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We establish local existence and comparison for a model problem which incorporates the effects of
non-linear diffusion, convection and reaction. The reaction term to be considered contains a non-local
dependence, and we show that local solutions can be obtained via monotone limits of solutions to
appropriately regularized problems. Utilizing this construction, it is further shown that, under conditions of
either ‘weak reaction’ or ‘sufficiently small’ initial mass, solutions exist for all time. Finally, we provide an
alternative analysis of global existence and investigate blow up in finite time for the case of power law
diffusion and convection. These results show the extent to which the assumption of weak reaction may be
relaxed and still obtain global existence. ( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.
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1. Introduction

In this paper we establish the existence of non-negative solutions for reaction,
diffusion, convection models of the form

u
t
"(/ (u)

x
#g(u))

x
#auEuEp~1

q
on (0, 1)](0,¹ ) ,

(A
T
) u(0, t)"u (1, t)"0 on (0,¹ ) ,

u(x, 0)"u
0
(x) on [0 1].

Of particular interest is the existence of solutions of (A
=
), i.e. global solutions.

A solution of (A
=
) may be defined as a function, u (x, t), which is a solution of (A

T
) for

every ¹'0. (The definition of a solution of (A
T
), which is a rather standard weakened

notion, is given in section 2.)
Herein, u

0
3¸= ((0, 1) ) is a prescribed non-negative function, / and g are continu-

ous on [0,R), /@@ and g@ are continuous on (0,R), / (0)"g(0)"0, and /@ (u)*aum~1

for u'0 with constants a, m'0. The non-local dependence in the forcing term is
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governed by the ¸q((0, 1)) norm

Eu ( · , t)Eq
q
"P

1

0

uq(x, t) dx (q*1),

and p*1. As such, the above methods include the case of porous medium diffusion,
/(u)"um, with density-dependent drift, g(u). In studies of population dynamics [6] or
transport through porous materials [17], it has been seen that useful mathematical
models contain both these effects. Chemotaxis, the oriented migration of a species
caused by the release of a chemical by others of the same species, provides yet another
phenomenon where the effects of density-dependent drift and non-linear diffusion
are both important [1, 16]. It has also been suggested that non-local growth terms
present a more realistic model of a population which communicates through chemical
means [11].

One of our main results is that if a'0 and p(m or if a'0 is small and p"m,
then there exists a solution of (A

=
) for any initial state u

0
. (It is also true that (A

=
) is

solvable for any given u
0
in the case of absorption a)0.) In the remaining cases, there

exists a solution of (A
=
) provided the initial data has sufficiently small ¸q ((0, 1)) norm.

Furthermore, if a'0, we show that these solutions of (A
=

), u (x, t), satisfy

lim sup
t?=

Eu ( · , t)E
q
"G C

4a(q!1)

a(q#m!1)2D
1@(p~m)

if p(m and q'1,

0 if p*m.

So, for example, if q"1 and p*m, there are global solutions that decay to have zero
‘mass’.

In proving the existence of global solutions, we first develop the existence of
solutions of (A

T
) for small values of ¹. For these local solutions, a common form of

continuation result holds. Namely, if u(x, t) is a solution of (A
T
) and ¹K '¹, then

either u(x, t) may be continued to be a solution of (A
TK
) or

lim sup
t?T*

Eu ( · , t)E
=
"R

for some ¹*3 (¹,¹K ). (Here, E · E
=

denotes the usual norm in ¸=( (0, 1)).) In the latter
case, we shall say that u blows up in finite time. Therefore, to investigate the necessity
of p(m, p"m with a'0 small, or a)0 to guarantee the solvability of (A

=
) for all

initial states, it is useful to study blow-up in finite time.
To this end, we isolate attention to the case of diffusion and convection governed by

power laws

u
t
"((um)

x
#eun)

x
#auEuEp~1

q
on (0, 1)](0,¹ ) ,

(B
T
) u(0, t)"u (1, t)"0 on (0,¹ ) ,

u(x, 0)"u
0
(x) on [0, 1].

Here, m, n'0, and, in light of the transformation xP1!x, there is no loss of
generality in considering only e'0. As well, since the absorption case a)0 is
understood, we only consider a'0. Via comparison with a suitable supersolution, we
show that if p(maxMm, nN, then (B

=
) is solvable for all initial states. On the other

1070 J. R. Anderson and K. Deng

Math. Meth. Appl. Sci., Vol. 20, 1069—1087 (1997) ( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.



hand, reversal of this inequality is shown to yield solutions which blow up in finite
time. Hence, the condition p(m is not necessary for solutions of (A

=
) to exist for any

given u
0
. Unfortunately, the methods used to investigate solutions of (B

T
) do not

apply to (A
T
) in its full generality.

Our interest in the solvability of (A
=
) lies in the similarity of this model to the local

problem

u
t
"((um)

x
#eun)

x
#aup on (0, 1)](0,¹ ) ,

(C
T
) u(0, t)"u (1, t)"0 on (0,¹ ) ,

u(x, 0)"u
0
(x) on [0 1].

The solvability of (C
=
) was studied in previous work [3], and results established

therein are virtually identical to those proven here for (B
=
). The non-local growth

term does not appear to promote or inhibit the existence of global solutions when
compared to the same model with a purely local growth term. On the other hand,
recent work regarding the linear diffusion model

u
t
"u

xx
#up!P

1

0

up (x, · ) dx; 0(x(1, t'0

show that such an equation has solutions which blow up in finite time for all p'1
[5, 13]. Thus, in comparing (B

=
) and (C

=
), the non-local growth term behaves much

like its local counterpart. However, the non-local growth term is not able to prevent
blow-up in finite time in the presence of a similarly strong local growth term. Other
studies regarding similar effects of non-local vs. local reaction in a linear diffusion
model may be found in [7, 8, 14].

This paper is organized as follows. In section 2, the notion of a solution of (A
T
) is

defined. The existence of such solutions for sufficiently small values of ¹'0 is then
established via a monotone limit of solutions to regularized problems as in [2]. In
section 3, uniqueness and comparison results are proven for solutions of (A

T
).

Although the necessary techniques are by now quite standard, see e.g. [2, 10, 12], this
work also yields the fact that solutions of (A

T
) as constructed in section 2 are the

maximal solutions of (A
T
). In section 4, the main results regarding global solutions are

presented, and in section 5, results pertaining to global solutions and blow-up in finite
time for (B

T
) are established.

2. Local existence

As it is now well known that degenerate equations need not possess classical
solutions, we begin by giving a precise definition of a solution for problem (A

T
). It will

also be convenient to define the notions of subsolution and supersolution at the same
time. To this end, define the class of ‘test functions’

T,Mm3C(Q
T
) ; m

t
, m

xx
3C(Q

T
)W¸2 (Q

T
) ; m*0; m (0, t)"m (1, t)"0N ,

where Q
T
,(0, 1)](0,¹ ), and C(Q

T
), ¸2(Q

T
) denote the continuous and square integ-

rable functions on Q
T
, respectively.
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Definition 2.1. A function u(x, t) defined on Q
T
, where ¹'0, is called a subsolution

(supersolution ) of (A
T
) if all the following hold.

(i) u3¸= (Q
T
).

(ii) u (0, t), u (1, t))(*)0 for t3 (0,¹ ), and u (x, 0))(*)u
0
(x) for almost all

x3 (0, 1).
(iii) For every t3[0,¹ ] and every m3T,

P
1

0

[u (x, t)m (x, t)!u
0
(x)m(x, 0)] dx

)(*) P
t

0
P

1

0

Mum
s
#/ (u)m

xx
!g(u)m

x
#auEuEp~1

q
mNdxds .

A solution (or weak solution) of (A
T
) is a function which is both a subsolution and

a supersolution of (A
T
). A solution of (A

=
), i.e. a global solution, is a function which is

a solution of (A
T
) for every ¹'0.

To prove the existence of a solution of (A
T
) for some sufficiently small ¹'0,

i.e. a local solution, we introduce the sequence Mu
k
N=
k/2

, where u
k

is the solution
of

u
t
"(/ (u)

x
#g(u))

x
#auEu

k~1
Ep~1
q

on Q
T
,

(Ak
T
) u(0, t)"u (1, t)"0 on (0,¹ ) ,

u(x, 0)"u
0
(x) on [0, 1],

and u
1
(x, t),u

1
(x) is chosen to satisfy u

1
3C([0, 1]), u

1
*0, and

P
1

0

uq
0
(x) dx(P

1

0

uq
1
(x) dx . (1)

Here, a solution of (Ak
T
) is understood in the same manner as that for (A

T
). The next

lemma addresses the existence of the limit lim
k?=

u
k
(x, t).

Lemma 2.1. For each k"2, 3,2 , there exists a solution of (Ak
=
) which is denoted by

u
k
. Moreover, there exists a monotone increasing sequence M¹

k
N=
k/2

such that
0)u

k`1
)u

k
on (0, 1)](0,¹

k
).

Proof. The existence of non-negative solutions of (Ak
T
) for any ¹'0 is a consequence

of results in [2]. The existence of the sequence Mu
k
N=
k/2

can also be concluded from the
work of Sacks [15], but the construction of these solutions as presented in the former
reference shall be useful in the developments herein. A summary of this construction
as it applies to (Ak

T
) is now given for the convenience of the reader.

The solution of (A2
T
), u

2
, is obtained as a pointwise limit of solutions to the

regularized problems

v
t
"(/ (v)

x
#g(v))

x
#aEu

1
Ep~1
q

v on Q
T
,

(A2, l, i
T

) v(0, t)"v (1, t)"1/l on (0,¹ ) ,

v(x, 0)"u
0i

(x)#1/l on [0 1],

1072 J. R. Anderson and K. Deng

Math. Meth. Appl. Sci., Vol. 20, 1069—1087 (1997) ( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.



where l'0, and u
0i

is a smooth approximation (obtained via mollification), with
suppu

0i
L(0, 1). The classical solution of (A2, l, i

T
), v

l, i
, can be shown to exist, and,

moreover, maximum principles, e.g. Lemma A.1 in [2], may be employed to obtain
the estimates

1/l)v
l, i

(x, t))[Eu
oi
E
=
#1/l]eaEu1Ep~1

q t

and

v
l, i

(x, t)*v
j, i

(x, t) if j*l'0

which are true for all (x, t)3Q
T
. It follows that

u
2
(x, t), lim

l?= C lim
i?=

v
l, i

(x, t)D
is a solution of (A2

T
) and such a construction is valid for any ¹'0.

The process is now verified by induction. To this end, assume that k*3 and
a solution of (Ak~1

=
), u

k~1
, has been constructed as above. Define

b
k
(t),Eu

k~1
( · , t)Ep~1

q
and fix ¹'0. Since b

k
3¸= ( (0,¹ )), we may suitably modify

the arguments in [2] to obtain a solution of (Ak
T
), u

k
, according to

u
k
, lim

l?= C lim
i?=

v
k, l, i

(x, t)D .

Here the functions v
k, l, i

are now (classical) solutions of the regularized problems

v
t
"(/ (v)

x
#g(v))

x
#ab

k, i
v on Q

T
,

(Ak, l, i
T

) v(0, t)"v (1, t)"1/ l on (0,¹ ) ,

v(x, 0)"u
0i

(x)#1/l on [0, 1],

where l'0, u
0i

is as in (A2, l, i
T

), and b
k, i

is a smooth approximation of b
k
. By maximum

principles it can again be shown that

1/l)v
k, l, i

(x, t))[Eu
0i

E
=
#1/l]eatEbk, iE=

is valid for all (x, t)3Q
T
. As b

k
3¸=(0,¹ ), it follows that b

k, i
3¸=(0,¹ ) for each

¹'0. Hence, the above construction is valid for all ¹'0, i.e. u
k
is a solution of (Ak

=
).

This verifies the existence of the sequence Mu
k
N=
k/2

. There remains the task of
proving monotonicity on Q

T
for certain values of ¹'0, which can be done by

showing that the sequence Mb
k
N is monotone. In this direction, let w denote the

solution of (Ak, l, i
T

) and fix r*q. Upon multiplication of the differential equation by
rwr~1 and integration by parts, it follows that

d

dt P
1

0

wr(x, t) dx

"P
1

0

M!r (r!1)wr~2/@(w) (w
x
)2#rwr~1g@ (w)w

x
#ab

k, i
rwrN (x, t) dx

#r A
1

lB
r~1

[/ (w)
x
(1, t)!/ (w)

x
(0, t)]
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"P
1

0

M!r (r!1)[(
l
(w)

x
]2#H

l
(w)

x
#ab

k, i
rwrN (x, t) dx

#r A
1

lB
r~1

[/ (w)
x
(1, t)!/ (w)

x
(0, t)] .

Here, the functions (
l
and H

l
are defined by

(
l
(u),P

u

1@l

Jsr~2/@(s) ds

and

H
l
(u),P

u

1@l

rsr~1g@ (s) ds .

Since /(w)
x
(1, t)!/ (w)

x
(0, t))0 and Eb

k, i
E
=
)Eb

k
E
=

, there follows

d

dt P
1

0

wr(x, t) dx)P
1

0

M!r(r!1)[(
l
(w)

x
]2#ab

k, i
rwrN (x, t) dx

)arEb
k
E
= P

1

0

wr (x, t) dx . (2)

Subsequently, with r"q, the solutions of (Ak, l, i
T

) must satisfy

P
1

0

vq
k, l, i

(x, t) dx)eaqtEbkE= P
1

0
Cu0i (x)#

1

lD
q
dx ,

which upon passing to the limit iPR, lPR, yields

P
1

0

uq
k
(x, t) dx)eaqtEbkE= P

1

0

uq
0
(x) dx .

Select ¹
2
'0 so that

eaqb2T2 P
1

0

uq
0
(x) dx)P

1

0

uq
1
(x) dx .

Such a value ¹
2

exists due to the choice of u
1

according to (1). It follows b
3
)b

2
on [0,¹

2
]. Utilizing non-negative, symmetric mollifiers in the construction of b

3, i
and b

2, i
ensures that b

3, i
)b

2, i
is also true on [0,¹

2
]. Hence the maximum principle

[2, Lemma A.1] may be applied to compare solutions of (A2, l, i
T2

) and (A3, l, i
T2

) and
obtain v

3, l, i
)v

2, l, i
on Q

T2
. Passing to the limits iPR, lPRgives u

3
)u

2
on Q

T2
.

In order to construct ¹
3
, observe that now

b
4
(t)"P

1

0

uq
3
(x, t) dx)P

1

0

uq
2
(x, t) dx"b

3
(t)

for all t3[0,¹
2
]. Subsequently, ¹

3
'0 may be chosen in such a way that ¹

3
*¹

2
and b

4
)b

3
on [0,¹

3
]. Using the maximum principle as above yields u

4
)u

3
on Q

T3
.

Continuing in this manner, the sequence ¹
2
)¹

3
)¹

4
)2 is constructed. K

Due to the above lemma, the limit

¹*, lim
k?=

¹
k
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exists, and, as well, the pointwise limit

u(x, t), lim
k?=

u
k
(x, t)

exists for (x, t)3Q
T* . Furthermore, as the convergence of the sequence is monotone,

passage to the limit kPRin the identity

P
1

0

[u
k
(x, t)m (x, t)!u

0
(x)m (x, 0)] dx

"P
t

0
P

1

0

Mu
k
m
s
#/(u

k
)m

xx
!g(u

k
)m

x
#au

k
Eu

k~1
Ep~1
q

mNdxds

is justified by monotone and dominated convergence theorems for any m3T and
t3[0,¹*). The following theorem is thus established.

Theorem 2.1 (Local existence and continuation). Given u
0
*0, u

0
3¸=( (0, 1) ), there

is some ¹*"¹*(u
0
)'0 such that there exists a non-negative solution,

u(x, t)"u (x, t ; u
0
), of (A

T
) for each ¹(¹*. Furthermore, either ¹*"Ror

lim sup
t?T*

Eu ( · , t)E
=
"R.

Before leaving this section it will be useful in subsequent work to recognize an
alternative approach to solutions of (A

T
). Recall that the sequence Mv

k, l, i
N, which

contains the solutions of (Ak, l, i
T

), is monotone decreasing in both subscripts k and l.
Therefore, the solution, u, of (A

T
), which is constructed above, has

u" lim
k?=

lim
l?=

lim
i?=

v
k, l, i

" lim
l?=

u l ,

where u l,lim
k?=

lim
i?=

v
k, l, i

. So u can also be developed as the pointwise limit of
solutions of

u
t
"(/ (u)

x
#g(u))

x
#auEuEp~1

q
on Q

T
,

( lA
T
) u(0, t)"u (1, t)"1/ l on (0,¹ ) ,

u(x, 0)"u
0
(x)#1/ l on [0, 1].

Solutions of problem (lA
T
) are defined in a manner similar to that for (A

T
).

Because of the monotonicity of the sequence Mu
k
N=
k/2

, it is plausible that we may refer
to u,lim u

k
as the ‘limit solution’ of (A

T
) and, hence, discuss a theory for the limit

solutions of (A
T
) even in the absence of a uniqueness theory for weak solutions. This is,

in fact, true once it has been shown that the construction above is independent of the
choice of u

1
(x), which will follow from the verification that solutions of (lA

T
) are unique.

In the next section, we take up the question of the uniqueness of weak solutions for
problems (A

T
) and ( lA

T
) at the same time. It is more efficient to proceed in such

a manner due to the nearly identical nature of all necessary calculations. From these
calculations it will also be seen that the limit solution of (A

T
) is actually the maximal

weak solution.
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3. Uniqueness and comparison

The technique for proving uniqueness and comparison for problems ( lA
T
) and (A

T
)

is quite standard. For example, see [2, 4, 9, 10]. Here, we shall sketch the argument for
the convenience of the reader, pointing out those items which require special care.

To begin, let u and v denote a non-negative subsolution and a non-negative
supersolution of ( lA

T
), respectively. (Subsolutions/supersolutions of ( lA

T
) are defined

exactly as for (A
T
) except for the addition of a boundary integral resulting from formal

integration by parts.) Subtracting the integral inequalities for u and v, yields

P
1

0

[u (x, t)!v(x, t)]m (x, t) dx

)P
1

0

[u(x, 0)!v(x, 0)]m (x, 0) dx

#P
t

0
P

1

0

(u!v)Mm
s
#'m

xx
!Gm

x
N dxds

#P
t

0
P

1

0

aMuEuEp~1
q

!vEvEp~1
q

Ndxds

#P
t

0

M![/(u (1, s))!/(v(1, s))]m
x
(1, s)#[/ (u (0, s))

!/(v (0, s))]m
x
(0, s)N

where

'(x, t),P
1

0

/@[hu(x, t)#(1!h)v(x, t)] dh

and

G(x, t),P
1

0

g@[hu(x, t)#(1!h)v(x, t)] dh .

As u(0, · ), u (1, · ))1/l)v(0, · ), v (1, · ), and the test function m3T can be easily seen to
satisfy !m

x
(1, · ), m

x
(0, · )*0, it follows that

P
1

0

[u (x, t)!v(x, t)]m (x, t) dx

)P
1

0

[u(x, 0)!v(x, 0)]m (x, 0) dx

#P
t

0
P

1

0

(u!v)Mm
s
#'m

xx
!Gm

x
#aEuEp~1

q
mNdxds

#P
t

0
P

1

0

av[EuEp~1
q

!EvEp~1
q

]mdxds .
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To handle the final integral of this inequality, observe that, as in [9, p. 194],

EuEp~1
q

!EvEp~1
q

"CP
1

0

uq(y, s) dyD
(p~1)@q

!CP
1

0

vq(y, s) dyD
(p~1)@q

"D(s) P
1

0

E (y, s)(u(y, s)!v(y, s)) dy ,

where

D(s),P
1

0

p!1

q Ch P
1

0

uq(y, s) dy#(1!h) P
1

0

vq(y, s) dyD
*(p~1)@q+~1

dh

and

E(y, s),P
1

0

q[hu(y, s)#(1!h)v(y, s)]q~1dh .

Hence,

P
1

0

[u (x, t)!v(x, t)]m (x, t) dx

)P
1

0

[u(x, 0)!v(x, 0)]m (x, 0) dx

#P
t

0
P

1

0

(u!v)Mm
s
#'m

xx
!Gm

x
#aEuEp~1

q
mNdxds

#P
t

0
GP

1

0

avm dxH GD P
1

0

E(u!v) dyHds .

Provided that ' and G2/' are bounded, appropriate test functions m may be chosen
exactly as in [2, pp. 118—123] to obtain

P
1

0

[u (x, t)!v(x, t)]`dx

)EmE
= P

1

0

[u(x, 0)!v (x, 0)]`dx

#aEmE
=

EvE
= P

t

0
P

1

0

D(s)E (x, s)[u(x, s)!v (x, s)]`dxds

with [u!v]`,maxMu!v, 0N. Now if D and E are bounded, then u( · , 0))v( · , 0)
implies u)v on Q

T
. Since q*1, a bound on E may be obtained for bounds on u and

v. Thus, there is only the issue of developing estimates of ', G2/', and D in order to
establish the comparison of subsolutions and supersolutions of ( lA

T
). Note that all of

the above arguments also hold in regard to a comparison theory for (A
T
).

Theorem 3.1. (Comparison for ( lA
T
) ). ¸et u and v be a non-negative sub-solution and

a non-negative supersolution of ( lA
T
), respectively, with l'0. If u( · , 0))v( · , 0), then

u)v on Q
T
.
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Proof. Let º (x, t) denote a solution of ( lA
T*), which was constructed in the previous

section, such that u ( · , 0))º( · , 0))v ( · , 0). Recall that º*1/l'0 on Q
T* . If, in the

above calculations, u is replaced with º, then a comparison result for º and v may be
concluded from bounds on '3 , GI 2/'3 , and DI . Here,

'3 (x, t),P
1

0

/@(hº(x, t)#(1!h)v (x, t)) dh ,

and G3 , D3 are defined by modifying G,D, respectively, in exactly the same way.
Fixing t3[0,¹K ], where ¹K (minM¹,¹*N, and x3[0, 1], it must be the case that

either v(x, t)*1/2l or 0)v(x, t)(1/2l. In the first case

min G/@ (z) :
1

2l
)z)º (x, t)#v(x, t)H

)'3 (x, t)

)max G/@(z) :
1

2l
)z)º(x, t)#v(x, t)H ,

while in the second case

'3 (x, t)"
/ (º(x, t))!/(v(x, t))

º(x, t)!v(x, t)
,

so

/(º (x, t))

º(x, t)
)'3 (x, t))

/(º (x, t))#/ (v(x, t))

(1/2l)
.

Therefore, there exist constants c
1

and c
2

such that

0(c
1
)'3 (x, t))c

2
is satisfied on Q

T
ª . In similar fashion, an estimate of DGI D is obtained.

In order to show that DI is also bounded, note that Eº( · , t)E
q
*1/ l for all t3[0,¹K ].

Consideration of the cases Ev( · , t)E
q
*1/2l and Ev ( · , t)E

q
(1/2 l as done above yields

the desired bound on D3 . Since '3 , GI 2/'3 , and DI have all been shown to be bounded on
Q

T
K , it follows that º)v on Q

T
K . By the continuation theorem, ¹*'¹, and so º)v

on Q
T
.

In a similar fashion to the work above, comparison of u and º can also be
established. Hence, u)º)v on Q

T
. K

As a result of this comparison theorem, the construction utilized in developing the
existence of solutions of (A

T
) is independent of the choice of u

1
(x). Subsequently, it

makes sense to refer to the ‘limit solution’ of (A
T
) as being that solution constructed in

the previous section, and limit solutions of (A
T
) are unique even in the absence of

a uniqueness result for weak solutions of (A
T
). Because the limit solution is indepen-

dent of the choice of u
1
(x), it might be asked if there is some prefered method for

choosing u
1
. Recall that a limit solution, u, of (A

T
) exists on Q

T* where ¹*"lim¹
n
,

M¹
n
N is a monotone decreasing sequence, and ¹

2
is chosen to satisfy

ea(p~1)b2T2Eu
0
Ep~1
q

"b
2
,
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where b
2
"Eu

1
Ep~1
q

. ¹
2

can be maximized by selecting b
2
"eEu

0
Ep~1
q

, and, for such
choice of u

1
, there follows

¹
2
"

1

a (p!1)e
Eu

0
E1~p
q

.

Since ¹
2

might potentially be made larger and still preserve u
3
)u

2
on Q

T2
, we have

¹**¹
2
*

1

a (p!1)e
Eu

0
E1~p
q

.

It also follows from the above theorem that the limit solution of (A
T
) is the maximal

of all weak solutions of (A
T
). To see this, let º denote the limit solution of (A

T
) and

suppose u is a weak solution of (A
T
) such that º( · , 0)"u( · , 0). Then º"lim ul where

ul is the solution of ( lA
T
) having u

l
( · , 0)"º( · , 0)#1/l. It is clear that u is a subsolu-

tion of ( lA
T
) and u ( · , 0))º( · , 0)#1/l. Hence u)ul on Q

T
for each l'0 from which

it follows that u)º. The same argument may be used to show u)º for any
non-negative subsolution of (A

T
) with u ( · , 0))º( · , 0).

In order to prove the uniqueness of solutions of (A
T
), as well as comparison result

involving supersolutions of (A
T
), a slightly more delicate argument is required. Let

v and º denote a supersolution and limit solution of (A
T
), respectively. Then

º"lim ul, where ul is the solution of ( lA
T
) such that ul ( · , 0)"º ( · , 0)#1/l. Sub-

tracting the integral inequalities in the formulation of weak solutions of (A
T
) and ( lA

T
)

yields

P
1

0

[ul(x, t)!v (x, t)]m (x, t) dx

)P
1

0

[ul (x, 0)!v (x, 0)]m(x, 0) dx

#P
t

0
P

1

0

(ul!v)Mm
s
#'

l
m
xx
!G

l
m
x
Ndxds

#P
t

0
GP

1

0

avmdxH GDl P
1

0

E
l
(ul!v) dyHds

#P
t

0

M![/(1/l )!/ (v (1, s))]m
x
(1, s)#[/ (1/l)!/ (v (0, s))]m

x
(0, s)Nds .

Here, '
l
, G

l
, D

l
, and E

l
are obtained as in the definitions of ', G, D, and E,

respectively, upon replacing u with ul. This is the same inequality considered above in
proving comparison for ( lA

T
) except here the boundary integral cannot be so easily

estimated. Since all that is known is v (0, s), v(1, s)*0, the terms / (1/l )!/ (v(0, s))
and / (1/l )!/ (v (1, s)) become non-positive only upon passage to the limit lPR.
Hence, the boundary derivatives m

x
(0, s) and m

x
(1, s) must now be considered in

the analysis. Ultimately, this necessitates a different method for selecting the test
functions m.

First, consider the case where v is a solution of (A
T
) with v(x, 0)"º (x, 0). As

a result of the work above, u)º on Q
T
, so only the reverse inequality must be shown
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in order to prove the uniqueness of solutions of (A
T
). Choose j, d'0 so that d)'

l
and j*DG

l
D , and let s3C=( (0, 1) ) with 0)s)1, s (x)"s (1!x), s(0)"s@(1

2
)"0,

s@*0 on [0, 1/2], and sA)0 on [0, 1]. If the test function m is chosen to satisfy

m
s
#dm

xx
#jm

x
"0 on (0, 1/2)](0, t),

m(0, s)"m
x
(1/2, s)"0 on (0, t) ,

m(x, t)"s (x) on [0, 1/2],

and m(x, s)"m (1!x, s) for 1/2)x)1, then

P
1

0

[ul(x, t)!v (x, t)]s (x) dx

)P
1

0

[ul (x, 0)!v (x, 0)]m(x, 0) dx

#P
t

0
P

1

0

(ul!v)M['
l
!d]m

xx
!G

l
m
x
!jDm

x
DN dxds

#P
t

0
GP

1

0

avmdxH GDl P
1

0

E
l
(ul!v) dyHds

#/(1/l ) P
1

0

M!m
x
(1, s)#m

x
(0, s)Nds . (3)

From basic maximum principles, e.g. [2, Lemma A.1], it follows that 0)m)1, m
x
*0

on [0, 1/2]][0, t), and m
xx
)0 on Q

t
. So m

s
#dm

xx
#jDm

x
D"0 on Q

t
, a fact which has

been used above. Integrating the differential equation, we also have

d P
t

0

M!m
x
(1, s)#m

x
(0, s)Nds"P

1

0

[s(x)!m(x, 0)] dx#2j P
t

0

m (1/2, s) ds.

Before passing to the limit lPR in inequality (3), it is necessary to also have
estimates of D

l
and E

l
which are independent of l. As q*1 in E

l
, the only potential

difficult here is in estimating D
l
even in the case (p!1)/q(1. For this purpose,

observe from the definition of a solution of (A
T
) that :1

0
º(x, · )m (x, · ) dx is a continuous

function, and, moreover, if Eº ( · , t̂ )E
q
"0 for some t̂(¹*, then º,0 on

[0, 1]][t̂,¹*) follows from (2). Hence, there exists t̂)¹* such that

Eº ( · , s)E
q G

'0 if 0)s(t̂,

"0 if t̂)s(¹*,

and, for t(t̂, there exists j'0 such that

P
1

0

(ul )q(x, s) dx*P
1

0

ºq (x, s) dx*j ,

for all 0)s)t. The desired bound of D
l
now may be obtained exactly as done

previously for D.
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Observe that

'
l
(x, t)*P

1

0

a(hul(x, t)#(1!h)v (x, t))m~1dh

*G
a (EulE

=
#EvE

=
)m~1,

a
mA

1

lB
m~1

,

if m)1

if m'1,

so d is independent of l if m)1. In the case m'1, we must employ the assumption that

/(1/l)

d
"

m

a
lm~1/(1/l )P0

as lPR. It is now possible to pass to the limit lPRin (3) and find that

P
1

0

[º(x, t)!v (x, t)]s (x) dx

)P
1

0

[º(x, 0)!v(x, 0)]`dx

#M1#aEvE
=

ED
l
E
=

EE
l
E
=
N P

t

0
P

1

0

[º!v]`dxds

for t3[0, t̂). Proper choice of s now yields the result º)v. The comparison theorem
for solutions of (A

T
) now follows from the same result for solutions of ( lA

T
).

The above argument, unfortunately, does not extend to the case where v is
a supersolution of (A

T
) because it is not known at the outset (nor is it to be expected)

that º*v. We simply note here that supersolution comparison can be proven by the
same methods used for ( lA

T
) in situations enumerated below.

Theorem 3.2 (Comparison for (A
T
)). ¸et u and v denote a non-negative subsolution and

supersolution of (A
T
). Assume that either

(i) /@, g@3C([0,R) ) and (g@)2//@3¸=([0, d)) for d'0, or
(ii) v**'0 on Q

T
for some *'0.

If u ( · , 0))v( · , 0), then u)v.
Alternatively, if v is a solution of (A

T
) with /(u)"o(um~1) as uP0` or if v is

a supersolution of ( lA
T
) for some l'0, then the comparison result is still true without

assumption (i) or (ii).

Regarding assumption (i) above, Gilding has shown this to be unnecessary if a"0,
and it is assumed that either / (º)

x
is continuous or / (s) Dg@ (s) D"o (/@(s)) as sP0`

[12]. As the results above shall be adequate for the analysis of solutions to follow, we
will not explore this issue further in the present work.

4. Existence and decay of solutions of (A
=
)

The main result of this section is the following.
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Theorem 4.1. ºnder any of the conditions

(i) a)0,
(ii) a'0 and p(m, or
(iii) a'0 it sufficiently small and p"m, there exists a solution of (A

=
) for any initial

state u
0
3¸=( (0, 1) ), u

0
*0.

In order to prove Theorem 4.1, it may be first noted that an estimate of Eu( · , t)E
q

which is independent of t is sufficient for obtaining a similar estimate of Eu( · , t)E
=

.
The verification of this lies in the fact that if Eu ( · , t)E

=
is bounded, then the differential

equation in (A
T
) has a sublinear forcing. Thus, a supersolution of the form Kect may be

used to bound u on Q
T

for any ¹'0. The estimate of Eu ( · , t)E
q
is a consequence of

the next lemma, which also contains information regarding the eventual decay of
Eu ( · , t)E

r
for r*q.

Lemma 4.1. ¸et u denote the solution of (A
T
) with a'0. For r*q, define

F(t),Eu( · , t)E
r
and, in case r'1,

C,C
4a(r!1)

a (r#m!1)2D
1@(p~m)

.

Here, a,m'0 are the constants with /@ (u)*aum~1 for all u'0.

(i) If p(m, then ¹*"Rand lim sup
t?=

F(t))C.
(ii) If p"m and a)4a(r!1)/(r#m!1)2, then F is monotone decreasing on [0,¹ ].
(iii) If p'm and F(t

0
)(C for some t

0
(¹, then F is monotone decreasing on [t

0
,¹ ].

Proof. Recall that inequality (2), developed in section 2, contained

d

dt P
1

0

wr(x, t) dx)P
1

0

M!r (r!1)[(
l
(w)

x
]2#ab

k, i
rwrN (x, t) dx ,

where w is the classical solution of (Ak, l, i
T

). (Note that in the cases r"1 or a)0, it is
a simple matter to obtain an estimate of Eu ( · , t)E

r
directly from this inequality.) In

previous work, the gradient term above was discarded in the process of proving
existence of solutions for (A

T
). Here, this term is handled more carefully, and the

lemma follows.
Towards estimating the gradient term, observe

wr (x, t)"M(~1
l

((
l
(w(x, t) ) )Nr

"G(~1
l CP

x

0

(
l
(w)

xDH
r
.

Now, by Hölder’s inequality,

P
x

0

(
l
(w)

x
)GP

x

0

[(
l
(w)

x
]2H

1@2
.

So FK (t),Ew ( · , t)E
r
has

FK r (t))G(~1
l CAP

1

0

((
l
(w)

x
)2B

1@2

DH
r
,
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and, hence,

[(
l
(FK (t) )]2)P

1

0

((
l
(w)

x
)2 .

The assumption /@(u)*aum~1 for u'0 is for the purpose of obtaining

(
l
(u)*P

u

1@l

Jsr~2 (as~1) ds

"

2Ja
r#m!1 Cu(r`m~1)@2!A

1

lB
(r`m~1)@2

D .

Utilization of inequality (2) thus yields

d

dt
[FK r (t)])

!4ar (r!1)

(r#m!1)2 CFK (t)(r`m~1)@2!A
1

lB
(r`m~1)@2

D
2

#arb
k, i

(t)FK r (t) ,

and, upon passing to the limits kPRand iPR, there follows

Fr
l
(t)!Fr

l
(s))P

t

s

R
l
(F

l
) (4)

for all 0)s)t)¹. Here F
l
(t),Eul( · , t)E

r
, recalling that the solution of ( lA

T
) is ul,

and

R
l
(j),

!4ar(r!1)

(r#m!1)2
jr`m~1#arjr`p~1

#

4ar(r!1)

(r#m!1)2 A
1

lB
(r`m~1)@2

C2j(r`m~1)@2!A
1

lB
(r`m~1)@2

D .

If p(m, then R
l
(j)P!Ras jPRand R

l
(1/l )'0. Hence, for each l'0, there

exists C
l
such that R

l
(C

l
)"0 and R

l
(0 on (C

l
,R). Furthermore, for l*1,

R
l
(j))

!4ar(r!1)

(r#m!1)2
jr`m~1#arjr`p~1#

8ar (r!1)

(r#m!1)2
j(r`m~1)@2

and, for l*1/2C, R
l
(C)'0. So there exists "'C with the property C

l
3 (C,") and

R
l
(C

l
)"0.

For *'0 and l*maxM1, 1/2CN. As ul is continuous on Q
T

[15], inequality (4) may
be used to conclude that F

l
)C

l
#* on [t̂,R) for some t̂*0. So

lim sup
t?=

F
l
(t))C

l
#*, and, as this is true for all *'0, there follows

lim sup
t?=

F
l
(t))C

l
.

Extracting a convergent subsequence, MC
ln
N=
n/1

, from MC
l
N, it can be seen that

C
ln
PC as nPR. Now F)F

ln
which implies

lim sup
t?=

F (t))lim sup
t?=

F
ln
(t))C

ln

for all n, and, hence, lim sup
t?=

F (t))C.
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If p"m and a)4a(r!1)/(r#m!1)2, then letting lPRin (4) yields

Fr (t)!Fr(s))P
t

s

r C
!4a(r!1)

(r#m!1)2
#aD Fr`m~1

)0

for all 0)s)t)¹. So it is immediate that F is monotone decreasing on [0,¹].
If p'm, then R

l
(j)PRas jP0. Furthermore, for fixed *'0 and F (t

0
)(C,

there exists l'0 so that F
l
(t
0
)(C!* and R

l
(j)(0 for *(j(C!*. Enlisting

inequality (4) again, it follows that F
l
(C!* and, consequently, F)F

l
(C on

[t
0
,¹]. Now, similar to the previous case,

Fr (t)!Fr(s))P
t

s
C
!4ar(r!1)

(r#m!1)2
Fr`m~1#arFr`p~1D

)0

for t
0
)s)t)¹, and the monotonicity is established. K

It should also be noted that global existence and decay of F(t) can be similarly
developed from (4) in the cases r"1 or a)0. Furthermore, in (ii) and (iii) above, it
follows that ¹*"Rand lim

t?=
F (t)"0.

5. Global existence and blow-up in finite time for problem (B
T
)

The purpose of this section is to investigate the necessity of the conditions p(m or
p"m and a'0 sufficiently small in yielding the solvability of (A

=
). It turns out that

p)m may be weakened somewhat regarding the existence of solutions of (B
=
). The

appropriate condition involves the ordering of p and maxMm, nN, and the degree to
which such an ordering is necessary and sufficient is addressed in the following results.

Theorem 5.1 (i) If p(maxMm, nN or if p"maxMm, nN and a'0 is sufficiently small,
then there exists a solution of (B

=
) for any non-negative initial state u

0
3¸=( (0, 1)).

(ii) Assume n'1 and m*1. If p'maxMm, nN or if p"maxMm, nN and a is suffi-
ciently large, then there exists a constant c

0
,c

0
(a, e,m, n, p, q)'0 such that

¹* (u
0
)(Rwhenever u

0
(x)*c

0
sinnx. ¹hat is, the solution having initial state u

0
blows up in finite time.

Proof. (i) Due to the results proven for (A
=
), it is only necessary to consider the case of

maxMm, nN"n. To this end, assume n'm and p)n. The function v(x)"M(2!x) is
a supersolution of (B

T
) for each ¹'0 provided M is chosen so that

m(m!1)Mm(2!x)m~2!enMn(2!x)n~1#aA
1
Mp (2!x))0, (5)

where

A
1
,CP

1

0

(2!x)qdxD
(p~1)@q

, and M*Eu
0
E
=

.

Upon selecting M*Eu
0
E
=
#1 large enough to guarantee

m(m!1)M~(n~m)(en (6)
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and

bMn~p[en!m(m!1)M~(n~m)]!2a (2p~1)*0, (7)

with b"1 for n*2 and b"2n~2 if n(2, it can be seen that (5) is satisfied.
It is possible to choose such an M to satisfy (6) due to the assumption n'm.

Inequality (7) may be verified for large M in the cases p(n or p"n with a'0
sufficiently small. As v(x) is a strictly positive supersolution, the comparison theorem
implies that u)v on Q

T
for the solution of (B

T
) having u ( · , 0)"u

0
. The continuation

theorem now guarantees ¹* (u
0
)"R.

(ii) Letting p*maxM1/m, 1/(n!1)N and h(t)'0, the function w (x, t),h (t)
[sinnx]p is a subsolution of (B

T
) provided

h@(t))mp (mp!1)n2hm(t) (sinnx)(m~1)p~2(cosnx)2

!mpn2hm(t) (sinnx)(m~1)p

#enpnhn(t)sinnx)(n~1)p~1 cosnx

#ahp (t)A
2
, (8)

where A
2
,[:1

0
(sinnx)pq dx](p~1)@q. Since sin nx)1 and cos nx*!1, inequality (8)

will hold if h(t) is chosen so that

h@(t))!mpn2hm(t)!enpnhn(t)#aA
2
hp (t) . (9)

Define

Q(s)"G
aA

2
sp~m!mpn2!enpns~(m~n) if p*m*n,

aA
2
sp~n!enpn!mpn2s~(n~m) if p*n'm,

and let s
0

denote the positive root of Q . As p'maxMm, nN or p"maxMm, nN with
a sufficiently large, it follows that Q(s), Q@(s)'0 for s's

0
. Selecting h(t) to be the

solution of

h@(t)"Q(h)hk(t), t'0,

h(0)"s
0
#1,

where k"maxMm,nN, it can be observed that (9) is satisfied.
Let c

0
"s

0
#1. Then w(x, t) is a subsolution of (B

T
) such that

w(x, 0)"c
0
[sinnx]p)u

0
(x)

on [0, 1]. Hence, w (x, t))u(x, t), where u is the solution of (B
T
) with u( · , 0)"u

0
.

Finally, since k'1, lim
t?T

K h(t)"R for some ¹K (R which implies ¹*(u
0
))

¹K (R. K

In the direction of relaxing the restrictions m*1 and n'1 in the blow-up result
above, a different technique allows these to be dropped if, instead, p and q are assumed
to be large enough. It is worth noting that the assumptions regarding initial states
which give rise to non-existence of solutions to (B

=
) may also be relaxed significantly

for such p and q. The precise result is as follows.
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Theorem 5.2. Assume p'maxMm, nN#1 and q*maxMm, nN. ¹here exists c
1
"

c
1
(a, e,m, n, p)'0 such that if

P
1

0

u
0
(x) sin nxdx'c

1
,

then ¹* (u
0
)(R. ¹hat is, there is no solution of (B

=
) with initial state u

0
.

Proof. Let m(x)"sinnx. In the definition of a solution for (B
T
), put m(x, t),m(x) to get

P
1

0

u (x, t)m (x) dx"P
1

0

u
0
(x)m (x) dx!n2 P

t

0
P

1

0

um(x, q)m (x) dxdq

!e P
t

0
P

1

0

un (x, q)m@(x) dxdq

#a P
t

0

Eu ( · , q)Ep~1
q P

1

0

u (x, q)m(x) dxdq .

Setting J (t),:1
0
u (x, t)m (x) dx, a formal differentiation with respect to t in the above

equation yields

J @ (t)"!n2 P
1

0

um(x, t)m (x) dx!e P
1

0

un(x, t)m@ (x) dx

#a CP
1

0

uq(x, t) dxD
(p~1)@q

P
1

0

u(x, t)m (x) dx .

Since q*maxMm,nN, Hölder’s inequality now implies

P
1

0

um (x, t)m(x) dx)Eu ( · , t)Em
q

and

P
1

0

un (x, t)m@ (x) dx)nEu ( · , t)En
q
.

Define

R(s),
a

2
s(p~1)!n2sm!ensn ,

and let s
1
'0 denote the root of R. As p!1'maxMm, nN, it is the case that R(s),

R@ (s)'0 for all s's
1
. For s,s(t),Eu ( · , t)E

q
, the above calculations imply

J @ (t)*
a

2
J (t)sp~1#

a

2
(J (t)!1)sp~1#R(s) . (10)

So, if c
1
,maxMs

1
, 1N, then J(t))s (t) (which follows by Hölder’s inequality) gives

s(0)*J (0)'c
1
. Hence, J@ (0)'0.

Suppose t̂3 (0,¹* (u
0
) ) is such that J @'0 on [0, t̂) and J @ ( t̂ )"0. Then, using (10),

either J ( t̂ )(1/2 or s( t̂ )(s
1
. Because J is strictly increasing on [0, t̂) and

1086 J. R. Anderson and K. Deng

Math. Meth. Appl. Sci., Vol. 20, 1069—1087 (1997) ( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.



J(0)'c
1
*1, the first of these alternatives is impossible. On the other hand,

s( t̂ )*J ( t̂ )'J (0)'c
1
*s

1
,

so the second alternative is also impossible. Thus, J @'0 on the entire interval
[0,¹*(u

0
)).

Now s(t)*J (t)'c
1

and (10) yield

J @ (t)*
a

2
J (t)sp~1*

a

2
Jp(t) .

Since p'1, it follows that

J(t)*GJ (1~p)(0)!
a

2
(p!1)tH

~1@(p~1)
, (11)

so lim
t?T

ª J (t)"Rfor some ¹K (R.
Upon regularization of (B

T
), i.e. ( lB

T
), the formal calculations may be justified for

solutions of the regularized problems. Then, passing to the limit lPRin (11) proves
¹* (u

0
))¹K (R. K
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