• Home
  • RIKEN
  • Center for Sustainable Resource Science (CSRS)
  • Keiji Numata
Keiji Numata

Keiji Numata
RIKEN | RIKEN AICS · Center for Sustainable Resource Science (CSRS)

About

212
Publications
38,351
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,494
Citations

Publications

Publications (212)
Article
Targeted delivery of genes to specific plant organelles is a key challenge for fundamental plant science, plant bioengineering, and agronomic applications. Nanoscale carriers have attracted interest as a promising tool for organelle‐targeted DNA delivery in plants. However, nanocarrier‐mediated DNA delivery in plants is severely hampered by the bar...
Article
Targeted delivery of genes to specific plant organelles is a key challenge for fundamental plant science, plant bioengineering, and agronomic applications. Nanoscale carriers have attracted interest as a promising tool for organelle‐targeted DNA delivery in plants. However, nanocarrier‐mediated DNA delivery in plants is severely hampered by the bar...
Article
Full-text available
The tiny spider makes dragline silk fibers with unbeatable toughness, all under the most innocuous conditions. Scientists have persistently tried to emulate its natural silk spinning process using recombinant proteins with a view toward creating a new wave of smart materials, yet most efforts have fallen short of attaining the native fiber's excell...
Article
Full-text available
Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns...
Article
Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxi...
Article
Full-text available
Poly(l-serine) (polySer) has tremendous potential as a polypeptide-based functional material due to the utility of the hydroxyl group on its side chain; however, tedious protection/deprotection of the hydroxyl groups is required for its synthesis. In this study, polySer was synthesized by the chemoenzymatic polymerization (CEP) of l-serine ethyl es...
Article
Full-text available
Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and th...
Article
A telechelic-type polyalanine was doped in silkworm silk fibroins to prepare reinforced composite fibers, which exhibited 42% and 51% higher mechanical properties than silk-only fibers in terms of tensile strength and toughness, respectively.
Article
Full-text available
Each plant cell has hundreds of copies of the chloroplast genome and chloroplast transgenes do not undergo silencing. Therefore, chloroplast transformation has many powerful potential agricultural and industrial applications. We previously succeeded in integrating exogenous genes into the chloroplast genome using peptide–DNA complexes composed of p...
Article
Full-text available
Protein-based materials are considered versatile biomaterials, and their biodegradability is an advantage for sustainable development. Bagworm produces strong silk for use in unique situations throughout its life stages. Rigorous molecular analyses of Eumeta variegata suggested that the particular mechanical properties of its silk are due to the co...
Article
Full-text available
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider ( Caerostris darwini ) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m ⁻¹ and over 50% extensibility, and c...
Article
Full-text available
Natural rubber is a biomaterial with unique physical and chemical features that are indispensable for many industrial applications. It is widely accepted that the α-terminal groups of its biopolymer molecules play a critical role in its exceptional characteristics. Herein, we used molecular dynamics to model recently structurally defined α-terminal...
Article
Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical prope...
Article
Full-text available
Bacteria of the genus Bacillus have been investigated due to the ability that many species have of accumulating polyhydroxyalkanoates (PHA) via a wide variety of raw materials as their carbon source. Herein, we report the draft whole-genome sequence of the putative PHA-accumulating strain Bacillus paramycoides LB_RP2, isolated from an Amazonian riv...
Preprint
Full-text available
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ/m and over 50% extensibility, and can bu...
Article
Full-text available
The polyion complex vesicle (PICsome) is a promising platform for bioactive molecule delivery as well as nanoreactor systems. In addition to anionic and cationic charged blocks, a hydrophilic poly(ethylene glycol) (PEG) block is mostly employed for PICsome formation; however, the long-term safety of the PEG component in vivo is yet to be clarified....
Article
Full-text available
Mitochondria-selective fluorescent probes such as MitoTracker are often used for mitochondria imaging in various plants. Although some of the probes are reported to induce mitochondria dysfunction in animal cells, the effect on plant cells remains to be determined. In the present study, we applied quantitative methods to analyze mitochondrial movem...
Article
Full-text available
DNA-free genome editing using Cas9 ribonucleoprotein is advantageous because it introduces fewer potential undesirable genetic modifications than comparable methods. Here, we show a direct protein delivery system for plants using a cell-penetrating peptide-displayed polyion complex vesicle, CPP-PICsome, as a biological nanocarrier. With this system...
Article
Full-text available
To develop nanopiezoelectronics, it is necessary to investigate the relationship between the sizes and piezoelectric properties of the material. Peptide nanotubes (PNTs) composed of cyclic β-peptides have been studied as leading candidates for nanopiezoelectric materials. The current drawback of PNTs is aggregation to form a PNT bundle structure du...
Article
Full-text available
The introduction of DNA, RNA, and proteins into plant cells has become important in plant science with the recent development of innovative technologies such as genome editing. As a new method for the delivery of such biomacromolecules, fusion peptides, which have multiple functional domains, have been developed. The functional domains include cell...
Article
Full-text available
Spider silk is a natural fiber with remarkable strength, toughness, and elasticity that is attracting attention as a biomaterial of the future. Golden orb-weaving spiders (Trichonephila clavata) construct large, strong webs using golden threads. To characterize the pigment of golden T. clavata dragline silk, we used liquid chromatography and mass s...
Article
Full-text available
Plant mitochondria move dynamically inside cells and this movement is classified into two types: directional movement, in which mitochondria travel long distances, and wiggling, in which mitochondria travel short distances. However, the underlying mechanisms and roles of both types of mitochondrial movement, especially wiggling, remain to be determ...
Article
In the genetic modification of plant cells, the mitochondrion is an important target in addition to the nucleus and plastid. However, gene delivery into the mitochondria of plant cells has yet to be established by conventional methods, such as particle bombardment, because of the small size and high mobility of mitochondria. To develop an efficient...
Article
Full-text available
Among gene delivery systems, peptide-based gene carriers have received significant attention because of their selectivity, biocompatibility, and biodegradability. Since cellular membranes function as a barrier toward exogenous molecules, cell-penetrating peptides (CPPs), which are usually cationic and/or amphiphilic, can serve as efficient carriers...
Article
Full-text available
The growth of lamellar crystals has been studied in particular for spherulites in polymeric materials. Even though such spherulitic structures and their growth are of crucial importance for the mechanical and optical properties of the resulting polymeric materials, several issues regarding the residual stress remain unresolved in the wider context...
Article
A polymer is used as a source of fertilizer. To demonstrate the viability of this concept, the chemical recycling of poly(isosorbide carbonate) (PIC) is presented as a model for the next generation of plastic-recycling systems.
Article
Full-text available
Direct delivery of enzymes into intact plants using cell-penetrating peptides (CPPs) is an attractive approach for modifying plant functions without genetic modification. However, by conventional methods, it is difficult to maintain the enzyme activity for a long time because of proteolysis of the enzymes under physiological conditions. Here, we de...
Article
Full-text available
Use of photosynthetic organisms is one of the sustainable ways to produce high-value products. Marine purple photosynthetic bacteria are one of the research focuses as microbial production hosts. Genetic transformation is indispensable as a biotechnology technique. However, only conjugation has been determined to be an applicable method for the tra...
Article
Full-text available
Spider silk fiber rapidly assembles from spidroin protein in soluble state via an incompletely understood mechanism. Here, we present an integrated model for silk formation that incorporates the effects of multiple chemical and physical gradients on the different spidroin functional domains. Central to the process is liquid-liquid phase separation...
Article
Full-text available
Biopolymers are driving the plastic industry to the next generation of environmentally friendly bioproducts, considering green chemistry principles and contemporary economic concepts, such as environmental, social, and governance (ESG) criteria. Hence, microbial biopolymers arise in this context. Resulting from a natural carbon and energy storage p...
Article
Full-text available
Spider dragline silk is well recognized due to its excellent mechanical properties. Dragline silk protein mainly consists of two proteins, namely, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). The MaSp N-terminal domain (NTD) conformation displays a strong dependence on ion and pH gradients, which is crucial for the sel...
Article
Plant cells contain groups of biomolecules that participate together in a particular biological process. Exogenous codelivery of multiple biomolecules is an essential step for elucidation of the biological significance of these molecules and enables various biotechnological applications in plants. However, the currently existing biomolecule deliver...
Article
Full-text available
Diphenyl acetylene derivatives containing various polymeric components have been designed as new Raman imaging probes. These are taken up by plant cells via different pathways, and the internalization of exogenous molecules can be visualized.
Article
Full-text available
Oligoproline-containing peptides, GPPG and GPPPG, were designed and developed for nanoparticle-based delivery platforms, and their degradation is triggered by reactive oxygen species (ROS). Peptides containing more than two consecutive proline residues were found to be cleavable in 1 mM of ROS generated by hydrogen peroxide in the presence of CuSO4...
Article
Full-text available
Photosynthetic microorganisms such as cyanobacteria, purple bacteria and microalgae have attracted great interest as promising platforms for economical and sustainable production of bioenergy, biochemicals, and biopolymers. Here, we demonstrate heterotrophic production of spider dragline silk proteins, major ampullate spidroins (MaSp), in a marine...
Article
Owing to their diverse functions and tunable physicochemical properties, peptides are promising alternatives to the conventional gene delivery tools that are available for plant systems. However, peptide-mediated gene delivery is limited by low transfection efficiency in plants because of the insufficient cytosolic translocation of DNA cargo. Here,...
Article
Full-text available
Almost all natural proteins are composed exclusively of L-amino acids, and this chirality influences their properties, functions, and selectivity. Proteases can recognize proteins composed of L-amino acids but display lower selectivity for their stereoisomers, D-amino acids. Taking this as an advantage, D-amino acids can be used to develop polypept...
Article
Cell-penetrating peptides (CPPs) have been widely utilized as efficient molecular tools for the delivery of bioactive cargoes such as peptides, proteins, and genetic material. However, to improve their versatility as tools in biological environments, the resistance of CPPs to enzymatic degradation and their structural stability must be improved to...
Article
Full-text available
Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a c...
Article
Kenaf, Hibiscus cannabinus, is a fiber-enriched plant belonging to Malvaceae and is an important fiber crop. The features of kenaf of being fast-growing and fiber-enriched suggest the potential for the use of kenaf in biomass and materials. Here, we modified procedures for regeneration from kenaf explants in order to establish efficient genetic mod...
Article
Full-text available
Although the physical and biological functions of the skin layer of spider dragline have been studied and partially clarified, the morphology and elemental contents of the skin layer of silk fibers have not been investigated in detail to date. Here, the surface of Nephila clavata spider dragline was evaluated by field emission scanning electron mic...
Article
Full-text available
Spider dragline silk fibers are important in nature for capturing prey and as a lifeline. However, spider silk is exposed to a range of humidity and deformation conditions, and it is important to understand what effect these have on its properties. Here, we simultaneously investigated the effect of a wide range of strain rates on the structural and...
Article
Full-text available
Serial femtosecond crystallography (SFX) has enabled determination of room temperature structures of proteins with minimum radiation damage. A highly viscous grease matrix acting as a crystal carrier for serial sample loading at a low flow rate of ~0.5 μl min⁻¹ was introduced into the beam path of X-ray free-electron laser. This matrix makes it pos...
Article
Full-text available
A polypeptide with a GlyHisGly repeating sequence containing zwitterionic structures that effectively interact with cellulose was synthesized by chemoenzymatic polymerization followed by postfunctionalization of the side chains of the His residues to afford imidazolium butyrate. The resulting zwitterionic polypeptide effectively dissociated bundles...
Article
Full-text available
Marine purple photosynthetic bacteria are ideal organisms for the production of useful materials at reduced costs and contributing to a sustainable society because they can utilize sunlight, seawater, and components of air, including carbon dioxide and nitrogen gases, for their growth. However, conjugation is the only applicable method for the tran...
Article
Full-text available
The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparatio...
Article
Full-text available
In article 1902064, Keiji Numata and co‐workers perform targeted gene delivery into various plastids of intact plants using peptide/plasmid DNA complexes that combine the functions of both a cell‐penetrating peptide and a chloroplast‐targeting peptide. This gene delivery technology will provide a useful tool to rapidly engineer plastids in crop spe...
Article
Full-text available
Polypeptides are used as building blocks that assemble into polymeric hierarchical architectures with various functionalities based on their amino acid sequences. Chemoenzymatic polymerization using a protease as a catalyst allows us to synthesize peptides with various primary structures in an environmentally benign way. In this work, we performed...
Article
Full-text available
Photosynthetic microorganisms can serve as the ideal hosts for the sustainable production of high-value compounds. Purple photosynthetic bacteria are typical anoxygenic photosynthetic microorganisms and are expected to be one of the suitable microorganisms for industrial production. Purple photosynthetic bacteria are reported to produce polyhydroxy...
Article
Full-text available
High stiffness and strength carbon fibres are commonly used to reinforce epoxy-resin composites. While wild Antheraea pernyi silk fibres exhibit high toughness originating from their α-helix/random coil conformation structures and their micro-fibre morphology, their insufficient strength and stiffness hinders them from being used in similar structu...
Article
Full-text available
Polypeptides containing periodic aromatic residues, 4-aminobenzoic acid (Abz), in their main chains were synthesized via papain-catalyzed chemoenzymatic polymerization of tripeptide ester monomers under moderate conditions in aqueous buffers. The secondary structures of the Abz-containing polypeptides were investigated by IR and wide-angle X-ray di...
Article
Full-text available
Direct protein delivery into intact plants remains a challenge for the agricultural and plant science fields. Cell-penetrating peptide (CPP)-mediated protein delivery requires the binding of CPPs to a protein to carry the protein into the cell through the cell wall and lipid bilayer. Thus, we prepared ionic complexes of a CPP-containing carrier pep...
Article
Full-text available
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters that a variety of microorganisms accumulate as carbon and energy storage molecules under starvation conditions in the presence of excess carbon. Anoxygenic photosynthetic bacteria exhibit a variety of growth styles and high PHA production activity. Here, we characterized PHA production by f...
Article
Natural silkworm silks have been applied to reinforce epoxy resin to achieve sub-ambient and impact toughness in the composite. However, the molecular interactions at the silk fibre-matrix interface of the composite are poorly understood. In this work, silk fibroin extracted from Bombyx mori silk is blended with an epoxy resin polymer system to stu...
Article
Chemoenzymatic peptide synthesis is an efficient and clean method to generate polypeptides for new applications in the fields of biomedical and functional materials. However, this enzyme-mediated synthesis is dependent on the reaction rate of the protease biocatalyst, which is essentially determined by the natural substrate specificity of the enzym...
Preprint
Full-text available
Efficient intracellular delivery of biomolecules is important for many different biological and biotechnological applications in living organisms, and is a prerequisite for certain types of fundamental and applied research. One major challenge is the delivery of unmodified, functional cargoes in a simple, time-efficient, and high-throughput manner....