Kelly J HuffmanUniversity of California, Riverside | UCR · Department of Psychology
Kelly J Huffman
Ph.D.
About
38
Publications
6,182
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,805
Citations
Publications
Publications (38)
Uncovering relationships between neuroanatomy, behavior, and evolution is important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We us...
It is well documented that prenatal ethanol exposure via maternal consumption of alcohol during pregnancy alters brain and behavioral development in offspring. Thus, the Centers for Disease Control (CDC) advises against maternal alcohol consumption during pregnancy. However, little emphasis has been placed on educating new parents about alcohol con...
Advances in sequencing techniques have made comparative studies of gene expression
a current focus for understanding evolutionary and developmental processes. How-
ever, insights into the spatial expression of genes have been limited by a lack of robust
methodology. To overcome this obstacle, we developed methods and software tools
for quantifying...
Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortic...
Advances in sequencing techniques have made comparative studies of gene expression a current focus for understanding evolutionary and developmental processes. However, insights into the spatial expression of genes have been limited by a lack of robust methodology. We therefore developed a set of algorithms for quantifying and comparing tissue-wide...
Maternal consumption of alcohol during pregnancy can generate a multitude of deficits in the offspring. Fetal Alcohol Spectrum Disorders, or FASD, describe a palette of potentially life-long phenotypes that result from exposure to ethanol during human gestation. There is no cure for FASD and cognitive-behavioral therapies typically have low success...
The earliest and most prevalent sensory experience includes tactile, thermal, and olfactory stimulation delivered to the young via contact with the mother, and in some mammals, the father. Prairie voles (Microtus ochrogaster), like humans, are biparental and serve as a model for understanding the impact of parent/offspring interactions on the devel...
Background
Fetal alcohol spectrum disorders (FASD) describe the wide array of long‐lasting developmental abnormalities in offspring due to prenatal alcohol (ethanol [EtOH]) exposure via maternal gestational drinking. Although the teratogenic consequences of prenatal EtOH exposure, are apparent, the effects of preconception paternal EtOH exposure (P...
Maternal alcohol consumption during pregnancy can significantly impact the developmental trajectory of the offspring, resulting in lifelong alterations to brain anatomy, function, and behavior. Fetal alcohol spectrum disorders (FASD) is an umbrella term used to describe the range of phenotypes that are observed in children who have been exposed to...
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El...
Fetal Alcohol Spectrum Disorders, or FASD, represent a range of adverse developmental conditions caused by prenatal ethanol exposure (PrEE) from maternal consumption of alcohol. PrEE induces neurobiological damage in the developing brain leading to cognitive-perceptual and behavioral deficits in the offspring. Alcohol-mediated alterations to epigen...
Background
In utero alcohol, or ethanol (EtOH), exposure produces developmental abnormalities in the brain of the fetus, which can result in lifelong behavioral abnormalities. Fetal alcohol spectrum disorders (FASD) is a term used to describe a range of adverse developmental conditions caused by EtOH exposure during gestation. Children diagnosed wi...
Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical p...
Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectiv...
In utero ethanol exposure from a mother's consumption of alcoholic beverages impacts brain and cognitive development, creating a range of deficits in the child (Levitt, 1998; Lebel et al., 2012). Children diagnosed with fetal alcohol spectrum disorders (FASD) are often born with facial dysmorphology and may exhibit cognitive, behavioral, and motor...
Prenatal exposure to nicotine (PNE) has been associated with a myriad of physiological, cognitive, and behavioral effects in the developing offspring. In this study, CD-1 dams were given injections of nicotine or control vehicle throughout gestation and their offspring were raised to 6 months of age. Adult mice were administered a battery of behavi...
Healthy post-pregnancy outcomes are contingent upon an informed regimen of prenatal care encouraging healthy maternal consumption habits. In this article, we describe aspects of maternal intake of food, drink, and medication in a population of predominantly Hispanic women in Southern California. Potential implications for unhealthy prenatal dietary...
A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory, and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an inter...
Maternal smoking results in myriad physical, cognitive, and behavioral effects in offspring due to prenatal exposure to nicotine. As the mammalian neocortex coordinates sensory integration and higher-order processes including cognition and behavioral regulation, it follows that cognitive and behavioral phenotypes of prenatal nicotine exposure (PNE)...
Anatomically and functionally distinct sensory and motor neocortical areas form during mammalian development through a process called arealization. This process is believed to be reliant on both activity-dependent and activity-independent mechanisms. Although both mechanisms are thought to function concurrently during arealization, the nature of th...
RNA probe sequences. cDNA Sequences Utilized To Generate Digoxigenin-labeled RNA Probes.
A hallmark of mammalian evolution is the structural and functional complexity of the cerebral cortex. Within the cerebral cortex, the neocortex, or isocortex, is a 6-layered complexly organized structure that is comprised of multiple interconnected sensory and motor areas. These areas and their precise patterns of connections arise during developme...
The mammalian neocortex contains an intricate processing network of multiple sensory and motor areas that allows the animal to engage in complex behaviors. These anatomically and functionally unique areas and their distinct connections arise during early development, through a process termed arealization. Both intrinsic, activity-independent and ex...
Auditory pathways contain orderly representations of frequency selectivity, which begin at the cochlea and are transmitted to the brainstem via topographically ordered axonal pathways. The mechanisms that establish these tonotopic maps are not known. Eph receptor tyrosine kinases and their ligands, the ephrins, have a demonstrated role in establish...
The process of generating functionally distinct neocortical areas requires the formation of an intra-neocortical connectivity map. Here, we explore the early development of murine intra-neocortical projections and find that axons from rostral and caudal neurons remain, respectively, within large rostral and caudal domains of the neonatal neocortex....
The detailed organization of somatosensory area 3a was examined in macaque monkeys using multiunit electrophysiological recording techniques. By examining topographic relationships, changes in receptive field size, and the type of stimulus that neurons responded to, functional boundaries of area 3a were determined and related to architectonic bound...
The neocortex is divided into multiple areas with specific architecture, molecular identity and pattern of connectivity with the dorsal thalamus. Gradients of transcription factor expression in the cortical primordium regulate molecular regionalization and potentially the patterning of thalamic projections. We show that reduction of Fgf8 levels in...
Genetic and neurobiological research is reviewed as related to controversy over the extent to which neocortical organization and associated cognitive functions are genetically constrained or emerge through patterns of developmental experience. An evolutionary framework that accommodates genetic constraint and experiential modification of brain orga...
Genetic and neurobiological research is reviewed as related to controversy over the extent to which neocortical organization and associated cognitive functions are genetically constrained or emerge through patterns of developmental experience. An evolutionary framework that accommodates genetic constraint and experiential modification of brain orga...
The functional organization of area 3a, a cortical field proposed to be involved in somato-motor-vestibular integration, has never been described for any primate. In the present investigation, the topographic organization and connections of area 3a were examined in marmosets using electrophysiological recording and anatomical tracing techniques. Mu...
The present investigation is part of a broader effort to examine cortical areas that contribute to manual dexterity, reaching, and grasping. In this study we examine the thalamic connections of electrophysiologically defined regions in area 3a and architectonically defined primary motor cortex (M1). Our studies demonstrate that area 3a receives inp...
We examined the internal organization and connections of the primary visual area, V1, in the South American marsupial Monodelphis domestica. Multiunit electrophysiological recording techniques were used to record from neurons at multiple sites. Receptive field location, size, progressions, and reversals were systematically examined to determine the...
We examined the internal organization and connections of the primary visual area, V1, in the South American marsupial Monodelphis domestica. Multiunit electrophysiological recording techniques were used to record from neurons at multiple sites. Receptive field location, size, progressions, and reversals were systematically examined to determine the...
The neocortex is composed of areas that are functionally, anatomically and histochemically distinct. In comparison to most other mammals, humans have an expanded neocortex, with a pronounced increase in the number of cortical areas. This expansion underlies many complex behaviors associated with human capabilities including perception, cognition, l...
Theories of both cortical field development and cortical evolution propose that thalamocortical projections play a critical role in the differentiation of cortical fields (; ). In the present study, we examined how changing the size of the immature neocortex before the establishment of thalamocortical connections affects the subsequent development...
The organization of somatosensory neocortex was investigated in three species of marsupials, the northern quoll (Dasyurus hallucatus), the striped possum (Dactylopsila trivirgata), and the short-tailed opossum (Monodelphis domestica). In these species, multiunit microelectrode mapping techniques were used to determine the detailed organization of t...