## About

91

Publications

6,849

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

3,731

Citations

Citations since 2017

Introduction

Additional affiliations

April 2013 - December 2014

April 2011 - March 2013

## Publications

Publications (91)

t-stochastic neighbor embedding (t-SNE) is a nonparametric data visualization method in classical machine learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-dimensional plane, while maintaining the relationship or similarities between the surrounding points. In t-SNE, the initial position of th...

Current quantum computers are limited in the number of qubits and coherence time, constraining the algorithms executable with sufficient fidelity. The variational quantum eigensolver (VQE) is an algorithm to find an approximate ground state of a quantum system and is expected to work on even such a device. The deep VQE [K. Fujii, et al., arXiv:2007...

Variational quantum algorithms (VQAs) have been proposed as one of the most promising approaches to demonstrate quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, it has been unclear whether VQAs can maintain quantum advantage under the intrinsic noise of the NISQ devices, which deteriorates the quantumness. Here we prop...

The implementation of time-evolution operators on quantum circuits is important for quantum simulation. However, the standard method, Trotterization, requires a huge number of gates to achieve desirable accuracy. Here, we propose a local variational quantum compilation (LVQC) algorithm, which allows us to accurately and efficiently compile time-evo...

Quantum-inspired singular value decomposition (SVD) is a technique to perform SVD in logarithmic time with respect to the dimension of a matrix, given access to the matrix embedded in a segment-tree data structure. The speedup is possible through the efficient sampling of matrix elements according to their norms. Here, we apply it to extreme learni...

The implementation of time-evolution operators, called Hamiltonian simulation, is one of the most promising usage of quantum computers that can fully exploit their computational powers. For time-independent Hamiltonians, the qubitization has recently established efficient realization of time-evolution, with achieving the optimal computational resou...

Variational quantum algorithms are considered to be appealing applications of near-term quantum computers. However, it has been unclear whether they can outperform classical algorithms or not. To reveal their limitations, we must seek a technique to benchmark them on large-scale problems. Here we propose a perturbative approach for efficient benchm...

Pricing a multi-asset derivative is an important problem in financial engineering, both theoretically and practically. Although it is suitable to numerically solve partial differential equations to calculate the prices of certain types of derivatives, the computational complexity increases exponentially as the number of underlying assets increases...

The variational quantum eigensolver (VQE), which has attracted attention as a promising application of noisy intermediate-scale quantum devices, finds a ground state of a given Hamiltonian by variationally optimizing the parameters of quantum circuits called Ansätze. Since the difficulty of the optimization depends on the complexity of the problem...

The demonstration of quantum error correction (QEC) is one of the most important milestones in the realization of fully-fledged quantum computers. Toward this, QEC experiments using the surface codes have recently been actively conducted. However, it has not yet been realized to protect logical quantum information beyond the physical coherence time...

Implementing time evolution operators on quantum circuits is important for quantum simulation. However, the standard way, Trotterization, requires a huge numbers of gates to achieve desirable accuracy. Here, we propose a local variational quantum compilation (LVQC) algorithm, which allows to accurately and efficiently compile a time evolution opera...

We propose a divide-and-conquer method for the quantum-classical hybrid algorithm to solve larger problems with small-scale quantum computers. Specifically, we concatenate a variational quantum eigensolver (VQE) with a reduction in the system dimension, where the interactions between divided subsystems are taken as an effective Hamiltonian expanded...

In the early years of fault-tolerant quantum computing (FTQC), it is expected that the available code distance and the number of magic states will be restricted due to the limited scalability of quantum devices and the insufficient computational power of classical decoding units. Here, we integrate quantum error correction and quantum error mitigat...

Current quantum computers are limited in the number of qubits and coherence time, constraining the algorithms executable with sufficient fidelity. Variational quantum eigensolver (VQE) is an algorithm to find an approximate ground state of a quantum system and expected to work on even such a device. The deep VQE [K. Fujii, et al., arXiv:2007.10917]...

t-Stochastic Neighbor Embedding (t-SNE) is a non-parametric data visualization method in classical machine learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-dimensional plane, while maintaining the relationship, or similarities, between the surrounding points. In t-SNE, the initial position of...

Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for the near-term quantum computers. Meanwhile, VQE is confronted with a challenge that statistical error associated with the measurement as well as systematic error could significantly hamper the optimization. To circumvent this issue,...

Quantum circuits that are classically simulatable tell us when quantum computation becomes less powerful than or equivalent to classical computation. Such classically simulatable circuits are of importance because they illustrate what makes universal quantum computation different from classical computers. In this work, we propose a novel family of...

The kernel trick allows us to employ high-dimensional feature space for a machine learning task without explicitly storing features. Recently, the idea of utilizing quantum systems for computing kernel functions using interference has been demonstrated experimentally. However, the dimension of feature spaces in those experiments have been smaller t...

Variational quantum algorithms (VQA) have been proposed as one of the most promising approaches to demonstrate quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, it has been unclear whether VQA algorithms can maintain quantum advantage under the intrinsic noise of the NISQ devices, which deteriorates the quantumness. Her...

We propose a sampling-based simulation for fault-tolerant quantum error correction under coherent noise. A mixture of incoherent and coherent noise, possibly due to over-rotation, is decomposed into Clifford channels with a quasiprobability distribution. Then, an unbiased estimator of the logical error probability is constructed by sampling Cliffor...

Quantum kernel method is one of the key approaches to quantum machine learning, which has the advantages that it does not require optimization and has theoretical simplicity. By virtue of these properties, several experimental demonstrations and discussions of the potential advantages have been developed so far. However, as is the case in classical...

To explore the possibilities of a near-term intermediate-scale quantum algorithm and long-term fault-tolerant quantum computing, a fast and versatile quantum circuit simulator is needed. Here, we introduce Qulacs, a fast simulator for quantum circuits intended for research purpose. We show the main concepts of Qulacs, explain how to use its feature...

Variational quantum eigensolver (VQE), which attracts attention as a promising application of noisy intermediate-scale quantum devices, finds a ground state of a given Hamiltonian by variationally optimizing the parameters of quantum circuits called ansatz. Since the difficulty of the optimization depends on the complexity of the problem Hamiltonia...

DOI:https://doi.org/10.1103/PhysRevApplied.16.029901

Quantum systems have an exponentially large degree of freedom in the number of particles and hence provide a rich dynamics that could not be simulated on conventional computers. Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning. In this chapter, we explai...

Reservoir computing is a framework used to exploit natural nonlinear dynamics with many degrees of freedom, which is called a reservoir, for a machine learning task. Here we introduce the NMR implementation of quantum reservoir computing and quantum extreme learning machine using the nuclear quantum reservoir. The implementation utilizes globally c...

Recent developments in reservoir computing based on spintronics technology are described here. The rapid growth of brain-inspired computing has motivated researchers working in a broad range of scientific field to apply their own technologies, such as photonics, soft robotics, and quantum computing, to brain-inspired computing. A relatively new tec...

Applications such as simulating complicated quantum systems or solving large-scale linear algebra problems are very challenging for classical computers, owing to the extremely high computational cost. Quantum computers promise a solution, although fault-tolerant quantum computers will probably not be available in the near future. Current quantum de...

Due to the linearity of quantum operations, it is not straightforward to implement nonlinear transformations on a quantum computer, making some practical tasks like a neural network hard to be achieved. In this work, we define a task called nonlinear transformation of complex amplitudes and provide an algorithm to achieve this task. Specifically, w...

Noise in quantum operations often negates the advantage of quantum computation. However, most classical simulations of quantum computers calculate the ideal probability amplitudes by either storing full state vectors or using sophisticated tensor-network contractions. Here we investigate sampling-based classical simulation methods for noisy quantum...

Variational quantum algorithms (VQAs) are expected to become a practical application of near-term noisy quantum computers. Although the effect of the noise crucially determines whether a VQA works or not, the heuristic nature of VQAs makes it difficult to establish analytic theories. Analytic estimations of the impact of the noise are urgent for se...

We propose a method for learning temporal data using a parametrized quantum circuit. We use the circuit that has a similar structure as the recurrent neural network, which is one of the standard approaches employed for this type of machine learning task. Some of the qubits in the circuit are utilized for memorizing past data, while others are measu...

We propose a sampling-based simulation for fault-tolerant quantum error correction under coherent noise. A mixture of incoherent and coherent noise, possibly due to over-rotation, is decomposed into Clifford channels with a quasi-probability distribution. Then, an unbiased estimator of the logical error probability is constructed by sampling Cliffo...

Quantum circuits that are classically simulatable tell us when quantum computation becomes less powerful than or equivalent to classical computation. Such classically simulatable circuits are of importance because they illustrate what makes universal quantum computation different from classical computers. In this work, we propose a novel family of...

As the hardware technology for quantum computing advances, its possible applications are actively searched and developed. However, such applications still suffer from the noise on quantum devices, in particular when using two-qubit gates whose fidelity is relatively low. One way to overcome this difficulty is to substitute such non-local operations...

We propose a method for learning temporal data using a parametrized quantum circuit. We use the circuit that has a similar structure as the recurrent neural network which is one of the standard approaches employed for this type of machine learning task. Some of the qubits in the circuit are utilized for memorizing past data, while others are measur...

We propose a quantum-classical hybrid algorithm to simulate the nonequilibrium steady state of an open quantum many-body system, named the dissipative-system variational quantum eigensolver (dVQE). To employ the variational optimization technique for a unitary quantum circuit, we map a mixed state into a pure state with a doubled number of qubits a...

We introduce Qulacs, a fast simulator for quantum circuits intended for research purpose. To explore the possibilities of a near-term intermediate-scale quantum algorithm and long-term fault-tolerant quantum computing, a fast and versatile quantum circuit simulator is needed. Herein we show the main concepts of Qulacs, explain how to use its featur...

Variational quantum algorithms are appealing applications of near-term quantum computers. However, there are two major issues to be solved, that is, we need an efficient initialization strategy for parametrized quantum circuit and to know the limitation of the algorithms by benchmarking it on large scale problems. Here, we propose a perturbative ap...

We propose a sequential minimal optimization method for quantum-classical hybrid algorithms, which converges faster, robust against statistical error, and hyperparameter-free. Specifically, the optimization problem of the parameterized quantum circuits is divided into solvable subproblems by considering only a subset of the parameters. In fact, if...

We propose a divide-and-conquer method for the quantum-classical hybrid algorithm to solve larger problems with small-scale quantum computers. Specifically, we concatenate variational quantum eigensolver (VQE) with reducing the dimensions of the system, where the interactions between divided subsystems are taken as an effective Hamiltonian expanded...

As the hardware technology for quantum computing advances, its possible applications are actively searched and developed. However, such applications still suffer from the noise on quantum devices, in particular when using two-qubit gates whose fidelity is relatively low. One way to overcome this difficulty is to substitute such non-local operations...

We employ so-called quantum kernel estimation to exploit complex quantum dynamics of solid-state nuclear magnetic resonance for machine learning. We propose to map an input to a feature space by input-dependent Hamiltonian evolution, and the kernel is estimated by the interference of the evolution. Simple machine learning tasks, namely one-dimensio...

The variational quantum eigensolver (VQE), a variational algorithm to obtain an approximated ground state of a given Hamiltonian, is an appealing application of near-term quantum computers. To extend the framework to excited states, we here propose an algorithm, the subspace-search variational quantum eigensolver (SSVQE). This algorithm searches a...

We show a certain kind of non-local operations can be decomposed into a sequence of local operations. Utilizing the result, we describe a strategy to decompose a general two-qubit gate to a sequence of single-qubit operations. Required operations are projective measurement of a qubit in Pauli basis, and $\pi/2$ rotation around x, y, and z axes. The...

We propose a quantum-classical hybrid algorithm to simulate the non-equilibrium steady state of an open quantum many-body system, named the dissipative-system Variational Quantum Eigensolver (dVQE). To employ the variational optimization technique for a unitary quantum circuit, we map a mixed state into a pure state with a doubled number of qubits...

In quantum computing, the indirect measurement of unitary operators such as the Hadamard test plays a significant role in many algorithms. However, in certain cases, the indirect measurement can be reduced to the direct measurement, where a quantum state is destructively measured. Here, we investigate under what conditions such a replacement is pos...

The variational quantum eigensolver (VQE) is an attractive possible application of near-term quantum computers. Originally, the aim of the VQE is to find a ground state for a given specific Hamiltonian. It is achieved by minimizing the expectation value of the Hamiltonian with respect to an ansatz state by tuning parameters θ on a quantum circuit,...

Quantum simulation is one of the key applications of quantum computing, which can accelerate research and development in chemistry, material science, etc. Here, we propose an efficient method to simulate the time evolution driven by a static Hamiltonian, named subspace variational quantum simulator (SVQS). SVQS employs the subspace-search variation...

We propose a sequential minimal optimization method for quantum-classical hybrid algorithms, which converges faster, is robust against statistical error, and is hyperparameter-free. Specifically, the optimization problem of the parameterized quantum circuits is divided into solvable subproblems by considering only a subset of the parameters. In fac...

Many quantum algorithms, such as the Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles that efficiently encode classical data into a quantum state. The encoding of the data can be categorized into two types: analog encoding, where the data are stored as amplitudes of a state, and digital encoding, where they are stored as qubit strings. The...

In quantum computing, the indirect measurement of unitary operators such as the Hadamard test plays a significant role in many algorithms. However, in certain cases, the indirect measurement can be reduced to the direct measurement, where a quantum state is destructively measured. Here we investigate in what cases such a replacement is possible and...

The variational quantum eigensolver (VQE), a variational algorithm to obtain an approximated ground state of a given Hamiltonian, is an appealing application of near-term quantum computers. The original work [Peruzzo et al.; \textit{Nat. Commun.}; \textbf{5}, 4213 (2014)] focused only on finding a ground state, whereas the excited states can also i...

The variational quantum eigensolver (VQE) is an attracting possible application of near-term quantum computers. Originally, the aim of the VQE is to find a ground state for a given specific Hamiltonian. It is achieved by minimizing the expectation value of the Hamiltonian with respect to an ansatz state by tuning parameters \(\bm{\theta}\) on a qua...

We experimentally demonstrate quantum machine learning using NMR based on a framework of quantum reservoir computing. Reservoir computing is for exploiting natural nonlinear dynamics with large degrees of freedom, which is called a reservoir, for a machine learning purpose. Here we propose a concrete physical implementation of a quantum reservoir u...

Many quantum algorithms, such as Harrow-Hassidim-Lloyd (HHL) algorithm, depend on oracles that efficiently encode classical data into a quantum state. The encoding of the data can be categorized into two types; analog-encoding where the data are stored as amplitudes of a state, and digital-encoding where they are stored as qubit-strings. The former...

The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently...

Quantum reservoir computing provides a framework for exploiting the natural dynamics of quantum systems as a computational resource. It can implement real-time signal processing and solve temporal machine learning problems in general, which requires memory and nonlinear mapping of the recent input stream using the quantum dynamics in computational...

We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical i...

Instantaneous quantum polynomial-time (IQP) computation is a class of quantum
computation consisting only of commuting two-qubit gates and is not universal
in the sense of standard quantum computation. Nevertheless, it has been shown
that if there is a classical algorithm that can simulate IQP efficiently, the
polynomial hierarchy (PH) collapses at...

What happens if in QMA the quantum channel between Merlin and Arthur is noisy? It is not difficult to show that such a modification does not change the computational power as long as the noise is not too strong so that errors are correctable with high probability, since if Merlin encodes the witness state in a quantum error-correction code and send...

Blind quantum computation (BQC) allows a client, who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot know the client's input, quantum algorithm, and output. In the existing verification schemes of BQC, any suspicious...

This paper investigates the power of polynomial-time quantum computation in
which only a very limited number of qubits are initially clean in the |0>
state, and all the remaining qubits are initially in the totally mixed state.
No initializations of qubits are allowed during the computation, nor
intermediate measurements. The main results of this p...

We show that the class QMA does not change even if we restrict Arthur's
computing ability to only Clifford gate operations (plus classical XOR gate).
The idea is to use the fact that the preparation of certain single-qubit
states, so called magic states, plus any Clifford gate operations are universal
for quantum computing. If Merlin is honest, he...

Blind quantum computation (BQC) allows an unconditionally secure delegated
quantum computation for a client (Alice) who only possesses cheap quantum
devices. So far, extensive efforts have been paid to make Alice's devices as
classical as possible. Along this direction, quantum channels between Alice and
the quantum server (Bob) should be considere...

Deterministic quantum computation with one quantum bit (DQC1) [E. Knill and
R. Laflamme, Phys. Rev. Lett. {\bf81}, 5672 (1998)] is a restricted model of
quantum computing where the input state is the completely-mixed state except
for a single pure qubit, and a single output qubit is measured at the end of
the computing. We can generalize it to the...

It is often said that the transition from quantum to classical worlds is
caused by decoherence originated from an interaction between a system of
interest and its surrounding environment. Here we establish a computational
quantum-classical boundary from the viewpoint of classical simulatability of a
quantum system under decoherence. Specifically, w...

We investigate quantum computational complexity of calculating partition
functions of Ising models. We construct a quantum algorithm for an additive
approximation of Ising partition functions on square lattices. To this end, we
utilize the overlap mapping developed by Van den Nest, D\"ur, and Briegel
[Phys. Rev. Lett. 98, 117207 (2007)] and its int...

Deterministic quantum computation with one quantum bit (DQC1) is a model of
quantum computing where the input restricted to containing a single qubit in a
pure state and with all other qubits in a completely-mixed state, with only a
single qubit measurement at the end of the computation [E. Knill and R.
Laflamme, Phys. Rev. Lett. {\bf81}, 5672 (199...

Protecting quantum information from decoherence due to environmental noise is
vital for fault-tolerant quantum computation. To this end, standard quantum
error correction employs parallel projective measurements of individual
particles, which makes the system extremely complicated. Here we propose
measurement-free topological protection in two dime...

Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the clie...

This is a short review on an interdisciplinary field of quantum information
science and statistical mechanics. We first give a pedagogical introduction to
the stabilizer formalism, which is an efficient way to describe an important
class of quantum states, the so-called stabilizer states, and quantum
operations on them. Furthermore, graph states, w...

The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution...

We consider measurement-based quantum computation (MBQC) on thermal states of
the interacting cluster Hamiltonian containing interactions between the cluster
stabilizers that undergoes thermal phase transitions. We show that the
long-range order of the symmetry breaking thermal states below a critical
temperature drastically enhance the robustness...

Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-pr...

In the framework of quantum computational tensor network, which is a general framework of measurement-based quantum computation, the resource many-body state is represented in a tensor-network form (or a matrix-product form), and universal quantum computation is performed in a virtual linear space, which is called a correlation space, where tensors...

Tremendous efforts have been paid for realization of fault-tolerant quantum
computation so far. However, preexisting fault-tolerant schemes assume that a
lot of qubits live together in a single quantum system, which is incompatible
with actual situations of experiment. Here we propose a novel architecture for
practically scalable quantum computatio...

We propose a family of surface codes with general lattice structures, where
the error-tolerances against bit and phase errors can be controlled
asymmetrically by changing the underlying lattice geometries. The surface codes
on various lattices are found to be efficient in the sense that their threshold
values universally approach the quantum Gilber...

Blind quantum computation is a new secure quantum computing protocol which
enables Alice who does not have sufficient quantum technology to delegate her
quantum computation to Bob who has a fully-fledged quantum computer in such a
way that Bob cannot learn anything about Alice's input, output, and algorithm.
In previous protocols, Alice needs to ha...

Recently, Li {\it et al.} [Phys. Rev. Lett. {\bf 107}, 060501 (2011)] have
demonstrated that topologically protected measurement-based quantum computation
can be implemented on the thermal state of a nearest-neighbor two-body
Hamiltonian with spin-2 and spin-3/2 particles provided that the temperature is
smaller than a critical value, namely, thres...

In the framework of quantum computational tensor network [D. Gross and J.
Eisert, Phys. Rev. Lett. {\bf98}, 220503 (2007)], which is a general framework
of measurement-based quantum computation, the resource many-body state is
represented in a tensor-network form, and universal quantum computation is
performed in a virtual linear space, which is ca...

We investigate relations between computational power and correlation in
resource states for quantum computational tensor network, which is a general
framework for measurement-based quantum computation. We find that if the size
of resource states is finite, not all resource states allow correct projective
measurements in the correlation space, which...

We propose a robust and scalable scheme to generate an $N$-qubit $W$ state
among separated quantum nodes (cavity-QED systems) by using linear optics and
postselections. The present scheme inherits the robustness of the Barrett-Kok
scheme [Phys. Rev. A {\bf 71}, 060310(R) (2005)]. The scalability is also
ensured in the sense that an arbitrarily larg...