 1960s and the mid-1980s (Kershaw and Baxter 1995; Kershaw et al. 1995a; Beasley et al. 1998a). Mass-balance considerations also suggest that releases of low ratio ²⁴⁰Pu:²³⁹Pu from Irish Sea sediments of Sellafield origin (Kershaw et al. 1995b) will complicate the use of the ratio of the two most common isotopes of plutonium for tracking Sellafield releases.

Materials and methods

Marine algae analyzed as part of this study were obtained from the Komarov Botanical Institute, St. Petersburg, Russia, as well as collections of V. Vozzhinskaya of the Shirshov Institute of Oceanology, Moscow. Additional samples were collected by two authors of this study (Cooper and Dunton). Locations of collection are provided in Table 1, including latitude and longitude in those cases where coordinates were readily available from the herbarium label, or from other information made available to the authors. In cases where the collection locality was a relatively large island or region of coastline and was not precisely specified, named geographic features are provided in Table 1 and shown on Fig. 1. In all cases, thallus blades were the kelp tissues analyzed.

Iodine was isolated from the samples using the procedure described by Kilius et al. (1994), but with modifications. In this procedure, Na_2O_2 is used in combination with NaOH fusions to destroy organic matter and to oxidize lower valence states of iodine to iodate, thereby preventing its volatilization at elevated fusion temperatures (600 °C). However, preliminary experiments with kelp-sample mineralization showed that it was possible to fuse the organic matter with NaOH alone without appreciable loss of iodine. Because our interest centered on measuring the ¹²⁹I:¹²⁷I atom ratio rather than the absolute abundance of ¹²⁹I in the kelp, Na_2O_2 was not used in the fusion process, and we therefore do not report absolute concentrations of ¹²⁹I in these samples.

The dried kelp (1 to 3 g) was placed in a 100 ml nickel crucible and allowed to equilibrate overnight with 4 ml saturated NaOH to ensure thorough sample-wetting. During the equilibration process, the samples were sealed in plastic Ziploc® bags to prevent uptake of ambient iodine from the atmosphere. The crucibles were then covered with watch glasses and heated to dryness under infrared heat lamps. Destruction of the organic matter was then accomplished by heating the covered crucibles in a muffle furnace using stepped temperature increases. Initially, the temperature was raised to 100 °C (30 min) and then to 200 °C (30 min). The samples were then cooled, thoroughly mixed using a pestle, and then fused at 600 °C for 2 h.

Following cooling, the residue was removed from the crucibles by (1) leaching with two consecutive 50 ml aliquots of doublydistilled water while the samples were heated under infrared heat lamps, and (2) two consecutive 25 ml aliquots of a stock, high-

Table 1 Marine algal samples analyzed for ¹²⁹I:¹²⁷I ratios (*Toronto ID* Toronto Iodine number on record for each analysis at Isotrace accelerator mass spectrometry facility, University of Toronto)

Samples were analyzed in order presented in table (oldest first). Locations are shown on Fig. 1 $\,$

Toronto ID	Species	Location of collection	$^{129}I:^{127}I \\ (\times 10^{-11}) \pm 1\sigma$	Date collected
TOI-3175	Laminaria digitata	Russkaya gavan, Novaya Zemlya (76°14'48"N; 62°39'06"E)	0.100 ± 0.013	1930
TOI-3176	Laminaria digitata	Severnaya Sulmeneva guba, (north of Krestovaya guba), Novaya Zemlya	0.369 ± 0.024	2 August 1931
TOI-3177	Laminaria digitata	Sosnovka Region, White Sea	0.135 ± 0.017	31 July 1938
TOI-3178	Laminaria digitata	Dvinskaya guba, White Sea	0.137 ± 0.014	11 July 1930
TOI-3179	Laminaria saccharina	Sosnovetz Island, White Sea	0.192 ± 0.028	3 August 1938
TOI-3181	Saccorhiza dermatoidea	Rugozyorskaya guba, White Sea	1.236 ± 0.062	June 1954
TOI-3182	Laminaria digitata	Dalnezelenezkaya guba, Murmansk region	15.87 ± 0.41	June 1966
TOI-3183	Laminaria saccharina	Kanin Nos, Kanin Peninsula	4.57 ± 0.12	28 July 1966
TOI-3184	Fucus serratus	Kruglaya Levaya Bay, White Sea (66°29'N; 33°38'E)	26.22 ± 0.61	16 July 1967
TOI-3185	Fucus distichus	Kruglaya Levaya Bay, White Sea (66°29'N; 33°38'E)	15.78 ± 0.41	21 July 1967
TOI-3186	Fucus vesiculosus	Kruglaya Levaya Bay, White Sea (66°29'N; 33°38'E)	21.72 ± 1.09	21 July 1967
TOI-3187	Laminaria solidungula	Chaunskaya guba, East Siberian Sea	10.25 ± 0.30	12 August 1969
TOI-3188	Laminaria digitata	Dalnezelenezkaya guba, Murmansk region	34.12 ± 0.77	20 July 1967
TOI-3189	Laminaria digitata	Kandalakshskaya guba, White Sea	27.18 ± 0.68	16 July 1971
TOI-3190	Laminaria digitata	Kashkaranzi, west of Kuzomen, White Sea	26.07 ± 0.61	19 July 1971
TOI-3191	Laminaria saccharina	Amderma, Kara Sea	41.99 ± 0.95	26 August 1969
TOI-3192	Fucus serratus	Kola Peninsula, near mouth of Ponoy River	146.2 ± 3.6	10 July 1972
TOI-3193	Fucus vesiculosus	Sosnovetz, Tersky Coast, White Sea (66°29'N; 40°43'E)	72.9 ± 2.0	14 July 1972
TOI-3194	Laminaria solidungula	Stolbovoy Island, New Siberian Islands	37.93 ± 0.89	1 August 1973
TOI-3195	Laminaria solidungula	Kotel'nyy Island, New Siberian Islands	0.747 ± 0.27	10 August 1979
TOI-3196	Laminaria saccharina	Teriberka, Murmansk Region	856 ± 19	11 September 1988
TOI-3197	Laminaria digitata	Belush'ya guba, Novaya Zemlya	481 ± 11	26 August 1989

(continued overleaf)

Table 1 (continued)

Toronto ID	nto Species Location of collection		$^{129}\text{I}.^{127}\text{I} \\ (\times 10^{-11}) \pm 1\sigma$	Date collected	
TOI-3199	Laminaria solidungula	Boulder Patch, Stefansson 9.57 ± 0.23 Sound, Beaufort Sea $(70^{\circ}24'N; 147^{\circ}50'W)$		November 1980	
TOI-3200	Laminaria digitata	Pityunia Bay, Svalbard (78°40'N;16°30'E)	147.5 ± 3.8	30 August 1990	
TOI-3201	Laminaria digitata	Matochkin Shar, Novaya Zemlya	718 ± 16	15 August 1993	
TOI-3202	Laminaria saccharina	near Stolbovoy, Novaya Zemlya	746 ± 17	1993	
TOI-3203	Chorda filum	Obsedya, Novaya Zemlya (72°08'N; 52°15'E)	616 ± 14	30 August 1993	
TOI-3204	Alaria esculenta	Serabyrnka Fjord (guba), Novaya Zemlya (73°25'N; 54°10'E)	826 ± 19	1993	
TOI-3205	Fucus vesiculosus	Gribovaya Fjord (guba), Novaya Zemlya (73°00'N; 53°50'E)	801 ± 18	8 August 1993	
TOI-3206	Alaria fistulosa	Sweepers Cove, Adak Island, Bering Sea (51°51'N; 176°37'W)	17.94 ± 0.55	9 June 1993	
TOI-3207	<i>Laminaria</i> sp. (beach drift)	St. Matthew Island, Bering Sea (60°20'N; 172°22'W)	13.57 ± 0.37	23 June 1993	
TOI-3208	Laminaria solidungula	Boulder Patch, Stefansson Sound, Beaufort Sea (70°24'N; 147°50'W)	14.84 ± 0.35	1986	
TOI-3212	Laminaria solidungula	Boulder Patch, Stefansson Sound, Beaufort Sea (70°24'N; 147°50'W)	15.34 ± 0.36	1986	
TOI-3213	Laminaria solidungula	Boulder Patch, Stefansson Sound, Beaufort Sea (70°24'N; 147°50'W)	16.79 ± 0.39	1987	
None	Laminaria saccharina	Lumborsky Bay (zaliv), White Sea (67°49.5'N; 40°27.5'E)	Plutonium isotope data only (Table 3)	1991	

purity 6 *N*HCl solution. The leachates were placed in acid-washed, 240 ml (8 fluid ounces) round-bottom bottles fitted with Polyseal[®] caps. Any visible residue in the crucibles was removed by small volume washes with 6*N* HCl. A teflon-covered stirring bar was then added to the bottles and, while stirring, the pH of the solutions was adjusted to ~1 by addition of stock 6*N* HCl. Iodine species were reduced to iodide by the addition of 1 ml 1 *N* NaHSO₃, with a mixing period of 3 min. Thereafter, the isolation and purification of iodine and the subsequent preparation of the AgI AMS target followed the protocol described by Mann and Beasley (1994).

To test reproducibility and possible sample cross-contamination during fusion, we analyzed aliquots of a large kelp sample prepared by the Iso Trace Laboratory, University of Toronto, as a quality assurance/quality control (QA/QC) sample. Six separate aliquots of this sample were processed according to the procedure described above. Two samples and a reagent blank were processed on consecutive weeks to determine if "memory" effects could be detected in the reagent blanks. Table 2 lists the results of the experiments (April 1996) and shows the excellent reproducibility of the ¹²⁹I:¹²⁷I ratios measured in the QA/QC sample and the uniformly low ratios recorded in the reagent blanks. Samples of the QA/QC kelp were also processed as blind samples concurrently with Arctic Basin kelp (Table 2: January 1997) to monitor crosscontamination and as a check on the reproducibility of the AMS measurements. In both cases, the mean ¹²⁹I:¹²⁷I ratios in reagent blanks processed in April 1996 are indistinguishable from those accompanying the Arctic Basin Kelp analyses, indicating the absence of ¹²⁹I cross-contamination during the fusion process. Moreover, the concordance of the ¹²⁹I:¹²⁷I ratios in the QA/QC kelp sample at different analysis times is indicative of the overall reproducibility of the AMS measurements.

For plutonium-isotope measurements, the marine algal samples were fused with NaOH in nickel crucibles as with the ¹²⁹I:¹²⁷I sample preparations. Thereafter, sample preparation followed that described by Cooper et al. (1998): dry-ashing at 600 °C for 16 h, the residue dissolved in a mixture of HCl and HF, with co-precipitation of oxalate salts, using a rare earth carrier, from a strongly reducing hydroxylamine hydrochloride, Fe⁺² solution (~1N HCl). Additional purification was accomplished using ion-exchange chromatography. Final purification was accomplished using a 100 µ anion-exchange column-separation. The purified Pu was incorporated into the mass spectrometer source on individual 150 µm diam anion-exchange resin beads from 1 µl of 7.2 N nitric acid. Individual beads were then transferred into the trough of a rhenium filament formed in a V-shape (Stoffels and Lagergren 1984). Measurement of plutonium-isotope abundances was made with a Fig. 1 Locations of marine algal collections used in study [*Numbers* "Toronto Iodine" (TOI-) numbers on record for each analysis at IsoTrace accelerator mass spectrometry facility, University of Toronto (see Table 2)]. Also shown are sites of nuclear fuel-reprocessing facilities at Sellafield (UK) and La Hague (France), and surface currents to and from Atlantic and Pacific Oceans into the Arctic

thermal ionization mass-spectrometer at Pacific Northwest National Laboratory, Richland, Washington (Lagergren and Stoffels 1970). Additional descriptions of the instrumentation used, its sensitivity, process blank results, isotope dilution, and sources of tracers used, as well as protocols undertaken for data assurance are provided elsewhere (Beasley et al. 1998b).

Results

Iodine-129:iodine-127 ratios in the marine algae analyzed (Table 1) increased by as much as three orders of magnitude from a mean of $<1 \times 10^{-11}$ (atom/atom) in the pre-nuclear era (before 1945) to nearly 1000×10^{-11} in 1993 (Fig. 2). The collection location played a secondary role to temporal trends in determining the isotope ratios observed. For samples collected during the

same time period, locations in the North American Arctic (Beaufort and Bering Seas) had lower ¹²⁹I:¹²⁷I ratios than those in the European Arctic (Barents Sea). The differences are most striking for recent samples collected after 1985. Marine algae collected from the Beaufort and Bering Seas during the 8 yr period between 1986 and 1994 had ¹²⁹I:¹²⁷I ratios similar to that observed on the Barents Sea coast of the Kola Peninsula in the mid-1960s, immediately following the cessation of most atmospheric nuclear testing. Following the mid-1960s, however, ¹²⁹I:¹²⁷I ratios in marine algae in the Eurasian Arctic generally continued to increase by an order of magnitude or more, approaching 1000×10^{-11} . However, ratios observed in Russian Barents Sea marine algae remained slightly lower than ¹²⁹I:¹²⁷I ratios reported for seawater within Norwegian coastal waters $(1110 \text{ to } 4890 \times 10^{-11}; \text{ Raisbeck et al. } 1995).$

Table 2 ¹²⁹I:¹²⁷I ratios in quality assurance/quality control (QA/QC) kelp samples and reagent blanks

Sample	129 I: ¹²⁷ I atom ratio $(\times 10^{-11})^{a}$	Process date
QA/QC-1 QA/QC-1 (Reagent Blank 1)	$14.22 \pm 0.26 \\ 13.79 \pm 0.34 \\ 0.022 \pm 0.003$	
QA/QC-2 QA/QC-2 (Reagent Blank 2)	$\begin{array}{c} 14.23 \pm 0.23 \\ 14.24 \pm 0.23 \\ 0.010 \pm 0.001 \end{array} \right\}$	April 1996
QA/QC-3 QA/QC-3 (Reagent Blank 3)	$14.14 \pm 0.21 \\ 14.15 \pm 0.20 \\ 0.013 \pm 0.001$	
QA/QC-4 QA/QC-4 [Reagent blanks (3) ^b]	$\left. \begin{array}{c} 13.97 \pm 0.31 \\ 13.86 \pm 0.31 \\ 0.013 \pm 0.005^b \end{array} \right\}$	January 1997

^a Uncertainty (1σ) applies to uncertainties associated with accelerator mass-spectrometry measurements only

^b Uncertainty represents standard deviation about mean for the three measurements (1σ)

Plutonium-isotope determinations for five of the marine algae indicate that, once decay of ²⁴¹Pu (half-life 14.33 yr) is taken into account for each collection date for the marine algae analyzed, ²⁴¹Pu:²³⁹Pu ratios are typically higher than would be expected from global fallout alone (Table 3).

Discussion

The dispersal of anthropogenic radionuclides of western European-reprocessing origin, particularly soluble radionuclides with conservative and semi-conservative behavior, into Arctic waters has been widely recognized (e.g. Aarkrog et al. 1983; Livingston et al. 1985). The data presented here indicate that given adequate geographical and temporal coverage, the transport and

Fig. 2 ¹²⁹I:¹²⁷I ratios in archived marine samples relative to date of collection (*Dashed lines* indicate samples affected by contributions from water-borne discharge from nuclear fuel-reprocessing plants and those affected by atmospheric fallout only)

timing of the dispersal of water-borne ¹²⁹I from such well-characterized sources as bomb-fallout and the Sellafield/La Hague reprocessing discharges (recently reviewed by Beasley et al. 1998a) to surface waters of the Arctic Ocean could be potentially analyzed in a quantitatively rigorous way. These data may also be relevant for evaluating the magnitude of other potentially de-

Table 3 Plutonium concentrations and atom ratios in Arctic Ocean kelp (*Toronto ID numbers* as in Table 1; *locations* shown in Fig.1; *nd* not determined) All atom concentrations are in g dry wt

	,		• •				
Toronto ID	Location	239 Pu (10 ⁷ atoms g ⁻¹)	240 Pu (10 ⁶ atoms g ⁻¹)	241 Pu (10 ⁴ atoms g ⁻¹)	²⁴⁰ Pu: ²³⁹ Pu ^a	²⁴¹ Pu: ²³⁹ Pu ^b	²⁴¹ Pu: ²³⁹ Pu ^c
TOI-3200	Pituynia Bay,	1.53 ± 0.02	2.79 ± 0.05	7.41 ± 0.49	0.182 ± 0.002	$0.00484 \pm$	$0.00306 \pm$
TOI-3201	Svaldard Matochkin Shar, Novava Zemlya	1.51 ± 0.04	2.43 ± 0.09	nd	0.161 ± 0.004	nd	nd
TOI-3203	Obsedya, Novaya Zemlya	8.90 ± 0.13	14.8 ± 0.23	25.8 ± 1.0	0.166 ± 0.001	0.00291 ± 0.0010	$\begin{array}{c} 0.00264 \pm \\ 0.00018 \end{array}$
TOI-3205	Gribovay Fjord, Novaya Zemlya	6.75 ± 0.09	11.5 ± 0.02	24.8 ± 0.7	0.170 ± 0.001	$\begin{array}{c} 0.00367 \pm \\ 0.00009 \end{array}$	$\begin{array}{c} 0.00265 \pm \\ 0.00018 \end{array}$
None	Lumborsky guba, White Sea	1.01 ± 0.02	1.87 ± 0.05	4.12 ± 1.22	0.185 ± 0.004	$\begin{array}{c} 0.00409 \pm \\ 0.00122 \end{array}$	$\begin{array}{c} 0.00295 \pm \\ 0.00020 \end{array}$

^a Relative uncertainties in atom ratios are less than those of atom concentrations, as they are independent of uncertainties with yielddeterminant recoveries

^b Decay corrected to collection date using 241 Pu half-life = 14.33 yr

^c Decay-corrected global fallout at time of collection. Global fallout value determined by measuring Pu isotopes in 30 cm soil cores collected north of 50°N (Beasley et al. 1998b)

tectable anthropogenic sources, including dumped waste in the Kara Sea, river runoff from Russian continental nuclear fuel-cycle facilities, close-in fallout from nuclear weapons-testing on Novaya Zemlya, and anthropogenic radionuclides transported from the site of the Chernobyl accident. The data we present here are too sparse in geographical and temporal variation to address most of these transport problems in more than a preliminary manner, but the patterns observed could serve as a useful starting point for future work.

It is apparent from the data, that contributions of relatively recent (~1980s) ¹²⁹I from western European reprocessing-sources are a dominant feature of ^{129}I : ^{127}I ratios in Arctic marine algae in the Barents Sea. Ratios reported in Norwegian coastal water by Raisbeck et al. (1995) are higher than observed in any of the marine algae that we analyzed (Fig. 2). A pattern of dilution is observable in the European Arctic samples, with the time of collection and distance from the Sellafield and La Hague sources being most important in determining the relative ¹²⁹I:¹²⁷I in marine algae. For example, Laminaria saccharina collected in 1988 at Teriberka, east of Murmansk, on the Kola Peninsula coast, where plants grow exposed to northward-flowing Norwegian coastal-current water, had a higher 129 I: 127 I ratio (856 ± 19 × 10⁻¹¹) than *L. digitata* collected on the southwest coast of Novaya Zemlya, 700 km northeast, 1 yr later $(481 \pm 11 \times 10^{-11})$. Iodine-129:iodine-127 ratios in marine algae on Novaya Zemlya apparently increased from 1989 to 1993, when the mean ratio reached $741 \times 10^{-11} \pm 82$ SD; n = 5 (Fig. 2). It is notable that Novaya Zemlya was heavily impacted by Soviet atmospheric and underground weapons-tests, and its waters have also been subject to dumping of liquid and solid nuclear waste. Although there are insufficient data to rule out local contributions of ¹²⁹I, the geographical and temporal dilution pattern that is apparent on Fig. 2 is consistent with the predominant importance of transport of ¹²⁹I from western European sources.

This pattern is reinforced by the much smaller data set of plutonium-isotope ratios obtained as part of this study (Table 3). In principle, the atom isotope ratios ²⁴⁰Pu:²³⁹Pu and ²⁴¹Pu:²³⁹Pu can be used to identify Sellafield-derived Pu as it is advected from the Irish Sea northward to the Arctic Ocean (Kershaw et al. 1995a). The difference between the ²⁴¹Pu:²³⁹Pu atom ratios in Sellafield-derived and global fallout Pu is greater than that for their respective ²⁴⁰Pu:²³⁹Pu atom ratios, mean-ing that the ²⁴¹Pu:²³⁹Pu atom ratio is likely to be a more sensitive Sellafield tracer, despite the short half-life of ²⁴¹Pu: (14.33 yr). Comparison between the expected, decay-corrected bomb-fallout ²⁴¹Pu:²³⁹Pu atom ratio at the time of collection, and the actual decay-corrected ²⁴¹Pu:²³⁹Pu atom ratio in each of the algae (Table 3) shows that all five samples appear to have at least some "excess" ²⁴¹Pu over and above expectations solely from bomb-fallout. This observation particularly holds true for the kelp sample from Pityunia Bay (Svalbard), which was collected at a latitude where excess ²³⁸Pu:²³⁹⁺²⁴⁰Pu

activity ratios have been attributed to Sellafield contributions (Kershaw and Baxter 1995). The observation of "excess" ²⁴¹Pu is less clear-cut at Lumborsky Bay (White Sea), because of measurement uncertainties. On the other hand, the ²⁴¹Pu:²³⁹Pu atom ratios observed in Gribovay Fjord and Obsedya (both on the southwestern coast of Novaya Zemlya) are significantly above decaycorrected bomb-fallout ²⁴¹Pu:²³⁹Pu atom ratios. In ad-dition to having "excess" ²⁴¹Pu, the Gribovay Fjord sample has a ²⁴⁰Pu:²³⁹Pu atom ratio that is consistent with Sellafield discharges in 1986 (0.170), 7 yr before collection. Even though such timing for transport from the Irish Sea to Novaya Zemlya (7 yr) is within the expected range for water-borne transport from the Irish Sea (Aarkrog et al. 1983; Livingston et al. 1985), ascribing the entire 1993 Pu burden in the kelp to Sellafield discharges would neglect mixing and diffusion during transport, and the particle-reactive chemistry of plutonium. It seems more probable that the lower ²⁴⁰Pu:²³⁹Pu atom ratios observed in the Novaya Zemlya kelps collected at Matochkin Shar, Obsedya, and Gribovay reflect some proportion of local contributions, the possibilities for which include overland runoff from vented underground nuclear tests (Bjurman et al. 1990), or releases from waste-disposal sites. For example, for the three samples collected from Novaya Zemlya, only trace amounts of weapons-grade Pu (240Pu:239Pu atom ratio = 0.03 to 0.05) would be required to lower the ²⁴⁰Pu:²³⁹Pu atom ratio from the 0.182 to 0.185 (observed in the Svalbard and White Sea samples) to the 0.161 to 0.170 observed in the Novaya Zemlya samples.

In contrast to the European Arctic samples, ¹²⁹I:¹²⁷I ratios in Amerasian Arctic marine algae did not change greatly between 1969 and 1993. The mean ratio in seven samples collected in the East Siberian, Beaufort, and Bering Seas during this period was $14.04 \times 10^{-11} \pm 3.15$ SD, although a modest increase observable over the period will be discussed below. Beasley et al. (1998a) recently estimated that the probable ¹²⁹I concentrations in Bering Sea waters (<300 m depth) in the early-to-mid-1980s were on the order of 1×10^6 atoms kg⁻¹. Direct measurements in the 1990s indicate that typical ¹²⁹I concentrations in shallow waters around Bering Strait were 10^7 to 10^8 atoms kg⁻¹, although a few higher concentrations were also observed (Cooper et al. unpublished data). Given average ¹²⁷I concentrations in seawater of 50 µg kg⁻¹ (0.39 µM), the mean ¹²⁹I:¹²⁷I ratio of 14.04×10^{-11} in these marine algae falls within the expected range of $\sim 0.4 \times 10^{-11}$ to $\sim 40 \times 10^{-11}$ if marine algal ¹²⁹I:¹²⁷I ratios faithfully reproduce con-temporaneous water ¹²⁹I:¹²⁷I ratios. If the relatively narrow range of ratios observed in the Beaufort, Bering, and East Siberian Sea marine algae are consistent with contributions from atmospheric bomb-fallout only, and there are no oceanically-derived contributions from any nuclear fuel-reprocessing sources in Russia or western Europe, this ratio of $\sim 10 \times 10^{-11}$ approximates the atmospheric bomb-testing era contributions of surface water ¹²⁹I flowing northward in Pacific waters that has

reached the latitude of Bering Strait. The slow increase in ratios over the past 20 yr could imply transport of non-fallout sources of ¹²⁹I from lower latitudes. Although some of this fractional increase may be the result of atmospheric emissions from nuclear fuel-reprocessing facilities, at least some portion of this increase is likely to be due to the spreading of bomb-fallout northward from lower latitudes where deposition was greater.

One of two samples collected in the Laptev Sea in 1973 had a higher ratio, $37.93 \times 10^{-11} \pm 0.89$, which was similar to ratios observed in the Barents Sea in the same time period (Fig. 2). The observation of either non-local fallout ¹²⁹I or nuclear fuel-reprocessed ¹²⁹I in the 1973 Laminaria solidungula sample collected at Stolbovoy Island is consistent with reprocessed contributions of ¹²⁹I that were apparent in the Nansen Basin of the Laptev Sea in 1993 in surface waters, as well as at \simeq 500 m depth (Beasley et al. unpublished data). Continental-slope waters in the Nansen Basin are ultimately derived from waters of Barents Sea origin (Schauer et al. 1997), so it is not surprising that ¹²⁹I:¹²⁷I ratios in marine algae of the Laptev Sea should resemble the ratios for contemporaneous samples collected in the Barents and Kara Seas.

It is somewhat more problematic to explain the much lower ratio $(0.747 \times 10^{-11} \pm 0.270)$ observed in a Laminaria solidungula sample collected at Kotel'nyy Island, also in the Laptev Sea, 6 yr later in 1979. The ratio is nearly as low as that observed in the pre-bomb (<1945) samples (Fig. 2; mean = $0.187 \times 10^{-11} \pm 0.107$). Given the outlying single data-point (Fig. 2), any suggestions are speculative, but the low ratio may correspond to a quick removal of bomb-fallout-contaminated waters containing radioiodine from portions of the Laptev Sea, where sea-ice formation is particularly important. Although the pre-bomb-era samples show good betweensample reproducibility, the mean ¹²⁹I:¹²⁷I ratio observed (0.187×10^{-11}) should only be considered an upper limit for the pre-bomb-era ratio. There is no certainty that the ¹²⁹I:¹²⁷I ratio in these samples was not affected to some degree by handling or atmospheric exposure to postbomb-era ¹²⁹I while in curation at the Komarov Botanical Institute in St. Petersburg. Nevertheless, our upper-limit estimate of the pre-bomb ¹²⁹I:¹²⁷I ratio agrees well with independent estimates of 0.15×10^{-11} obtained from pre-bomb sediment analyses (Fehn et al. 1986; Moran et al. 1998).

If the outlying Laptev Sea data point is not considered, two separate clusters can be observed on Fig. 2. For marine algae collected in the Beaufort, Bering, and East Siberian Seas, the ¹²⁹I:¹²⁷I ratios for samples collected in 1986 and 1987 (Beaufort Sea) and 1993 (Bering Sea) are slightly higher than in 1969 (East Siberian Sea) and 1980 (Beaufort Sea). As discussed earlier in this section, the slight increase over 20 yr may be due to transport of ¹²⁹I from temperate latitudes where ¹²⁹I bomb fallout was higher, or possibly atmosphericallytransported nuclear fuel-reprocessing contributions. The latitudinal difference between two samples collected in

the Bering Sea in 1993, with an $^{129}\mathrm{I}{:}^{127}\mathrm{I}$ ratio of $17.94\times10^{-11}\pm0.55$ observed at the more southern location (Adak Island, Aleutians) vs $13.57 \times 10^{-11} \pm 0.37$ observed at St. Matthew Island, is consistent with the hypothesis of transport from mid-latitudes. The ¹²⁹I:¹²⁷I ratios of Beaufort Sea Laminaria solidungula, all collected from the same kelp bed in 1980, 1986, and 1987, show a slow increase over time, from $9.57 \times 10^{-11} \pm 0.23$ in 1980 to a mean of 15.09×10^{-11} in 1986, and $16.79 \times 10^{-11} \pm 0.39$ in 1987. The small increase in ¹²⁹I:¹²⁷I ratios between 1986 and 1987 support the contention (Beasley et al. 1998a) that contributions of ¹²⁹I from the Chernobyl nuclear-reactor accident (1986) directly to Arctic Ocean surface waters were relatively insignificant. The increase in ¹²⁹I:¹²⁷I ratios with time in L. solidungula from the same Beaufort Sea kelp bed, which is consistent with a slow increase in Ameriasian Arctic surface-water ¹²⁹I:¹²⁷I ratios, suggests that this kelp may faithfully reproduce water-column ratios. This species is known to produce new frond growth during the dark, ice-covered period when nutrient levels are higher, using photosynthate produced during the short open-water summer period (Dunton and Schell 1986; Dunton 1990).

Because of the small sample size of this study, we were not able to address some other potentially significant uncertainties, including the possibility of significant isotopic fractionation during uptake, the residence time of iodine within marine algae, and seasonal translocation of iodine to and from different portions of the plant, including the stipe and holdfasts, which were not analyzed during our work. The possibility of significant variations in within-plant ¹²⁹I:¹²⁷I ratios may be important, particularly in species where translocation is significant and in locations where there are seasonal water-mass differences.

Clearly, additional work will be required in order to meet the larger goal of using archived marine algae to time the transport of anthropogenic ¹²⁹I within the surface waters of the various Arctic marginal seas. We have no information for instance on whether transport of higher ¹²⁹I:¹²⁷I ratio iodine from the Laptev Sea to the East Siberian Sea in coastal currents might have impacted the relatively low ratio observed in the East Siberian sea sample in 1969. Coverage of the changes in ¹²⁹I:¹²⁷I ratios during the 12 yr period between 1973 and 1985 in the European Arctic would help to time the transport of the well-documented releases of ¹²⁹I from Sellafield and La Hague (tabulated by Beasley et al. 1998a) via Norwegian coastal waters into the Barents Sea. Collections from additional locations within Russia could help ascertain whether specific Russian pointsources of ¹²⁹I contribute to the ¹²⁹I:¹²⁷I ratios observed in these data. Coverage in the early nuclear era after 1945 is also very sparse.

There is little doubt that many of the samples needed to advance this work exist in Russia and in other countries, in the collections of individual investigators or in herbaria of institutions such as the Komarov Botanical Institute, which has one of the largest plant collections in the world. We anticipate that presentation of these results may facilitate expansion of this work with other marine algal samples, collected at appropriate locations and periods, so that a more detailed historical perspective on the contributions of reprocessed nuclearfuel constituents to oceanic ecosystems can be obtained.

Acknowledgements During the course of this study, two colleagues, L. Kilius of the IsoTrace Laboratory, and V. Vozzhinskaya, of the Shirshov Institute of Oceanology, died unexpectedly. L. Kilius pi-oneered much of the methodology for analyzing ¹²⁹I:¹²⁷I ratios in marine algae, and V. Vozzhinskaya, during a 30 yr career studying Arctic marine algae, provided a number of the samples analyzed as part of this work. This study would not have been possible without their contributions. We thank J. Kelley for the mass spectrometric determination of the plutonium isotope ratios, and L. Ravina, I. Perminova, V. Pogrebov, S. Dolvin, and J.M. Grebmeier for their assistance during the course of this work. W. Smith (University of Tennessee), J. Moran (Lawrence Livermore National Laboratory), and two anonymous reviewers generously provided comments that improved an earlier version of the manuscript. Financial support was provided by the U.S. Office of Naval Research (NOO14-93-0098, NOO14-94-I-1042, and NOO14-93-F-0095). Oak Ridge National Laboratory is managed for the U.S. Department of Energy by Lockheed Martin Energy Research Corp. under Contract No. DE-AC05-96OR22464. Environmental Sciences Division Publication 4747.

References

- Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J geophys Res 94: 14485–14498
- Aarkrog A, Dahlgaard H, Hallstadius L, Hansen H, Holm E (1983) Radiocaesium from Sellafield effluents in Greenland waters. Nature, Lond 304: 49–51
- Beasley T, Cooper LW, Grebmeier J, Aagard K, Kelley JM, Kilius LR (1998a) ²³⁷Np/¹²⁹I atom ratios in the Arctic Ocean: has ²³⁷Np from western European and Russian fuel reprocessing facilities entered the Arctic Ocean? J envirl Radioact 39: 255–277
- facilities entered the Arctic Ocean? J envirl Radioact 39: 255–277 Beasley TM, Kelley JM, Maiti TC, Bond LA (1998b) ²³⁷Np/²³⁹Pu atom ratios in integrated global fallout: a reassessment of the production of ²³⁷Np. J envirl Radioact 38: 133–146
- Bjurman B, DeGeer L-E, Vintersved I, Rudjord AL, Ugletveit F, Aaltonen H, Sinkko K, Rantavaara A, Nielsen SP, Aarkrog A (1990) The detection of radioactive material from a venting underground nuclear explosion. J envirl Radioact 11: 1–14
- Bollard EG (1983) Involvement of unusual elements in plant growth and nutrition. In: Läuchli A, Bieleski RL (eds) Encyclopedia of plant physiology. Inorganic plant nutrition. Vol. 15B. Springer-Verlag, Berlin, pp 695–744
- Chapman VJ (1970) Seaweeds and their uses. 2nd edn. Methuen & Co. Ltd., London
- Cooper LW, Larsen IL, Beasley TM, Dolvin SS, Grebmeier JM, Kelley JM, Scott M, Johnson-Pyrtle A (1998) The distribution of radiocesium and plutonium in sea ice-entrained Arctic sediments in relation to potential sources and sinks. J envirl Radioact 39: 279–303
- Druehl LD, Cackette M, D'Auria JM (1988) Geographical and temporal distribution of iodine-131 in the brown seaweed *Fucus* subsequent to the Chernobyl incident. Mar Biol 98: 125–129
- Dunton KH (1990) Growth and production in *Laminaria solidungula*: relation to continuous underwater light levels in the Alaskan High Arctic. Mar Biol 106: 297–304

- Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of *Laminaria solidungula* in the Alaskan High Arctic. Mar Ecol Prog Ser 31: 57–66
- Elmore D, Phillips FM (1987) Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, NY 236: 543–550
- Fehn U, Holdren CR, Elmore D, Brunelle T, Teng R, Kubik PW (1986) Determination of natural and anthropogenic ¹²⁹I in marine sediments. Geophys Res Lett 13: 137–139
- Grimm MR (1952) Iodine content of some marine algae. Pacif Sci 6: 318–323
- Kershaw P, Baxter A (1995) The transfer of reprocessing wastes from northwest Europe to the Arctic. Deep-Sea Res 42: 1413– 1448
- Kershaw P, Sampson KE, McCarthy W, Scott RD (1995a) The measurement of the isotopic composition of plutonium in an Irish Sea sediment by mass spectrometry. J radioanalyt nucl Chemy 198: 113–124
- Kershaw PJ, Woodhead DS, Lovett MB, Leonard KS (1995b) Plutonium from European reprocessing operations: its behaviour in the marine environment. Int J Radiat Applics Instrumn (Part A: Appl Radiat Isotopes) 46: 1121–1134
- Kilius LR, Litherland AE, Rucklidge JC, Baba N (1992) Accelerator mass-spectrometric measurements of heavy long-lived isotopes. Int J Radiat Applics Instrumn (Part A: Appl Radiat Isotopes) 43: 279–287
- Kilius LR, Rucklidge JC, Soto C (1994) The dispersal of ¹²⁹I from the Columbia River estuary. Nucl Instrum Meth Phys Res B92: 393–397
- Lagergren CR, Stoffels JJ (1970) A computer-controlled, three stage mass spectrometer. Int J mass Spectrom Ion Phys 3: 429– 438
- Livingston HD, Swift JH, Ostland HG (1985) Artificial radionuclide tracer supply to the Denmark Strait overflow between 1972 and 1981. J geophy Res 90: 6971–6982
- Mann LJ, Beasley TM (1994) ¹²⁹I in the Snake River aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990– 1991. US Geological Survey Water Resources Investigations Report 94-4053, US Geological Survey, Denver, Colorado
 Moran JE, Fehn U, Teng RTD (1998) ¹²⁹I/¹²⁷I ratios in recent
- Moran JE, Fehn U, Teng RTD (1998) ¹²⁹I/¹²⁷I ratios in recent marine sediments: evidence for a fossil organic source component. Chem Geol (In press)
- Pais I, Jones JB (1997) The handbook of trace elements. St Lucie Press, Boca Raton, Louisiana
- Raisbeck GM, Yiou F, Zhou ZQ, Kilius LR (1995) ¹²⁹I from nuclear fuel reprocessing facilities at Sellafield (UK) and La Hague (France); potential as an oceanographic tracer. J mar Syst 6: 561–570
- Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J geophys Res 100: 18443–18457
- Saenko GN, Kravtsova YY, Ivanenko VV, Sheludko SI (1978) Concentration of iodine and bromine by plants in the Seas of Japan and Okhotsk. Mar Biol 47: 243–250
- Schauer U, Muench R, Rudels B, Timokhov L (1997) Impact of eastern Arctic shelf waters on the Nansen Basin intermediate waters. J geophys Res 102: 3371–3382
- Shaw TI (1959) The mechanism of iodide accumulation by the brown seaweed *Laminaria digitata*. The uptake of ¹³¹I. Proc R Soc (Ser B) 150: 356–371
- Stoffels JJ, Lagergren CR (1984) Fabrication of V-type filaments for surface ionization mass spectrometry. Int J mass Spectrom Ion Phys 55: 217–219
- Wagner MJM, Dittrich-Hannen B, Synal H-A, Suter M, Schotterer U (1996) Increase of ¹²⁹I in the environment. Nucl Instrum Meth (Sect B) 113: 490–494