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Abstract: Toxicity‐modifying factors can be modeled either empirically with linear regression models or mechanistically, such
as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness,
dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered. The present study
develops multiple linear regressions (MLRs) with stepwise regression for 5 organisms in acute exposures, 4 organisms in
chronic exposures, and pooled models for acute, chronic, and all data and compares the performance of the Pooled All MLR
model to the performance of the BLM. Independent validation data were used for evaluating model performance, which for
pooled models included data for organisms and endpoints not present in the calibration data set. Hardness and DOC were
most often selected as the explanatory variables in the MLR models. An attempt was also made at evaluating the uncertainty
of the predictions for each model; predictions that showed the most error tended to show the highest levels of uncertainty as
well. The performances of the 2 models were largely equal, with differences becoming more apparent when looking at the
performance within subsets of the data. Environ Toxicol Chem 2021;40:2189–2205. © 2021 SETAC

Keywords: Water quality guidelines; Biotic ligand model; Metal toxicity; Multiple linear regression

INTRODUCTION
It has long been recognized that metal toxicity to aquatic

organisms can be affected by a number of water quality pa-
rameters; in particular, nickel water quality guidelines in the
United States and Canada have been based on hardness
equations for several decades (US Environmental Protection
Agency 1996). The hardness equation is an example of a
simple empirical regression that characterizes how nickel
toxicity is reduced in waters with elevated hardness. More
recently, the biotic ligand model (BLM) has been proposed as
a way to explain, at a more mechanistic level, how certain
water quality constituents affect metal toxicity. The hardness
effect, for example, has been shown to result from com-
petition between nickel and hardness cations (calcium and
magnesium) on gill surfaces (Meyer et al. 1999), and this

information was used to parameterize a competitive reaction
in an early version of a nickel BLM (Water Environment Re-
search Federation et al. 2003). Although the hardness
equation and the BLM are attempts to model the same thing,
they represent 2 very different approaches: the empirical
approach is a simple equation that is built directly from ob-
servations of toxicity over ranges of hardness, whereas the
more complex mechanistic approach of the BLM is based on
simulating the chemical interactions underlying the way in
which hardness cations affect the quantity of nickel that
causes toxicity. Both approaches have their merits, and both
can be used in the development of water quality guidelines.
For example, as noted, the hardness equation has been in
use for several decades for nickel and other metals, and the
BLM was used in the development of the US Environmental
Protection Agency (USEPA) water quality criteria for copper
(US Environmental Protection Agency 2007).

It is important to note that other bioavailability normal-
ization approaches exist for nickel, including the one de-
scribed by Nys et al. (2016). This approach serves as the basis
for the bioavailability‐based environmental quality standard
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for nickel under the European Water Framework Directive
(European Commission 2011). In accordance with European
guidelines, the Nys et al. (2016) approach focuses primarily
on the use of chronic data in species‐specific models. Re-
cently, a nickel guideline was developed in Australia by
Stauber et al. (2021) that was based on trophic level–specific
multiple linear regressions (MLRs) developed by Peters et al.
(2021) with ecotoxicity data from species that would be rel-
evant to Australia and New Zealand. The Stauber et al. (2021)
analysis also considered the Peters et al. (2021) pooled MLR,
the Nys et al. (2016) bioavailability model, and the Peters
et al. (2018) bioavailability model. The approach that has
been adopted in the United States and Canada combines
data from broad taxonomic groups into a single “pooled”
model for either acute data, chronic data, or all data (Brix
et al. 2017; DeForest et al. 2017; Environment and Climate
Change Canada 2019). Given the scope of the present study,
it is justifiable that the MLR developed within this document
should be compared to a BLM that was developed following
similar assumptions.

As new information becomes available, guidelines need to
be updated to accurately represent the best science and be
protective of aquatic life. Given the availability of both em-
pirical and mechanistic methods for incorporating bioavail-
ability effects, it is necessary to perform a comprehensive
comparison of the merits and limitations of each approach to
assist regulators in guideline development.

In the present study, the empirical and mechanistic ap-
proaches for assessing water quality factors affecting nickel
toxicity are explored and evaluated. Empirical models are not
limited to hardness; rather, they take the form of MLRs to
evaluate which toxicity‐modifying factors (TMFs) need to be
incorporated in the analysis. The approach for developing
MLRs follows that of Brix et al. (2017, 2020) and DeForest et al.
(2018). The BLM for nickel has most recently been described by
Santore et al. (2021, in this issue) and uses a set of biotic ligand
binding constants that have been calibrated to fit toxicity data,
making it a mechanistic model in concept but with some em-
pirical calibration done to achieve the final fit. The objectives of
our study are to review freshwater toxicity data for fish, in-
vertebrates, plants, and algae to compile a database for
quantifying nickel effects in acute and chronic exposures;
develop acute and chronic nickel MLR models in a manner
consistent with Brix et al. (2017) and DeForest et al. (2018);
compare and evaluate the nickel BLM and nickel MLR ap-
proaches to the same data sets; and quantify MLR‐ and BLM‐
based outcomes in a manner consistent with objective com-
parative approaches proposed by Garman et al. (2020) and van
Genderen et al. (2020).

METHODS
Toxicity database

A database containing nickel effect concentrations (ECx)
and all relevant associated exposure conditions was compiled
to include data from all identified primary sources (i.e., pub-
lished studies with aquatic nickel toxicity data). The AQUIRE

database and Google Scholar were used to identify relevant
literature to include in the database. Data were screened
using a quality scoring process comparable to that used to
identify data suitable for inclusion in water quality guidelines
(US Environmental Protection Agency 1985; Canadian Council
of Ministers of the Environment 2007). The criteria for se-
lecting data for guideline development typically included
numbers of replicates, frequency of nickel measurements in
the test, reporting of control performance, reporting of the
statistical methods used, and particular criteria regarding the
length of the test and biological endpoints deemed accept-
able for the intended application. Because the purpose of this
analysis was to develop and test models—not to develop a
water quality guideline—the standards for acceptable data
were not as strict, and they primarily focused on having
enough information about the test conditions (e.g., docu-
mented water quality) to make MLR and BLM predictions, as
well as enough information about the test organisms to clas-
sify to at least the genus level. Concentrations lethal to 50% of
a population based on a single exposure concentration
measurement (for calibration data) or nominal concentrations
(for validation data), endpoints that would not be chosen for
guideline development (e.g., chronic survival endpoints), and
studies that did not report replication and statistical methods
were all considered acceptable for the purposes of model
development and validation because they still provided val-
uable information about the trends and relative influences of
TMFs. Although more than 300 articles were considered for
inclusion in the database, data from studies considered to be
of insufficient quality were not included. To facilitate devel-
opment of MLR models capable of characterizing the effects
of various TMFs on ECx values, exposure conditions asso-
ciated with each ECx were described in as much detail as
possible. In addition, because MLR model performance was to
be compared to BLM performance, data or estimates for all
BLM inputs were necessary. In many cases, the detailed water
chemistry data necessary for BLM calculations were not
available. For example, many studies reported pH, alkalinity,
and hardness but not concentrations of individual constituents
such as dissolved calcium, magnesium, or sodium. In such
cases, it was necessary to use the available water chemistry
data for each study to estimate detailed water chemistry. After
screening for data quality and sufficient reported water quality
information to support the application of BLM and MLR pro-
cedures, data from 81 studies were considered for inclusion in
the database (Supplemental Data 1).

The procedure for estimating detailed chemistry values in
the database is described in the BLM user's guide (Wind-
ward Environmental 2017). The reported chemistry was used
whenever possible, and the estimation procedure was used
with ion ratios assigned on a case‐by‐case basis with in-
formation from the source water, as is recommended in the
BLM user guide (Windward Environmental 2017). Estima-
tions of missing chemical parameters included cases
wherein major ions, alkalinity, or dissolved organic carbon
(DOC) were missing. Studies that did not include enough
information to allow for this estimation procedure or that did
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not report pH were not considered except in a few cases
where pH was estimated. A study would normally be re-
jected if the pH was not reported because there was typi-
cally no good basis for estimating the pH in a test water, but
there were 5 instances in the final data set for which the
authors were confident enough to estimate the pH. Alsop
and Wood (2011) required the pH to be estimated for 3 of
their exposures because they reported the pH of a control
synthetic water and then the modifications to that water (i.e.,
salt addition); the pH of the modified water was assumed to
be the same as that of the control water. Ferreira et al.
(2010), Keller and Zam (1991), Kim et al. (2017), and Pavlaki
et al. (2011) did not report pH measurements for any of their
exposures; instead, they used a standard water recipe—
ASTM International hard water for Ferreira et al. (2010) and
Pavlaki et al. (2011) and USEPA soft or moderately hard
water for Keller and Zam (1991) and Kim et al. (2017)—for
which a typical range of pH values was given in the methods
for making the water; the average pH from that range was
used as the estimate. Importantly, all of these were acute
exposures where the pH was not expected to change during
the test.

If ion concentrations and alkalinity measurements were
not available, values for these parameters were estimated
from other reported sources for the same water type. For
example, the ion concentrations for studies that reported
using synthetic water recipes, such as USEPA hard water or
ASTM International hard water, were estimated from the
synthetic water recipe (US Environmental Protection Agency
1994; ASTM International 1996). If only one of the major ions
(i.e., calcium, magnesium, sodium, potassium, sulfate, or
chlorine) was then missing, the concentration of the missing
ion was estimated based on charge balance. If full chemistry
was not yet achieved, then ion ratios were assigned based on
the source water, with median ion ratios from North America
assigned if no other source‐specific values could be de-
termined (see Supplemental Data 2 for a summary of the ion
ratios used). Hardness was sometimes calculated from the
sum of calcium and magnesium concentrations if only in-
dividual ion concentrations were reported. In the final data
set, hardness needed to be estimated in 8 of the studies (67
data points), not including studies that reported calcium and
magnesium but not hardness. If alkalinity could not be esti-
mated from other sources, alkalinity (as dissolved inorganic
carbon) was estimated to be in equilibrium with the
atmosphere, with an atmospheric carbon dioxide pressure
of 10–3.2 atm.

Reported values for major ions and organic carbon that were
given in total rather than dissolved terms were assumed to be
equivalent to the dissolved values (total= dissolved). The ex-
ceptions were nickel concentrations which were converted with
a total‐to‐dissolved conversion factor of 0.998 (US Environ-
mental Protection Agency 1996).

If the DOC concentration was not reported for a toxicity
test, then an attempt was made to assign a reasonable value
based on the type of exposure media used. Synthetic test
media without dissolved organic matter (DOM) added were

assumed to have 0.3 mg DOC/L (Santore et al. 2002) regard-
less of whether the test was fed or not. We made this as-
sumption because it was not always clear if the test was fed,
the DOC concentration in a fed test would not be so very
much higher that it would greatly influence the DOC trend to
use this assumption, and using this lower value would be more
conservative. Also assumed was a composition of 0.01%
humic acid in synthetic waters because all DOC present would
have been contributed by the organisms or food sources and
would more likely resemble fulvic acid rather than terrestrially
derived humic acid (US Environmental Protection Agency
2007). The percentage of humic acid for natural water sources
was estimated as 10%, except when the authors had reported
adding humic acid specifically (e.g., adding DOM as Aldrich
Humic Acid), in which case the humic acid percentage was
calculated based on those reported carbon additions, as ap-
propriate. If the source water for a given study was charac-
terized in other published literature, the average DOC
concentrations from those sources were used as the DOC
estimate. Supplemental Data 3 provides a complete list of
standard DOC values that were used for estimation. In the
final data set, DOC was estimated in 28 studies (295 data
points), only 7 of which (34 data points) involved estimating
DOC for natural waters.

There have been some questions in the past about using
results from exposures wherein the pH was buffered with
nonnatural buffers (e.g., 3‐[N‐morpholino]propanesulfonic
acid [MOPS]) because such buffers have been shown to
change the slope of the effect of pH on toxicity (Kozlova
et al. 2009; Esbaugh et al. 2013). This subject was inves-
tigated as part of the present study, but details were
omitted for brevity; specifics are available in Supplemental
Data 4. Briefly, the pH slope was significantly different be-
tween daphnid exposures that buffered with MOPS and
those that did not; however, the effect on the final pooled
models was minor, especially when the final pooled model
did not include pH as an explanatory term. Furthermore, the
loss of data from excluding any exposure that used a syn-
thetic buffer was undesirable because it would prevent the
development of a model for algae and it is impractical to
control pH in an algae study without the use of a buffer. This
analysis therefore continued to use data buffered with
MOPS, including 74 data points used for calibration, 33 used
for primary validation, and 6 used for secondary validation
(Parametrix 2005; De Schamphelaere et al. 2006; Dele-
ebeeck et al. 2007, 2008a, 2008b, 2009; Kozlova et al. 2009;
AECOM Technical Services 2011). These data points in-
cluded those for Ceriodaphnia dubia, Daphnia magna,
Daphnia pulex, Oncorhynchus mykiss, and Pseudokirchner-
iella subcapitata.

Selection of data for model development
and validation

Of the 1588 observations in the compiled toxicity and
chemistry database, 910 either had fewer than 2 observations
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available to calculate a species mean value, did not have
chemistry that varied enough within a group, or had a more
desirable endpoint available (e.g., concentrations effective on
50% of a population [EC50s] were preferentially used). A single
observation would obviously give no information about model
performance using the methods described in the present
study, and any variation in groups that did not have varying
chemistry would be purely due to random biological variability,
not bioavailability relationships. The order of preference
for endpoints (from most desirable to least) was EC50,
EC20, EC10, maximum allowable toxicant concentration,
lowest‐observed‐effect concentration, and no‐observed‐effect
concentration. The EC50 was most preferable because values
generally vary less from the fit of the response curve, making
them better to use in predictions when evaluating models. Of
the remaining observations, 242 were selected for calibrating
the MLR model, and 436 were selected for validation (81 for
primary validation and 355 for secondary validation). The final
data set for MLR development and comparison to the BLM
(Supplemental Data 1) included 678 toxicity observations from
59 articles: 300 from acute tests and 378 from chronic tests.
The acute data comprised data from 27 species from 21
genera: 5 fish and 22 invertebrate species. The chronic data
comprised data from 28 species from 21 genera: 1 amphibian,
2 fish, 17 invertebrate, 3 plant, and 5 algae species.

The purpose of defining primary and secondary validation
data sets was to use as much of the available data as possible to
independently evaluate model performance. Primary validation
data were chosen to represent the species, exposure durations,
and endpoints that were considered during model calibration so
that calibrated MLRs could be applied to the data directly,
thereby testing the consistency of both the bioavailability rela-
tionships and the sensitivity parameter. Restricting the compar-
ison to a validation data set that included only data that
matched species, life stage, and endpoint would have been
preferable; but the primary validation data that met these con-
ditions resulted in too few data for a meaningful comparison.
Secondary validation data for the species‐specific models were
chosen to represent the species and test types (i.e., acute or
chronic) that were considered during calibration, but life stages,
exposure durations, and endpoints may have differed from
those in the calibration data set. Consequently, the intercepts of
the calibrated MLRs were adjusted to an optimal value when
applied to the secondary validation data, but all coefficients
from the calibrated model were used. The intent of the secon-
dary validation was to use available data to further evaluate the
bioavailability effects (i.e., effects of TMFs) described by the
calibrated models beyond the comparisons afforded by primary
validation data availability. The pooled models were tested with
the same secondary validation data as the species‐specific
models, as well as with data from species that did not have
enough data for a species‐specific model. Noncalibration spe-
cies were only used when validating the pooled models because
these models are meant to be more generally applicable, and
they span a larger range of EC, values so there is less risk of the
additional data artificially inflating the R2 statistics. These data
were once again grouped by species, life stage, endpoint, and

duration and were used to evaluate the pooled model of the
appropriate test type. The ranges of chemical parameters that
would be relevant to MLR development are summarized in
Figure 1 for all calibration and validation data (similar summaries
for each of the calibration groups described in Table 1 are
available in Supplemental Data 5). Figure 1 also shows how the
ranges of chemistry compare to the 5 to 95% range of those
parameters in US surface waters (Hirsch and De Cicco 2015).

Calibration data were selected so that a wide range of
chemistry conditions would be considered for each organism,
life stage, test duration, and endpoint. In addition, data from
tests in synthetic water were preferred for inclusion in the cal-
ibration data set, whereas data from tests in natural waters
were preferred for inclusion in the primary validation data set.
This preference was because tests in synthetic waters tend to
be more abundant, and they are able to systematically change
single parameters. Natural waters tend to have a more random
assortment of chemistry, making them good for validation but
harder to examine for potential relationships for calibration
purposes. Some test waters were classified as “altered nat-
ural,” including waters that had been derived from natural
sources but were processed in some way prior to testing (e.g.,
adding salts to a natural water or treating a natural water to
remove some components, including dechlorinated tap water).
These altered natural waters were assigned to the calibration
data set if the calibration data set did not represent a wide
enough range of chemistry conditions or to the primary vali-
dation data set if the number of observations in the primary
validation data set was relatively small.

Selection criteria for what constituted a wide enough
range of chemistry for the calibration data set were con-
sistent with those described in Brix et al. (2020): the range of
pH in the data had to span at least 1.5 standard units, the
range of DOC had to span at least 5 mg C/L, and the range of
hardness had to span at least 100 mg/L as calcium carbonate.
The DOC range was typically the most difficult criterion to
meet because relatively few tests conducted in synthetic
water contained added organic matter, and data from nat-
ural water tests were initially reserved for the validation data
set. If the DOC criterion could not be met using tests con-
ducted in synthetic water, then 2 of the observations from
the natural waters were chosen with a random number
generator and reassigned to the calibration data set. The
selection criteria were met for each species, with the
exception of acute Daphnia pulicaria data and chronic O.
mykiss data. Chronic O. mykiss data were included even
though the DOC spanned a range of only 4.57 mg C/L. The
D. pulicaria data were included even though the hardness
spanned a range of only 95 mg/L as calcium carbonate and
only natural waters were available, so two‐thirds of the data
(11 of 16) were randomly chosen for use in the calibration
data set, leaving approximately one‐third (5 of 16) for vali-
dation. The ranges of water chemistry in the acute and
chronic data that were used for model development and
evaluation are listed in Table 2, as are the ranges of the same
parameters in US surface waters. The full range of chemistry
present in actual US surface waters goes well beyond the
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bounds of what is typically tested in a laboratory setting.
However, at least 90% of the chemistry measurements
(the 5–95% range) fell within the range represented in the
toxicity data. The exception was acute validation data, for
which the maximum hardness value used in the toxicity data
was only 360 mg CaCO3/L, compared to the US surface water
95th percentile of 415 mg CaCO3/L.

MLR calibrations and predictions
The MLR models were fit using methods consistent with

those described in Brix et al. (2017) and DeForest et al. (2018).
Briefly, the step() function in R (R Development Core Team

2020) was used to determine the best‐fit set of parameters. The
step() function starts with a null model (i.e. toxicity is not af-
fected by modifying factors) and adds parameters up to, at
most, a “full‐scope” model equation with all of the allowed
parameters. The program decides whether to keep the current
model equation, add parameters, or eliminate parameters one
at a time by comparing their Akaike information criterion (AIC)
or Bayesian information criterion (BIC). The AIC and BIC are
both based on information theory and are measures of the
relative quality of a model; these criteria differ only in their
value of k in the equation used to calculate them ([–2 × log‐
likelihood]+ [k × npar], where npar is the number of parameters
in the model; Sakamoto et al. 1986). Whereas the AIC uses

FIGURE 1: Summary of dissolved organic carbon, hardness, and pH data used in the Pooled All model calibration and validation data sets. Vertical
lines represent the 5th to 95th percentile range for parameters within US waters. DOC= dissolved organic carbon; S= survival; R= reproduction;
G= growth.
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k= 2, the BIC uses k= ln(n), where n is the number of ob-
servations; thus, the BIC penalizes the number of parameters
more harshly when the data set is large (AIC and BIC values
improve as they approach negative infinity).

Four scenarios were run based on all 4 combinations of
2 different conditions: whether interaction terms were consid-
ered for inclusion and whether the best fit was determined
based on the AIC or the BIC. In 2 of the scenarios, the initial
model did not consider interaction terms, meaning that the full‐
scope equation took the following form:

( )

= × ( ) + × ( ) + × +

x

a a a b

ln NiEC

ln DOC ln hardness pHD H p (1)

Three additional terms were included in the
full‐scope equation for the 2 scenarios that considered the
interaction terms, so the equation took the following
form:

( ) = × ( ) + × ( ) + ×

+ × [ ( ) × ( )]

+ × [ ( ) × ]

+ × [ ( ) × ] +

x a a a

a

a

a b

ln NiEC ln DOC ln hardness pH

ln DOC ln hardness

ln DOC pH

ln hardness pH

D H p

DH

Dp

Hp (2)

This procedure was performed for each group in Table 1 and
for the 3 pooled groups in an analysis of covariance

TABLE 1: Number of toxicity observations in each group for the calibration and validation data sets

Test type Group

n

Calibration Primary validation Secondary validation

Acute Ceriodaphnia dubia 48‐h LC50 12 7 —

Acute Daphnia magna 48‐h LC50 57 18 —

Acute Daphnia pulex 48‐h LC50 38 8 —

Acute Daphnia pulicaria 48‐h LC50 11 5 —

Acute Other invertebrates — — 60
Acute Pimephales promelas 96‐h LC50 (adult) 22 8 33
Acute Other fish — — 21
Acute Pooled acute 140 46 114
Chronic C. dubia 7‐d survival and reproduction IC25 16 6 37
Chronic D. magna 21‐d reproduction MATC 20 6 7a

Chronic D. magna 21‐d survival MATC 20 12 7a

Chronic Other invertebrates — — 113
Chronic O. mykiss 17‐ to 26‐d LC50 17 3 —

Chronic Other fish — — 5
Chronic Pseudokirchneriella subcapitata 72‐h growth EC50 29 8 —

Chronic Other algae — — 11
Chronic Other plants — — 62
Chronic Other amphibians — — 6
Chronic Pooled Chronic 102 35 241
Acute+ chronic Pooled All 242 81 355

aBecause both are chronic D. magna groups, the secondary validation data set can be applied to either. These are the same 7 observations.
LC50= concentration lethal to 50% of a population; IC25= concentration required for 25% inhibition of an effect; MATC=maximum allowable toxicant concentration;
EC50= concentration effective on 50% of a population.

TABLE 2: Ranges of water chemistry in US surface waters and the acute and chronic data sets used for model development and evaluation

Parameter

US surface water Acute data range Chronic data range

Range 5–95% range Calibration Validation Calibration Validation

pH 2.9–10.3 6.5–8.5 5.6–8.8 4.1–8.8 5.5–8.7 3.5–8.9
DOC (mg C/L) 0.1–284 1.0–9.9 0.2–41 0.2–34 0.2–18 <0.1–32
Hardness (mg CaCO3/L) 0.1–4440 21–415 16–477 0.13–360 14–848 1.1–1100
Alkalinity (mg CaCO3/L) 0.1–1970 17–240 0.1–387 0.4–376 <0.1–197 <0.1–229
Temperature (°C) 0–37.2 1.8–29 4–25 10–28 15–26 15–29
Calcium (mg/L) <0.1–404 5.4–105 0.8–181 <0.1–96 3.0–237 <0.1–392
Magnesium (mg/L) <0.1–866 1.3–38 0.2–111 <0.1–41 1.1–94 0.2–114
Sodium (mg/L) 0.1–7460 1.6–160 0.5–322 0.6–190 1.8–108 1.1–305
Potassium (mg/L) <0.1–262 0.6–9.2 <0.1–31 <0.1–12 0.4–157 <0.1–117
Sulfate (mg/L) 0.1–2150 2.7–308 3.2–890 1.3–242 4.0–790 0.5–393
Chloride (mg/L) <0.1–15 200 0.7–177 0.2–519 <0.1–156 0.6–318 0.4–550

DOC= dissolved organic carbon.

2194 Environmental Toxicology and Chemistry, 2021;40:2189–2205—K. Croteau et al.

© 2021 SETAC wileyonlinelibrary.com/ETC



(ANCOVA), with the group included as a categorical parameter
(i.e., the intercept would be different in each group, but the
slopes would be the same for all groups). The predictions for the
calibration and primary validation data sets used the intercepts
directly from the models developed during calibration. The in-
tercepts for the secondary validation data set were subsequently
calculated for each group. The intercept back‐calculated for
each observation was calculated as ln(Ni ECx) minus the sum of
variables times their coefficients; this value then was averaged
across all points in a group. So, for a calibrated model containing
only DOC and hardness terms, the intercept would be
calculated as follows:

⎡

⎣
⎢

⎤

⎦
⎥

∑= ( ( ) − ( × ( )

+ × ( ) ))

=

b x a

a n

ln NiEC ln DOC

ln hardness

i

n

i D i

H i

group
1

group

group

(3)

The adjusted R2 and predicted R2 were calculated for each
of the model's calibration data sets. The adjusted R2 penalizes
the normal R2 based on the number of parameters in the model
(k) and the number of calibration data points (n) so that the
improvement in model fit is balanced with increases in model
complexity.

= −
/( − − )

/( − )

= −
∑ [( − ˆ ) ]/( − − )

∑ [( − ¯) ]/( − )
=

=

R
SSE n k

SSE n

x x n k

x x n

Adjusted 1
1

1

1
1

1
i
n

i i

i
n

i

2

1
2

1
2 (4)

where SSE is the sum of squared error ∑ [( − ˆ ) ]= x xi
n

i i1
2 and SST is

total sum of squares ∑ [( − ¯) ]= x xi
n

i1
2 . The predicted R2 is a way to

tell if a model has been overparameterized (i.e., is specific to
the data on which it was based instead of being generally
applicable; Allen 1974; Tarpey 2000; Hopper 2014). Essentially,
it is a form of cross‐validation that evaluates how well a par-
ticular model may be expected to predict responses for new
observations. The process for calculating predicted R2 involves
systematically removing each observation from the model, re-
fitting the coefficients, predicting the response for the ob-
servation that was removed, and calculating residuals for an R2

calculation. The predicted R2 can range from negative infinity
to 1, although like the adjusted R2, it cannot be higher than the
R2. A predicted R2 that is much lower than the R2 or adjusted R2

is indicative of an overfitted model. Although the predicted R2

is most useful as a cross‐validation technique when an in-
dependent validation data set is not available, it is useful in the
present context because many of the primary validation data
sets are very small. An R2 was also calculated from the pre-
dictions of the primary and secondary validation data sets,
separately and together.

The 95% confidence intervals were calculated for each pre-
diction. Calculating the confidence intervals for the calibration/
primary validation groups required very little effort because the
predict() function in R could return confidence intervals with its

predictions for these groups. However, for the secondary vali-
dation data, for which new intercepts were calculated, the pre-
dictions were calculated manually with the fitted slopes and
calculated intercepts. As a result, the confidence intervals also
had to be calculated manually. The confidence interval for
secondary validation data sets was calculated as follows

∗

∗ ⁎

ˆ ± ( ˆ )

= ˆ ± + Σ ( ( ) | − ¯ |)

α

α − − =

y t SE y

y t
s

n
SE a x x

i df i

i N n

b

group

n
j i j calib j

2 ,

2 , 1

2

j 1 , ,
2

par

group par

where αt df,2
is the quantile from the t distribution at α

2
%, degrees

of freedom equal to the sb
2
group is the variance of the new in-

tercept calculated from Equation 3, ( )SE aj is the standard error
of the slope of parameter j, xi j, is the value of parameter j , and
x̅calib j, is the average of that parameter from the model's
calibration data set.

The final model selection for each calibration group was
based largely on the various R2 statistics described in the
present study. If the improvement in the model fit was only
slight or if the different R2 values were leading to inconsistent
conclusions (e.g., the primary validation R2 being higher but
the secondary validation R2 being lower), then some consid-
eration was given to which model had fewer explanatory
variables. This consideration was similar in concept to looking
at the adjusted R2—basically, that more complex models
should be penalized so that the gains in model performance
would be significant enough to justify the addition of more
variables.

BLM predictions
The BLM used is the most up‐to‐date model for predicting

the toxicity of nickel to freshwater organisms (Santore et al.
2021, in this issue). The nickel BLM was not calibrated directly
to the data composing the calibration data set for the MLRs.
Rather, it was previously calibrated to a subset of the MLR
calibration data set. Specifically, the binding constants were set
with the series of exposures varying the relevant parameter
(e.g., calcium for the biotic ligand [BL]‐calcium constant, mag-
nesium for the BL‐magnesium constant) in the studies listed in
the “Calibration data sets” column of Table 3. The particular
data points used are indicated by a column in Supplemental
Data 1, when possible. The binding constants used in the BLM
applied in the present study are provided in Table 3. The BLM
binding constants were originally set with a quantitative
structure–activity relationship approach; then, each parameter
was systematically adjusted to minimize the error in predictions
for toxicity tests, which were conducted to evaluate the effects
of varying individual water chemistry characteristics (e.g., pH,
DOC, calcium, magnesium) on nickel toxicity (Santore et al.
2021, in this issue). Significant differences between fish and
invertebrate or acute and chronic data sets were not seen
when calibrating binding constants, and the benefits of having
a larger calibration data set outweigh any potential
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improvements to the fit of the model from splitting the data
set. In addition, sufficient algae data were not available at the
time of calibration to inform the calibrations; but plant and
algae data that later became available were included in the
validation data set, and good fits were seen in those data. A
binding constant for nickel bicarbonate binding to the BL is
also included in Table 3, although this reaction was not used in
the MLR to BLM comparisons. It is included to show a possible
alternative model that can provide a better fit for some species,
such as C. dubia, that seem to show a stronger response to pH
than do most other organisms.

The BLM predictions were calculated by first applying the
BLM to the MLR calibration data set in speciation mode.
Outputs from applying the BLM in speciation mode were
processed to calculate the critical accumulation for each
observation, which was the concentration of nickel bound to
the BL and directly associated with the observed toxic effect.
The geometric mean of the critical accumulations in a group
was used as the group's final critical accumulation, unless the
geometric mean was outside of the interquartile range
(IQR; i.e., less than the 25th percentile or greater than the
75th percentile), in which case the median was used. This
approach was used because if the geometric mean was
outside the IQR, then it was likely to be heavily influenced by
an outlier observation. The median (i.e., 50th percentile) was
less sensitive to outliers and a better estimate of the center of
the data in those cases. In most cases, the geometric mean
was used. Once the final critical accumulation was de-
termined for each group in Table 3, the BLM was run in
toxicity mode using the test chemistry and the group‐specific
critical accumulation to determine a predicted effect con-
centration.

Confidence intervals were determined for the model pre-
dictions by first calculating the confidence intervals of the
critical accumulation value for each group. The 95% confidence
intervals of the critical accumulation geometric mean values
were calculated as the 2.5 and 97.5% quantiles from a non-
parametric bootstrapping of the geometric mean critical ac-
cumulation. For each group, ngroup critical accumulation values

were resampled, with replacement, 1000 times. The geometric
mean of the critical accumulation values was calculated for
each of these iterations, and the 2.5 and 97.5% quantiles were
calculated. This yielded upper and lower confidence limits on
the geometric mean critical accumulation that, when run
through the BLM in toxicity mode, gave the upper and lower
confidence limits of the predicted ECx values.

Comparing MLR and BLM performance

For the purposes of comparing the 2 models, the Pooled All
MLR model (calibrated with all data pooled) was compared to
the single calibrated BLM. The Pooled All MLR model was
chosen for comparison because it was more consistent with the
BLM application, which assumes a consistent set of binding
constants for all organisms for both acute and chronic tests. It
should be noted that although the BLM binding constants were
calibrated to data from fish and invertebrates only, this is only
because sufficient data were not available at the time to in-
clude a plant or alga in the calibration data set, but the model
has since been validated against plant and alga data with ac-
ceptable results (R2= 0.745). Other comparisons could be
performed with the organism‐specific MLR models or the
Pooled Acute and Pooled Chronic MLR models, but these
should be compared to BLMs with similarly specific binding
constants.

Fit statistics were calculated for the calibration data set to
evaluate the MLR models, but MLR and BLM performances
were only compared with the primary and secondary validation
data sets (Figure 2), to achieve a fairer comparison. Although
some of the data used to calibrate the BLM were included in
the MLR calibration data set, the data sets were not identical,
which could have biased a comparison of the models based on
the calibration data set in favor of one of the models. Fur-
thermore, an empirical model like the MLR model will usually fit
its calibration data set better than a mechanistic model like the
BLM; a mechanistic model must maintain a predefined struc-
ture based on the concepts it is built with, so any changes to

TABLE 3: Binding constants for pooled fish and invertebrate data in the biotic ligand model analysis

Reaction Log K Contributor to toxicity Calibration data sets

× = + +BL Ni BL Ni2 4.00 Yes Pimephales promelas, accumulation data (Meyer et al. 1999)
∓× = +BL NiOH BL NiOH 4.357 Yes

× = + +BL NiHCO BL NiHCO3 3 5.71
(C. dubia only)

Yes
(C. dubia only)

Ceriodaphnia dubia (Schubauer‐Berigan et al. 1993;
Parametrix 2005)a

× = + +BL Ca BL Ca2 4.25 No Oncorhynchus mykiss (Deleebeeck et al. 2007)
Daphnia magna (Deleebeeck et al. 2008a)

Daphnia pulex (Kozlova et al. 2009)
P. promelas (Meyer et al. 1999)

× = + +BL Mg BL Mg2 3.60 No O. mykiss (Deleebeeck et al. 2007)
D. magna (Deleebeeck et al. 2008a)

D. pulex (Kozlova et al. 2009)
× = + +BL Na BL Na 1.00 No —

× = + +BL H BL H 4.70 No —

aMade use of unpublished data from Parametrix (2005) study.
BL= biotic ligand.

2196 Environmental Toxicology and Chemistry, 2021;40:2189–2205—K. Croteau et al.

© 2021 SETAC wileyonlinelibrary.com/ETC



the relationships between toxicity and TMFs must be explained
with a mechanistic underpinning.

Neither the primary nor the secondary validation data sets
were used to fit the bioavailability relationships for either
model (Figures 2 and 3). However, the primary validation data
set would permit the best comparison of the models’ predictive
capabilities because both the bioavailability relationships and
the sensitivity parameters would be fit using a different data set
from the one to which they would be applied. In this case, the
primary validation data set only included data for organisms,

endpoints, and test types for which there were enough data to
develop an MLR model, which severely limited the number of
data points in the data set (see Table 1).

The secondary validation data set would allow for many
more comparisons because it included additional
species–endpoint–life stage groups for which there were not
enough data to calibrate a species‐specific model (Table 1).
Using these data would require a new sensitivity parameter to
be calculated from the secondary validation data set; but, be-
cause doing this would only serve to center the predictions on
the measured data, the secondary validation data set would
allow the fit of the bioavailability relationships of the 2 models
to be evaluated (Figure 2). In the pooled models, the secon-
dary validation data set could also be used to test the models
on organisms that are not included in the calibration data set,
which would test how applicable the models would be in a
more real‐world or regulatory context.

The performances of the 2 models using the primary and
secondary validation data sets were evaluated with scoring
consistent with the methods of Garman et al. (2020). The
6 scores considered evaluated various important aspects of the
model, not just model fit, on a scale of 0 to 1, for a maximum
total score of 6. The fit of the model was evaluated using the R2

value as the metric for score 1 (with a minimum score of 0, even
if the R2 was negative). Scores 2 through 5 were based on the
slopes of the residuals versus either the observed values or the
3 expected TMFs (i.e., hardness, DOC, and pH). The slopes
were transformed so that the score would be 1 when the slope
was 0, would be 0.5 when the slope was 1 or –1, and would
approach 0 as the slope got steeper. This transformation was
defined as

⎡
⎣

⎤
⎦π

= − × (| |)mScore 1
2

atant t (5)

where mt is the slope of the fitted model

( ) = ( × ) +m t blog
x

x t t10

EC

EC
pred

obs
and where t is ( )xlog EC obs10 ,

FIGURE 2: Schematic representation of multiple linear regression (MLR) model development and evaluation of MLR model and biotic ligand model
performance with calibration, primary validation, and secondary validation data sets. BLM= biotic ligand model; CA= critical accumulation;
LogK= binding constant.

FIGURE 3: Predicted versus observed effect concentration values for
the multiple linear regression model that was selected by the “step”
function in R for the Pooled Acute data subset. Gray vertical lines are
the 95% confidence intervals on predictions. Points between dashed
lines are within a factor of 2 of perfect agreement. MLR=multiple linear
regression; LC50= 50% lethal concentration; ECX= x% effect concen-
tration; DOC= dissolved organic carbon; Calib.= calibration; Valid.=
validation; Prim.= primary; Sec.= secondary.
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( )log hardness10 , ( )log DOC10 , or pH. Score 2 was slightly dif-
ferent in that it was an ANCOVA slope, with the group that
was used to average the sensitivity parameter serving as a
categorical variable. This was used instead of an ordinary
linear model because for a single organism predictions would
be expected to cluster around the same measured value and
be centered on a log residual of 1, which would result in most
of the slopes being near zero. An ANCOVA slope allowed bt

to vary by group and produce something like an average
slope for mt , which could then be interpreted to mean how
much error the model would have when predicting ECx
values for organisms in sensitive conditions. Score 6 was the
cumulative probability of predictions with an agreement
factor (AF) of 2 or less. The agreement factor was calculated
as follows:

⎜ ⎟
⎛

⎝

⎞

⎠
=

x

x
AF exp ln

EC

EC
pred

obs
(6)

The cumulative probability was calculated with a Weibull
plotting position ( = /( + )p i n 1 ), and the cumulative probability
that became the score was interpolated from these 2 sets of
values to where the agreement factor equaled 2. These scores
were calculated and summed for the various groups of data,
including for each taxonomic group, acute and chronic tests,
primary and secondary validation data sets, and natural and
synthetic waters.

RESULTS AND DISCUSSION
MLR model development and model selection

The stepwise regression often resulted in the same model
being selected whether AIC or BIC was used as the criterion,
but exceptions did occur (see Table 4). The final models were
selected in each group by comparing the fit statistics between
the models selected by the stepwise regression. The pooled
models all included, at a minimum, DOC and hardness as pa-
rameters. All species‐specific final models included hardness as
a significant parameter (i.e., p< 0.1) except for the acute C.
dubia model, whereas 5 of the 10 included DOC and 6 of the
10 included pH as significant parameters. The DOC parameter
was only significant in one acute model (D. pulex) but was also
present in the model for acute D. pulicaria with p= 0.13. The
pH slope was significant in 3 acute models but was also present
as the only parameter in the acute C. dubia model, with
p= 0.15. Chronic models all included hardness as a significant
parameter; DOC was a significant parameter in all but the O.
mykiss model, and pH was a significant parameter in all but the
D. magna reproduction model and the P. subcapitata model.
Despite other evidence suggesting that pH is an important
TMF for algae (Deleebeeck et al. 2009), the algae model in this
instance did not show a strong residual trend with pH, possibly
because of a difference of modeling approaches. In the de-
velopment of Ni‐MLR models for Australia and New Zealand,
Peters et al. (2021) developed chronic models for algae,
aquatic plants, invertebrates, vertebrates, and a pooled model.

All of these models identified DOC and pH as TMFs; models
for algae and vertebrates also identified magnesium, and the
invertebrate and pooled models also identified magnesium
and calcium as TMFs. The TMFs from Peters et al. (2021) no-
tably identify DOC and pH as the major TMFs, whereas the
model developed in the present study identifies DOC and
hardness. Because hardness and pH tend to covary to some
degree and because the Peters et al. (2021) model was spe-
cifically developed for Australian waters with often very low
hardness and with species relevant for Australian guidelines, it
is likely that this discrepancy is an artifact of underlying model
assumptions.

Most of the final models achieved validation performance
comparable to calibration performance; however, some of the
species‐specific models performed poorly in their primary val-
idation data set even in their final models (Table 4). Stepwise
regression did not find an acute C. dubia model that had all
significant parameters and positive predictive R2 and validation
R2 values. The acute C. dubia model in Table 4 is the best
model identified by stepwise regression but would not be
recommended for use without some further validation in its
intended use. The model shows strong residual trends with
hardness, even though it was not selected by the stepwise
regression. This outcome is likely a result of too few data in the
calibration data set to fit a robust model and pH acting as a
surrogate for the combination of the effect of hardness on
nickel toxicity and bicarbonate toxicity to C. dubia, as further
discussed in Santore et al. (2021, in this issue). The acute D.
pulex and chronic O. mykiss final models had good calibration
data fit statistics and all significant slopes but did not perform
well with their validation data. These 2 models only had a few
primary validation data points each, and those few points the
model did not predict well, so they may see better perform-
ance if there were more data available to validate against.
However, unlike the acute C. dubia model, the acute D. pulex
and chronic O. mykiss models do not show strong residual
trends against any of the TMFs, so it is more likely to be a
problem with the structure of the validation data giving mis-
leading
results.

The Pooled Acute stepwise regression produced a model
with only DOC and hardness, regardless of whether inter-
actions were allowed or if the model was selected with the AIC
or BIC. The model equation for the final selected Pooled Acute
model was as follows:

⎛
⎝

⎞
⎠

μ
= × ( )+ × ( )+x eAcute EC

g
L

0.454 ln hardness 0.084 ln DOC intercept

(7)

Figure 3 shows a comparison of predicted versus observed
for the Pooled Acute model. The intercepts for the pooled
models are presented in Supplemental Data 6 for this and the
other pooled models.

Figure 4 shows comparisons of predicted versus observed
for the Pooled Chronic models. For the Pooled Chronic model,
the stepwise regression that did not allow interactions and
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used AIC chose a model with DOC, hardness, and pH as co-
variates, as did both stepwise regressions using BIC (see
Figure 4). The stepwise regression that allowed interactions
and used AIC was the only scenario that chose a different
model, and it included the ln(hardness) × pH and ln(DOC) × pH
interaction terms. Although the calculated confidence intervals
were smaller for the secondary validation data with the more
complex model, the validation data sets showed higher R2

values with the simpler model with just DOC, hardness, and
pH, so that model was chosen for the chronic group. The final
Pooled Chronic model equation was as follows:

⎛
⎝

⎞
⎠

μ

= × ( )+ × ( )− × +

x

e

Chronic EC
g
L

0.498 ln hardness 0.278 ln DOC 0.320 pH intercept (8)

Both chronic models showed poor predictions on a number of
data points. A number of D. magna reproduction data were
among the worst‐performing points, generally being under-
predicted. In addition, a number of plant species were poorly
performing, with a Lemna aequinoctialis point being the most
overpredicted observation. These points all had large uncertainty
bounds, which could reflect the large uncertainty that is sometimes
associated with toxicity exposures and calculating ECx values.

The stepwise regression for the Pooled All group produced
the same model whether interactions were considered or not
and whether AIC and BIC were used. The model selected in-
cluded only hardness and DOC (see Figure 5). The confidence
intervals were fairly narrow, although some of the less accurate
predictions showed larger confidence intervals. This model
equation was as follows:

⎛
⎝

⎞
⎠

μ
= × ( )+ × ( )+x eEC

g
L

0.471 ln hardness 0.147 ln DOC intercept (9)

Because the Pooled All group is similar in structure to how the
Santore et al. (2021, in this issue) BLM is developed and applied
(not differentiating between acute and chronic or different or-
ganisms), the Pooled All model was used with the BLM in the
model comparison and scoring. In addition, statistical evaluations
found that there was no need to differentiate between bioavail-
ability relationships for different organisms or acute and chronic
tests. The final versions of other models developed (i.e., the
species‐specific models) are highlighted in Table 4. Predicted
versus observed ECx figures for the species‐specific models are
included in Supplemental Data 7. Figures showing the residuals
versus the observed ECx values and the TMFs are included in
Supplemental Data 8 for all models. The pooled models were
good fits for most organisms, but C. dubia tended to respond
more to pH than did other organisms, where higher pH values
were associated with lower ECx values, and as such the pooled
model was not a particularly good fit for either the MLR or the
BLM at higher pH values (pH> 8). Because C. dubia was at the
sensitive end of the species sensitivity distribution and appeared
to behave differently from most other organisms, the C. dubia
data were further analyzed to fit a species‐specific BLM to the
data in Santore et al. (2021, in this issue). The pH trend, which
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appeared to be mechanistically linked to bicarbonate toxicity, is
discussed in full in Santore et al. (2021, in this issue). The C. dubia
BLM is only an approximation of a suspected mixture effect with
nickel and bicarbonate; as such, it will improve the fit of the BLM
to C. dubia but not necessarily other organisms with different

bicarbonate sensitivities. As previously noted, other organisms in
this database fit the pooled models quite well, but other organ-
isms not represented in this toxicity database may be similarly
affected by bicarbonate toxicity and require a similar model as C.
dubia. Nonetheless, the pooled model fits C. dubia and other
species reasonably well for both the MLR model and BLM be-
cause the majority of data are below pH 8, so the pooled model
will be the focus of the model comparisons to follow.

BLM calculations
The same BL‐binding constants were used for predictions

of acute or chronic data. The critical accumulation (BLM sen-
sitivity parameter) was calculated as the geometric mean or
median of the group's individual accumulation values, which
were obtained from a “speciation mode” run of the toxicity
data through the BLM. The geometric mean was preferred
and generally used as the group's critical accumulation value,
except when it fell outside of the 25 to 75% range of the
individual values, in which case the median was used. In these
cases, it was assumed that outliers were skewing the geo-
metric mean and that the median would be less influenced by
outliers.

The critical accumulations, calculated for each combination
of species, life stage, endpoint, and quantifier, along with the
test chemistry were run through the BLM in “toxicity mode” to
get predictions of ECx values, shown versus observed values in
Figure 6. The confidence intervals tended to be pretty narrow,
although some of the chronic data showed wider confidence
intervals, spanning more than a factor of 10. The predictions
that showed the largest confidence intervals tended to be

FIGURE 4: Predicted versus observed effect concentration values for the 2 MLR models that were selected by the “step” function in R for the
Pooled Chronic data subset. Gray vertical lines are the 95% confidence intervals on pedictions. Points between dashed lines are within a factor of 2
of perfect agreement. AIC=Akaike information criterion; BIC= Bayesian information criterion; MLR=multiple linear regression; ECX= x% effect
concentration; DOC= dissolved organic carbon; Calib.= calibration; Valid.= validation; Prim.= primary; Sec.= secondary.

FIGURE 5: Predicted versus observed effect concentration values for
the multiple linear regression model that was selected in the stepwise
regression for the Pooled All data subset. Gray vertical lines are the
95% confidence intervals on predictions. Points between dashed lines
are within a factor of 2 of perfect agreement. MLR=multiple linear
regression; ECX= x% effect concentration; DOC= dissolved organic
carbon; Calib.= calibration; Valid.= validation; Prim.= primary; Sec.=
secondary.
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those points that were least accurate. Note that both panels in
Figure 6 use the same set of BLM parameters, and they are only
split into acute and chronic groups to allow for a clearer picture
of the information. Similar figures for other subsets of the data
and residual plots are available in Supplemental Data 9 and 10.

Several outliers appeared in the BLM predictions, primarily
from C. dubia, Hyalella azteca, and P. subcapitata. In general,
outliers may stem from uncertainties related to the original
toxicity data, particularly compounding the uncertainties in
analytical approaches, individual organism health, or methods
of calculating an effects threshold. Residual analyses of these
outliers did not reveal a strong trend to any potential TMFs, so
it is likely that the outliers stem from the expected uncertainties
associated with all toxicological data. Overall, 86.7% of pre-
dictions on acute data and 76.2% of predictions on chronic
data fall within a factor of 2 of the measured values.

Model comparisons

The BLM predictions were compared to the MLR model
predictions through their predictive performance with the vali-
dation data only (i.e., excluding calibration data). Table 5 shows
the derivation of the scores, consistent with Garman et al. (2020),
for comparing the performance of the final Pooled All MLR
model with that of the pooled BLM. The models were scored
based on their R2 (overall predictive ability); slope of residuals to
observed ECx values (systematic bias on sensitivity); slope of
residuals to pH, DOC, and hardness (systematic bias on bio-
availability relationships); and agreement factor (consistency of
predictions). These scores and others for data separated by

primary and secondary validation for each species and taxo-
nomic category are derived graphically in Supplemental Data 11
and presented in full in Supplemental Data 12. In general, the
MLR model and BLM perform similarly, and either model is ca-
pable of explaining much of the variability in the observed ECx
values. The following discussion focuses on the models' differ-
ences and where one performed better than the other.

The total scores for the full data set were the same: 5.37 for
both the MLR model and the BLM (out of 6). The BLM per-
formed markedly better in the residuals versus observed ECx
values slope (0.74 vs 0.63 for MLR), and the MLR model per-
formed slightly better in the slopes of residuals versus hardness
and DOC (0.98 and 1.00, respectively, vs 0.96 and 0.97, re-
spectively, for the BLM). The BLM performed slightly better in
both the primary and secondary validation subsets, with total
scores of 5.11 and 5.45, respectively (vs 4.96 and 5.39, re-
spectively, for the MLR model). The slopes for residuals versus
observed ECx values and residuals versus pH were the main
contributors to the BLM's greater score in the case of the pri-
mary validation subset, although only the residual versus ECx
was better in the case of secondary validation data. The BLM
also performed slightly better in the acute data subset, with a
total score of 5.56 (vs 5.38 for the MLR model), but the MLR
model performed better in the chronic data subset, with a total
score of 5.20 (vs 5.15 for the BLM). When subsetting the data
by taxonomic category, the BLM tended to perform better with
fish, whereas the MLR model tended to perform better with
invertebrates, algae, and plants. The MLR model tended to
perform better at the level of individual species, scoring better
in 12 of the 22 species, which is a reflection of its better per-
formance with invertebrates, the group comprising the greatest

FIGURE 6: Biotic ligand model–predicted versus observed effect concentration values for the Pooled Acute data subset (left) and the Pooled
Chronic data subset (right). Gray vertical lines represent the predictions from the 95% confidence limits on the critical accumulation estimates. Points
between dashed lines are within a factor of 2 of perfect agreement. BLM= biotic ligand model; ECX= x% effect concentration; Calib.= calibration;
Valid.= validation; Prim.= primary; Sec.= secondary.
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number of species. The MLR performed much better with
Melanotaenia splendida splendida, whereas the BLM was much
better in Paracheirodon axelrodi and Danio rerio, and 9 of the
22 species performed about the same for both models.

The BLM performed much better than the MLR model with
score 2, the slope of residuals versus observed ECx values. The
slopes used to calculate the score were negative most of the
time (for both models), but the slope in the BLM score was
generally shallower than that in the MLR model's score,

meaning that the BLM would have less tendency to over-
estimate more sensitive ECx values and underestimate less
sensitive ECx values. The species for which the MLR score was
significantly better than the BLM score included a Chironomus
dilutus, M. splendida splendida, and P. subcapitata.

The BLM also performed somewhat better with score 5, the
slope of residuals versus pH. Because the Pooled All MLR model
chosen for comparison did not include pH effects, this was
somewhat to be expected. Surprisingly, the MLR model

TABLE 5: (Abbreviated) Scores comparing multiple linear regression and biotic ligand model performances using all validation data (additional
comparisons provided in Supplemental Data 12): Individual scores are out of 1 and total scores are out of 6

MLR BLM

Data subset

Pred
vs
obs
R2

Resid
vs obs
slope

Resid
vs

hard
slope

Resid
vs

DOC
slope

Resid
vs pH
slope AF2 cdf

Total
score

Pred
vs
obs
R2

Resid
vs obs
slope

Resid
vs

hard
slope

Resid
vs

DOC
slope

Resid
vs pH
slope AF2 cdf

Total
score

Better
model

Species
Brachionus
calyciflorus

0.84 0.76 0.85 0.96 0.98 0.86 5.25 0.87 0.97 0.95 1.00 0.93 0.86 5.58 BLM

Ceriodaphnia dubia 0.72 0.56 0.95 0.95 0.98 0.74 4.90 0.68 0.64 0.79 0.96 0.87 0.75 4.69 MLR
Chironomus dilutus 0.00 0.81 0.80 0.86 0.98 0.81 4.25 0.00 0.45 0.63 0.76 0.91 0.69 3.44 MLR
Chlorella sp. 0.56 0.66 0.87 0.64 0.97 0.75 4.45 0.43 0.65 0.88 0.68 0.98 0.73 4.35 MLR
Danio rerio 0.66 0.69 0.78 0.47 0.39 0.63 3.62 0.91 0.84 0.88 0.67 0.60 0.80 4.70 BLM
Daphnia lumholtzi 0.89 0.53 0.29 0.74 0.55 0.80 3.80 0.95 0.67 0.42 0.83 0.69 0.80 4.36 BLM
Daphnia magna 0.86 0.66 0.87 0.90 0.90 0.70 4.89 0.88 0.82 0.88 0.88 1.00 0.71 5.17 BLM
Daphnia pulex 0.00 0.42 0.42 0.58 0.93 0.46 2.81 0.00 0.41 0.37 0.54 0.94 0.42 2.68 MLR
Daphnia pulicaria 0.27 0.70 0.76 0.60 0.75 0.76 3.84 0.51 0.83 0.86 0.77 0.84 0.83 4.64 BLM
Hyalella azteca 0.95 0.60 0.95 0.95 0.82 0.80 5.07 0.92 0.70 0.72 0.95 0.80 0.74 4.83 MLR
Hydra viridissima 0.82 0.75 0.79 0.87 0.88 0.83 4.94 0.67 0.72 0.72 0.97 0.91 0.67 4.66 MLR
Lampsilis
siliquoidea

0.99 0.53 0.17 1.00 0.96 0.80 4.45 1.00 0.57 0.19 1.00 0.97 0.80 4.53 BLM

Lemna
aequinoctialis

0 0.47 0.52 0.65 0.56 0.17 2.37 0.00 0.51 0.66 0.67 0.62 0.28 2.74 BLM

Lemna gibba 0.13 0.51 0.81 0.87 0.52 0.33 3.17 0.12 0.55 0.83 0.96 0.70 0.67 3.83 BLM
Lemna minor 0.73 0.58 0.93 0.98 0.94 0.89 5.05 0.47 0.63 0.65 0.96 0.92 0.77 4.40 MLR
Lepomis
macrochirus

0.80 0.76 0.86 0.32 0.99 0.80 4.53 0.76 0.92 0.87 0.26 0.73 0.80 4.34 MLR

Lymnaea stagnalis 0.30 0.63 0.83 0.92 0.84 0.63 4.15 0.00 0.72 0.63 0.99 0.78 0.60 3.72 MLR
Melanotaenia
splendida
splendida

0.80 0.95 0.95 0.92 0.99 0.83 5.44 0.27 0.80 0.88 0.80 0.83 0.76 4.34 MLR

Oncorhynchus
mykiss

0.88 0.69 0.99 0.88 0.96 0.83 5.23 0.83 0.80 0.90 0.81 1.00 0.74 5.08 MLR

Paracheirodon
axelrodi

0.00 0.50 0.59 0.88 0.91 0.75 3.63 0.52 0.97 0.91 0.97 0.96 0.85 5.18 BLM

Pimephales
promelas

0.91 0.71 0.80 0.98 0.92 0.92 5.24 0.92 0.91 0.94 0.96 0.98 0.94 5.65 BLM

Pseudokirchneriella
subcapitata

0.72 0.72 0.52 0.94 0.94 0.89 4.73 0.00 0.66 0.97 0.90 0.85 0.63 4.01 MLR

Taxonomic group
Algae 0.84 0.64 0.95 0.95 1.00 0.81 5.19 0.68 0.61 0.92 0.95 0.95 0.68 4.79 MLR
Aquatic plants 0.65 0.53 0.89 0.92 0.96 0.74 4.69 0.54 0.58 0.88 0.98 0.95 0.72 4.65 MLR
Fish 0.93 0.69 0.97 0.98 0.99 0.88 5.44 0.95 0.91 0.98 0.98 0.99 0.91 5.72 BLM
Invertebrate 0.95 0.64 0.97 0.98 0.99 0.81 5.34 0.94 0.72 0.95 0.94 0.96 0.80 5.31 MLR

Test type
Acute 0.92 0.67 0.99 0.94 0.99 0.87 5.38 0.93 0.84 0.97 0.95 0.99 0.88 5.56 BLM
Chronic 0.88 0.62 0.99 0.95 0.98 0.78 5.20 0.84 0.67 0.95 0.99 0.95 0.75 5.15 MLR

Validation type
Primary 0.88 0.65 0.87 0.95 0.90 0.71 4.96 0.87 0.77 0.86 0.94 0.99 0.68 5.11 BLM
Secondary 0.96 0.63 0.99 0.99 0.98 0.84 5.39 0.95 0.71 0.98 1.00 0.98 0.83 5.45 BLM
All data 0.95 0.63 0.98 1.00 1.00 0.81 5.37 0.94 0.72 0.96 0.97 0.98 0.80 5.37

MLR=multiple linear regression; BLM= biotic ligand model; Pred= predicted; obs= observed; Resid= residual; Hard= hardness; DOC= dissolved organic carbon; AF2
cdf= agreement factor of 2 cumulative distribution function.
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performed better for C. dubia, despite the fact that the
Pooled All MLR model ignored any effect of pH, and
the species‐specific C. dubia MLR models featured a large pH
slope—exclusively so for the acute C. dubia model. The MLR
model often scored better than the BLM for score 1 (predicted
vs observed R2) and scores 3 and 4 (residual vs hardness or vs
DOC slopes, respectively). Because the Pooled All MLR had
DOC and hardness as its 2 explanatory variables and the fitting
of an MLR model is based on minimizing a sum of squared errors
(i.e., maximizing the R2), it makes sense that the MLR model
would perform somewhat better than a mechanistic model for
these scores. The MLR tended to perform slightly better on
score 6 (agreement factor of <2 cumulative probability).

Although the confidence intervals are not included in the
scoring, they can be a good way to informally compare the
uncertainty associated with each model. Both models show
higher uncertainty around the predictions of points that are less
accurate (further from the 1:1 line).

The MLR equations can help inform water quality guide-
lines by providing a simple means for including TMFs. The
comparison in the present study shows that the MLR model,
when it is informed by a large amount of good‐quality data,
can provide information about nickel bioavailability and that
its performance is on par with the mechanistic BLM. The
availability of simple approaches for improving guidelines
may also help harmonize guidelines in different jurisdictions
around the world. Currently, the US guideline is fairly out-
dated and is based on a simple hardness equation (US En-
vironmental Protection Agency 1996) that does not consider
DOC, which this analysis recognizes as an important TMF.
Canada has recently started looking at developing a
bioavailability‐based approach for its nickel guideline, and
that approach will likely consider both hardness and DOC. In
the European Union, a bioavailability model is used that
incorporates DOC, calcium, and pH. Peters et al. (2018)
used Australian ecotoxicity tests to show that bioavailability
principles are supported for water chemistry ranges ob-
served in Australia in natural water experiments; their find-
ings provided the basis for establishing bioavailability‐
based water quality guidelines in Australia and New
Zealand (Peters et al. 2021; Stauber et al. 2021). To some
extent, differences in guidelines are the result of the or-
ganisms (e.g., native species) selected to inform the
guidelines.

CONCLUSIONS
As shown in the present study, MLR models can be devel-

oped for nickel, and these models account for the same TMFs
considered by mechanistic models like the BLM. The stepwise
regressions provided fairly consistent results, whether or not
they allowed interaction terms in the MLR models and whether
they used the AIC or BIC statistic. The interaction terms were
not always selected, even when allowed; and they never pro-
duced a model that was deemed best overall when applied to
independent validation data. A pooled model approach

resulted in fairly consistent predictions and allowed for flexi-
bility when examining relatively unstudied species so that a
species‐specific model could be developed.

When applying the overall pooled MLR model to in-
dependent validation data and comparing its performance with
that of a pooled mechanistic model (i.e., the BLM), both
models performed well. The BLM performed slightly better
than the MLR model in the primary validation data, when there
were enough data available to calibrate a sensitivity parameter.
The models performed equally well in the secondary data,
where the sensitivity parameter was set to the data; this ap-
proach centered any predictions but still tested the ability of
the model to capture the effect of TMFs. The MLR model
performed better than the BLM for invertebrates, which had the
most calibration data available, and was better at more accu-
rately capturing the slopes for the TMFs for which it had pa-
rameters. These various strong points for each model would
lend themselves to different applications, so both models are
useful in research and regulatory applications, depending on
the particular needs of the task.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at https://doi.org/10.1002/etc.5063.
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