Kenneth A. Jacobson

Kenneth A. Jacobson
National Institutes of Health | NIH · National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Ph.D.

About

1,073
Publications
65,729
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
50,000
Citations
Introduction
Dr. Jacobson is a medicinal chemist with interests in the structure and pharmacology of G protein-coupled receptors (GPCRs), in particular receptors for adenosine and for purine and pyrimidine nucleotides (P2Y receptors and P2X receptors).
Additional affiliations
October 1983 - present
National Institutes of Health
September 1981 - September 1983
Weizmann Institute of Science
Position
  • Bantrell Fellow
September 1976 - June 1981
University of California, San Diego
Position
  • PhD Student
Education
September 1976 - June 1981
September 1971 - December 1975
Reed College
Field of study
  • Liberal Arts

Publications

Publications (1,073)
Article
Full-text available
Adenosine receptor (AR) ligands are being developed for metabolic, cardiovascular, neurological, and inflammatory diseases and cancer. The ease of drug discovery is contingent on the availability of pharmacological tools. Fluorescent antagonist ligands for the human A2A and A3ARs were synthesized using two validated pharmacophores, 1,3-dipropyl-8-p...
Article
Epilepsy affects over 50 million people worldwide and increases the risk of death. An intrinsic state of central inflammation, mainly driven by TNFα/NFκB signaling, may contribute to the refractory nature of some epilepsies. We have therefore hypothesized that inhibitors of this signaling pathway might be therapeutic. To test this hypothesis, we ha...
Article
Full-text available
Adenosine (ADO) is an extracellular signaling molecule generated locally under conditions that produce ischemia, hypoxia, or inflammation. It is involved in modulating a range of physiological functions throughout the brain and periphery through the membrane-bound G protein-coupled receptors, called adenosine receptors (ARs) A1AR, A2AAR, A2BAR, and...
Article
Introduction: A3 adenosine receptor (A3 AR) agonists are currently being evaluated in clinical trials for treatment of inflammation, cancer, and neuropathic pain. To circumvent complications associated with the use of direct agonists of GPCRs (selectivity, dose-limiting side-effects), we have pursued development of A3 adenosine receptor positive a...
Article
Chronic neuropathic pain is a major health issue and an economic burden that affects large numbers of people. Patients suffering from chronic pain have a significantly lowered quality of life, and to date there are no effective treatments for neuropathic pain. The P2Y14 receptor (P2Y14 R) is a purinergic G-protein coupled receptor that binds nucleo...
Article
Adenosine in the tumor microenvironment acts on A2A and A2B adenosine receptors (ARs) on immune cells (T cells, dendritic cells, NK cells, macrophages and neutrophils) to prevent their activation. Therefore, a means of lowering extracellular adenosine would be beneficial in cancer immunotherapy either as a co-therapy or monotherapy. Inhibitors of C...
Article
Full-text available
The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate releas...
Article
Full-text available
Guanine nucleotides can flip between a North and South conformation in the ribose moiety. To test the enzymatic activity of GTPases bound to nucleotides in the two conformations, we generated methanocarba guanine nucleotides in the North or South envelope conformations, i.e., (N)-GTP and (S)-GTP, respectively. With dynamin as a model system, we exa...
Article
Extracellular uridine nucleotides regulate physiological and pathophysiological metabolic processes through the activation of P2Y2, P2Y4, P2Y6 and P2Y14 purinergic receptors, which play a key role in adipogenesis, glucose uptake, lipolysis and adipokine secretion. Using adipocyte-specific knockout mouse models, it has been demonstrated that lack of...
Article
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by s...
Article
A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affini...
Article
Full-text available
The adenosine A3 receptor is a promising target for treating and diagnosing inflammation and cancer. In this paper, a series of bicyclo[3.1.0]hexane-based nucleosides was synthesized and evaluated for their P1 receptor affinities in radioligand binding studies. The study focused on modifications at 1-, 2-, and 6-positions of the purine ring and var...
Article
Full-text available
The P2X5 receptor, an ATP-gated cation channel, is believed to be involved in tumor development, inflammatory bone loss and inflammasome activation after bacterial infection. Therefore, it is a worthwhile pharmacological target to treat the corresponding diseases, especially in minority populations that have a gene variant coding for functional hom...
Preprint
In this paper, a series of bicyclo[3.1.0]hexane-based nucleosides were synthesized and evaluated for their P1 receptor affinities in radioligand binding studies. The most potent derivative 30 displayed moderate A3AR affinity (Ki of 0.38 μM) and high A3R selectivity. A subset of compounds varied at 5’-position was further evaluated in functional P2Y...
Article
The A3 adenosine receptor (A3AR) is a target for pain, ischemia, and inflammatory disease therapy. Among the ligand tools available are selective agonists and antagonists, including radioligands, but most high-affinity non-nucleoside antagonists are limited in selectivity to primate species. We have explored the structure-activity relationship of a...
Presentation
Full-text available
Introduction: Resistance to pharmacotherapy requires the development of novel antiepileptic drugs (AEDs). An adenosine A1 receptor (A1R) agonist, MRS5474, possesses anticonvulsant activity [1] Tosh et al., 2012, J Med Chem, 55:8075, without the cardiac side effects of other A1R agonists. We hypothesized that it could operate via a novel mechanism....
Article
Full-text available
High affinity phenyl-piperidine P2Y14R antagonist 1 (PPTN) was modified with piperidine bridging moieties to probe receptor affinity and hydrophobicity. Various 2-azanorbornane, nortropane, isonortropane, isoquinuclidine, and ring-opened cyclopentylamino derivatives preserved human P2Y14R affinity (fluorescence binding assay), and their pharmacopho...
Article
Full-text available
Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A 3 adenosine receptor (AR) subtype (A 3 AR) agonist, MRS5980, to p...
Article
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-ben...
Article
Various adenosine receptor nucleoside-like ligands were found to modulate ATP hydrolysis by the multidrug transporter ABCG2. Both ribose-containing and rigidified (N)-methanocarba nucleosides (C2-, N⁶- and 5′-modified), as well as adenines (C2-, N⁶-, and deaza modified), were included. 57 compounds out of 63 tested either stimulated (50) or inhibit...
Presentation
Full-text available
Resistance to pharmacotherapy requires the development of novel antiepileptic drugs (AEDs). An adenosine A1 receptor (A1R) agonist, MRS5474, possesses anticonvulsant activity (Tosh et al., 2012, J Med Chem, 55:8075), without the cardiac side effects of other A1R agonists. We hypothesized that it could operate via a novel mechanism. We thus assessed...
Article
Full-text available
The A3 adenosine receptor (AR) is emerging as an attractive drug target. Antagonists are proposed for the potential treatment of glaucoma and asthma. However, currently available A3AR antagonists are potent in human and some large animals, but weak or inactive in mouse and rat. In this study, we re-synthesized a previously reported A3AR antagonist,...
Poster
Full-text available
Resistance to pharmacotherapy requires the development of novel antiepileptic drugs (AEDs). An adenosine A1 receptor (A1R) agonist, MRS5474, possesses anticonvulsant activity (Tosh et al., 2012, J Med Chem, 55:8075), without the cardiac side effects of other A1R agonists. We hypothesized that it could operate via a novel mechanism. We thus assessed...
Article
Background Alzheimer's disease (AD) is the most common form of dementia worldwide, with approximately 6 million American cases in 2020. The clinical signs of AD include cognitive dysfunction, apathy, anxiety and neuropsychiatric signs, and pathogenetic mechanisms that involve amyloid peptide-β extracellular accumulation and tau hyperphosphorylation...
Article
Following our study of 4′-truncated (N)-methanocarba-adenosine derivatives that displayed unusually high mouse (m) A3AR affinity, we incorporated dopamine-related N⁶ substituents in the full agonist 5′-methylamide series. N⁶-(2-(4-Hydroxy-3-methoxy-phenyl)ethyl) derivative MRS7618 11 displayed Ki (nM) 0.563 at hA3AR (∼20,000-fold selective) and 1.5...
Article
Fragment-based drug discovery relies on successful optimization of weakly binding ligands for affinity and selectivity. Herein, we explored strategies for structure-based evolution of fragments binding to a G protein-coupled receptor. Molecular dynamics simulations combined with rigorous free energy calculations guided synthesis of nanomolar ligand...
Article
Full-text available
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targe...
Article
P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 192]) are activated by the endogenous ligands ATP, ADP, uridine triphosphate, uridine diphosphate and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to u...
Article
Adenosine receptor (AR) radiotracers for positron emission tomography (PET) have provided knowledge on the in vivo biodistribution of ARs in the central nervous system (CNS), which is of therapeutic interest for various neuropsychiatric disorders. Additionally, radioligands that can image changes in endogenous adenosine levels in different physiolo...
Article
Full-text available
Distinguishing compounds' agonistic or antagonistic behavior would be of great utility for the rational discovery of selective modulators. We synthesized truncated nucleoside derivatives and discovered 6c (Ki = 2.40 nM) as a potent human A3 adenosine receptor (hA3AR) agonist, and subtle chemical modification induced a shift from antagonist to agoni...
Article
Full-text available
A linear route has been used to prepare (N)-methanocarba-nucleoside derivatives, which serve as purine receptor ligands having a pre-established, receptor-preferred conformation. To introduce this rigid ribose substitute, a Mitsunobu reaction of a [3.1.0]bicyclohexane 5'-trityl intermediate 3 with a nucleobase is typically followed by functional gr...
Article
Full-text available
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the n...
Article
Hepatic insulin resistance (IR) and enhanced hepatic glucose production (HGP) are key features of type 2 diabetes (T2D), contributing to fasting hyperglycemia. Adenosine receptors (ARs) are G protein-coupled and expressed in hepatocytes. Here, we explored the role of hepatic Gi/o-coupled A1AR on insulin resistance and glucose fluxes associated with...
Article
Full-text available
Agonists of the Gi protein-coupled A3 adenosine receptor (A3AR) have shown important pain-relieving properties in preclinical settings of several pain models. Active as a monotherapy against chronic pain, A3AR agonists can also be used in combination with classic opioid analgesics. Their safe pharmacological profile, as shown by clinical trials for...
Article
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenos...
Article
Adenosine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Adenosine Receptors [110]) are activated by the endogenous ligand adenosine (potentially inosine also at A3 receptors). Crystal structures for the antagonist-bound [153, 313, 221, 61], agonist-bound [375, 203, 204] and G protein-bound A2A adenosine receptors [49] have been...
Article
Opioids are potent analgesics, but their pain‐relieving effects diminish with repeated use. The reduction in analgesic potency is a hallmark of opioid analgesic tolerance, which hampers opioid pain therapy. In the central nervous system, opioid analgesia is critically modulated by adenosine, a purine nucleoside implicated in the beneficial and detr...
Article
A series of adenosine and 2’-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A...
Article
Psoriasis is a chronic and relapsing inflammatory skin disease lacking a cure that affects approximately 2% of the population. Defective keratinocyte proliferation and differentiation, and aberrant immune responses are major factors in its pathogenesis. Available treatments for moderate to severe psoriasis are directed to immune system causing syst...
Article
Full-text available
Obesity is the major driver of the worldwide epidemic in type 2 diabetes (T2D). In the obese state, chronically elevated plasma free fatty acid levels contribute to peripheral insulin resistance, which can ultimately lead to the development of T2D. For this reason, drugs that are able to regulate lipolytic processes in adipocytes are predicted to h...
Article
The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,β -methylen...
Article
Full-text available
DNA methylation has a major role in cancer, and its inhibitors are used therapeutically. DNA methylation depends on methyl group flux through the transmethylation pathway, which forms adenosine. We hypothesized that an adenosine kinase isoform with nuclear expression (ADK-L) determines global DNA methylation in cancer cells. We quantified ADK-L exp...
Article
Full-text available
A new series of 4′-selenoadenosine-5′-N,N-dimethyluronamide derivatives as highly potent and selective human A3 adenosine receptor (hA3AR) antagonists, is described. The highly selective A3AR agonists, 4′-selenoadenosine-5′-N-methyluronamides were successfully converted into selective antagonists by adding a second N-methyl group to the 5′-uronamid...
Article
Full-text available
Airway eosinophilia is a hallmark of allergic asthma and is associated with mucus production, airway hyperresponsiveness, and shortness of breath. Although glucocorticoids are widely used to treat asthma, their prolonged use is associated with several side effects. Furthermore, many individuals with eosinophilic asthma are resistant to glucocortico...
Article
Various 6-alkynyl analogues of a known 3-nitro-2-(trifluoromethyl)-2H-chromene antagonist 3 of the Gq-coupled P2Y6 receptor (P2Y6R) were synthesized using a Sonogashira reaction to replace a 6-iodo group. The analogues were tested in a functional assay consisting of inhibition of calcium mobilization in P2Y6R-expressing astrocytoma cells elicited b...
Article
A known zwitterionic, heterocyclic P2Y14R antagonist 3a was substituted with diverse groups on the central phenyl and terminal piperidine moieties, following a computational selection process. The most potent analogues contained an uncharged piperidine bioisostere, prescreened in silico, while an aza-scan (central phenyl ring) reduced P2Y14R affini...
Article
Full-text available
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia seen in clinical practice. While some clinical parameters may predict the transition from paroxysmal to persistent AF, the molecular mechanisms behind the AF perpetuation are poorly understood. Thus, oxidative stress, calcium overload and inflammation, among others, are believed...
Article
The heat shock protein 90 kDa (Hsp90) family of chaperones is highly sought-after for the treatment of cancer and neurodegenerative diseases. Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum localized isoform that is responsible for the maturation of proteins involved in cell adhesion and the immune response, including Toll-like re...
Article
Full-text available
Geoffrey Burnstock made a chance observation early in his research career that did not fit the conventional scientific dogma—non-noradrenergic, non-cholinergic (NANC) nerves. Instead of rejecting these as an artifact, he followed their logical course to characterize the actions of extracellular ATP on nerves and muscles, eventually founding a large...
Article
The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain; investigation into their mode of action is essential for ongoing clinical development. A3ARs on immune cells, and their activation during pathology, modulates cytokine release. Thus, immune cells as a cellular...
Presentation
Full-text available
Introduction: Pharmaco-resistance in epilepsy requires development of novel antiepileptic drugs. An A1 adenosine receptor (A1R) agonist, MRS5474, possesses anticonvulsant activity, without the cardiac side effects of other A1R agonists [1], leading us to hypothesise that it could operate a different mechanism from classical A1R agonists. We thus te...
Article
Full-text available
DNA methylation has a major role in cancer, and its inhibitors are used therapeutically. DNA methylation depends on methyl group flux through the transmethylation pathway, which forms adenosine. We hypothesized that an adenosine kinase isoform with nuclear expression (ADK-L) determines global DNA methylation in cancer cells. We quantified ADK-L exp...
Article
We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immun...
Article
Full-text available
Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A 1 receptors (A 1 AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A 1 AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy- N 6 -endo-norbornyladenosine)...
Article
Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved...
Article
Full-text available
Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of protot...
Article
Various (North)-methanocarba adenosine derivatives, containing rigid bicyclo[3.1.0]hexane ribose substitution, were screened for activity against representative viruses, and inhibition was observed after treatment of Enterovirus A71 with a 2-chloro-N6-1-cyclopropyl-2-methylpropan-1-yl derivative (17). μM activity was also seen when testing 17 again...
Article
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The ind...
Article
Thiouracil and thiocytosine are important heterocyclic pharmacophores having pharmacological diversity. Antitumor and antiviral activity is commonly associated with thiouracil and thiocytosine derivatives, which are well known fragments for adenosine receptor affinity with many associated pharmacological properties. In this respect, 33 novel compou...
Article
Uridine diphosphate (UDP)-activated purinergic receptor P2Y 6 (P2Y 6 R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y 6 R's roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising finding that adipocyte-specific deletion of P2Y 6 R protects...
Article
As a mitotic-specific target widely deregulated in various human cancers, polo-like kinase 1 (Plk1) has been extensively explored for anticancer activity and drug discovery. Although multiple catalytic domain inhibitors were tested in preclinical and clinical studies, their efficacies are limited by dose-limiting cytotoxicity, mainly from off-targe...
Article
Full-text available
Solvent reorganization is a major driving force of protein–ligand association, but the contribution of binding site waters to ligand affinity is poorly understood. We investigated how altered interactions with a water network can influence ligand binding to a receptor. A series of ligands of the A2A adenosine receptor, which either interacted with...