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Abstract-

 

In this paper, the author has been examined how to obtain solutions of )1( +n dimensional time fractional

 

diffusion equations with initial conditions in the form of infinite fractional power series, in terms of Mittage Lefler function 
of one parameter and exact form by the use of iterative fractional Laplace transform method (IFLTM). The basic idea of 
the IFLTM

 

was developed successfully. To see its effectiveness and applicability, three test examples were presented. 
The closed solutions in the form of infinite fractional power series and in terms of Mittag-Leffler functions in one 
parameter, which rapidly converge to exact solutions, were successfully derived analytically by the use of iterative 
fractional Laplace transform method (IFLTM). Thus, the results show that the iterative fractional Laplace transform 
method works successfully in solving )1( +n dimensional time fractional diffusion equations in a direct way without using 
linearization, perturbation, discretization or restrictive assumptions, and hence it can be extended to other fractional 
differential equations.
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)1( +n

 

dimensional time fractional diffusion equations with initial conditions, caputo fractional 
derivatives, mittag-leffler function, iterative fractional laplace transform method. 

I.

 

Introduction

 

Fractional calculus theory is a mathematical analysis tool to the study of 
integrals and derivatives of arbitrary order, which unify and generalize the notations of 
integer-order differentiation and −n fold integration (El-Ajou, Arqub, Al-Zhour, & 
Momani, 2013; Millar & Ross, 1993; Oldham & Spanier, 1974; Podlubny, 1999). 

The L'Hopital’s letter raised the question “What does 
mx
xmf

∂
∂ )( mean if

2
1

=m ?" to 

Leibniz in 1695 is considered to be where the idea of fractional calculus

 

started(Diethelm, 2010; Hilfer, 2000; Lazarevic, et al., 2014; Millar & Ross, 1993; 
Kumar & Saxena, 2016). Since then, much works on this question and other related 
questions have done up to the middle of the 19th

 

century by many famous 
mathematicians such as Laplace, Fourier, Abel, Liouville, Riemann, Grunwald, Letnkov, 
Levy, Marchaud, Erdelyi and

 

Reiszand these works sum up leads to contributions

 

creating the field which is known today as fractional calculus(Oldham & Spanier, 1974). 

 

Even though fractional calculus is nearly as old as the standard calculus, it was 
only in recent few decades that its theory and applications have rapidly developed. It 
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was Ross who organized the first international conference on fractional calculus and its 
applications at the University of new Haven in June 1974, and edited the 
proceedings(Ross, 1975). Oldham and Spanier (1974) published the first monograph on 
fractional calculus in 1974. Next, because of the fact that  fractional derivatives and 
integrals are non-local operators and then this property make them a powerful 
instrument for the description of memory and hereditary properties of different 
substances(Podlubny, 1999),theory and applications of fractional calculus have 
attracted much interest and become a pulsating research area.  

Due to this, fractional calculus has got important applications in different fields 

of science, engineering and finance. For instance, Shanantu Das(2011) discussed that 
fractional calculusis applicable to problems in: fractance circuits, electrochemistry, 
capacitor theory, feedback control system, vibration damping system, diffusion process, 
electrical science, and material creep. Podlubny(1999)discussed that fractional calculus 

is applicable to problems in fitting experimental data, electric circuits, electro-analytical 
chemistry, fractional multi-poles, neurons and biology(Podlubny, 1999).Fractional 
calculus is also applicable to problems in: polymer science, polymer physics, biophysics, 
rheology, and thermodynamics(Hilfer, 2000). In addition, it is applicable to problems in: 

electrochemical process(Millar & Ross, 1993; Oldham & Spanier, 1974; Podlubny, 1999), 
control theory(David, Linarese, & Pallone, 2011; Podlubny, 1999), physics(Sabatier, 
Agrawal, & Machado, 2007), science and engineering(Kumar & Saxena, 2016), transport 
in semi-infinite medium(Oldham & Spanier, 1974), signal processing(Sheng, Chen, & 
Qiu, 2011), food science (Rahimy, 2010), food gums (David & Katayama, 2013), 
fractional dynamics(Tarsov, 2011; zaslavsky, 2005), modeling Cardiac tissue electrode 
interface(Magin, 2008), food engineering and econophysics  (David, Linarese, & Pallone, 
2011), complex dynamics in biological tissues(Margin, 2010), viscoelasticity(Dalir & 
Bashour, 2010; Mainardi, 2010; Podlubny, 1999; Rahimy, 2010; Sabatier, Agrawal, & 
Machado, 2007), modeling oscillation systems(Gomez-Aguilar, Yepez-Martinez, 
Calderon-Ramon, Cruz-Orduna, Escobar-Jimenez, & Olivares-Peregrino, 2015). Some of 
these mentioned applications were tried to be touched as follows. 

In the area of science and engineering, different applications of fractional calculus 
have been developed in the last two decades. For instance, fractional calculus was used 
in image processing, mortgage, biosciences, robotics, motion of fractional oscillator and 
analytical science(Kumar & Saxena, 2016). It was also used to generalize traditional 
classical inventory model to fractional inventory model (Das & Roy, 2014). 

In the area of electrochemical process, for example half-order derivatives and 
integrals proved to be more useful for the formulation of certain electrochemical 
problems than the classical models(Millar & Ross, 1993; Oldham & Spanier, 1974; 
Podlubny, 1999). 

In the area of viscoelasticity, the use of fractional calculus for modeling 

viscoelastic materials is well known. For viscoelastic materials the stress-strain 
constitutive relation can be more accurately described by introducing the fractional 
derivative(Carpinteri, Cornetti, & sapora, 2014; Dalir & Bashour, 2010; Duan, 2016; 
Koeller, 1984; Mainardi, 2010; Podlubny, 1999). 

Fractional derivatives, which are the one part of fractional calculus, are used to 
name derivatives of an arbitrary order(Podlubny, 1999). Recently, fractional derivatives 
have been successfully applied to describe (model) real world problems. 

In the area of physics, fractional kinetic equations of the diffusion, diffusion-
advection and Focker-Plank type are presented as a useful approach for the description 
of transport dynamics in complex systems that are governed by anomalous diffusion and 
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non-exponential relaxation patterns (Metzler & Klafter, 2000). Metzler and 
Klafter(2000)derived these fractional equations asymptotically from basic random walk 
models, and from a generalized master equation. They presented an integral 
transformation between the Brownian solution and its fractional counterparts. 
Moreover, a phase space model was presented to explain the genesis of fractional 
dynamics in trapping systems. These issues make the fractional equation approach 
powerful. Their work demonstrates that the fractional equations have come of age as a 
complementary tool in the description of anomalous transport processes. L.R. Da Silva, 
Tateishi, M.K. Lenzi, Lenzi and Da silva(2009)were also discussed  that solutions for a 
system governed by a non-Markovian Fokker Planck equation and subjected to a Comb 
structure were investigated by using the Green function approach. This structure 
consists of the axis of structure as the backbone and fingers which are attached 
perpendicular to the axis, and for this system, an arbitrary initial condition in the 
presence of time dependent diffusion coefficients and spatial fractional derivatives was 
considered and the connection to the anomalous diffusion was analyzed (L.R. Da Silva 
et al., 2009). 

In addition to these, the following are also other applications of fractional 
derivatives. Fractional derivatives in the sense of Caputo fractional derivatives were 
used in generalizing some theorems of classical power series to fractional power series 
(El-Ajou et al., 2013). Fractional derivative in the Caputo sense was used to introduce 
a general form of the generalized Taylor’s formula by generalizing some theorems 
related to the classical power series into fractional power series sense (El-Ajou, Abu 
Arqub, & Al-S, 2015). A definition of Caputo fractional derivative proposed on a finite 
interval in the fractional Sobolev spaces was investigated from the operator theoretic 
viewpoint(Gorenflo, Luchko, & Yamamoto, 2015). Particularly, some important 
equivalence of the norms related to the fractional integration and differentiation 
operators in the fractional Sobolev spaces are given and then applied for proving the 
maximal regularity of the solutions to some initial-boundary-value problems for the 
time-fractional diffusion equation with the Caputo derivative in the fractional Sobolev 
spaces(Gorenflo, Luchko, & Yamamoto, 2015).With the help of Caputo time-fractional 
derivative and  Riesz space-fractional derivative, the α -fractional diffusion equation, 
which is a special model for the two-dimensional anomalous diffusion, is deduced from 
the basic continuous time random walk equations in terms of a time- and space- 
fractional partial differential equation with the Caputo time-fractional derivative of 

order 
2
α

 
and the Riesz space-fractional derivative of orderα (Luchko, 2016). Fractional 

derivatives
 
were also used to describe HIV infection of TCD +4 with therapy effect (Zeid, 

Yousefi, & Kamyad, 2016). 

In the area of modeling oscillating systems, caputo and Caputo-Fabrizio 
fractional derivatives were used to present fractional differential equations which are 
generalization of the classical mass-spring-damper model, and these fractional 
differential equations are used to describe variety of systems which had not been 
addressed by the classical mass-spring-damper model due to the limitations of the 
classical calculus (Gomez-Aguilar et al., 2015).  

Podlubny(1999)stated that fractional differential equations are equations which 
contain fractional derivatives. These equations can be divided into two categories such 
as fractional ordinary differential equations and fractional partial differential equations. 
Fractional partial differential equations (PDES) are a type of differential equations 
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(DEs) that involving multivariable function and their fractional or fractional-integer 
partial derivatives with respect to those variables(Abu Arqub, El-Ajou, & Momani, 
2015). There are different examples of fractional partial  differential equations. Some of 
them are: the time-fractional Boussines q-type equation, the time-fractional )1 ,1 ,2(B -
type equation and the time-fractional Klein-Gordon-type equation stated in  Abu Arqub 
et al.(2015), and time fractional diffusion equation stated in  A.  Kumar, kumar and Yan 
(2017),  Cetinkaya and Kiymaz (2013), Kumar, Yildirim, Khan and Wei(2012) and so 
on. 

Recently, fractional differential equations have been successfully applied to 
describe (model) real world problems. For instance, the generalized wave equation, 
which contains fractional derivatives with respect to time in addition to the second-
order temporal and spatial derivatives, was used to model the viscoelastic case and the 
pure elastic case in a single equation(Wang, 2016).The time fractional Boussines q-type 
equations can be used to describe small oscillations of nonlinear beams, long waves over 
an even slope, shallow-water waves, shallow fluid layers, and nonlinear atomic chains; 
the time-fractional )1 ,1 ,2(B -type equations can be used to study optical solitons in the 

two cycle regime, density waves in traffic flow of two kinds of vehicles, and surface 
acoustic soliton in a system supporting love waves; the time fractional Klein-Gordon-
type equations can be applied to study complex group velocity and energy transport in 
absorbing media, short waves in nonlinear dispersive models, propagation of dislocations 
within crystals(As cited in Abu Arqub et al., 2015). As cited in Abu Arqub(2017), the 

time-fractional heat equation, which is derived from Fourier’s law and conservation of 
energy, is used in describing the distribution of heat or variation in temperature in a 
given region over time; the time-fractional cable equation, which is derived from the 
cable equation for electro diffusion in smooth homogeneous cylinders and occurred due 
to anomalous diffusion, is used in modeling the ion electro diffusion at the neurons; the 
time-fractional modified anomalous sub diffusion equation, which is derived from the 
neural cell adhesion molecules, is used for describing processes that become less 
anomalous as time progresses by the inclusion of a second fractional time derivative 
acting on the diffusion term; the time fractional reaction sub diffusion equation is used 
to describe many different areas of chemical reactions, such as exciton quenching, 
recombination of charge carriers or radiation defects in solids, and predator pray 

relationships in ecology; the time-fractional Fokker–Planck equation is used to describe 
many phenomena in plasma and polymer physics, population dynamics, neurosciences, 
nonlinear hydrodynamics, pattern formation, and psychology; the time-fractional 
Fisher’s equation  is used to describe the population growth models, whilst, the time 
fractional Newell–Whitehead equation is used to describe fluid dynamics model and 
capillary–gravity waves. The fractional differential equations, generalization of the 
classical mass-spring-damper models, are useful to understand the behavior of dynamical 
complex systems, mechanical vibrations, control theory, relaxation phenomena, 
viscoelasticity, viscoelastic damping and oscillatory processes (Gomez-Aguilar et al., 
2015).The space-time fractional diffusion equations on two time intervals was used in 
finance to model option pricing and the model was shown to be useful for option pricing 
during some temporally abnormal periods (Korbel & Luchko, 2016). The α -fractional 

diffusion equation for 20 <<α  describes the so called Levy flights that correspond to 
the continuous time random walk model, where both the mean waiting time and the 
jump length variance of the diffusing Particles are divergent(Luchko, 2016). Time 
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fractional diffusion equations in the Caputo sense with initial conditions are used to 
model cancer tumor(Iyiola & Zaman, 2014). 

Nonlinear diffusion equations play a great role to describe the density dynamics 
in a material undergoing diffusion in a dynamic system which includes different 
branches of science and technology. The classical and simplest diffusion equation which 
is used to model the free motion of the particle is: 

                 
               0A ,,()(),(

),(
2

2

>
∂
∂

−
∂
∂

=
∂

∂ txuxF
x

txu
x

A
t

txu
, 

where ),( txu  is the probability density function of finding a particle at the point x  in 

time instant t , )(xF is the external force, andA is a positive constant which depends on 
the temperature, the friction coefficient, the universal gas constant and  the Avogadro 
number (A.Kumaret al., 2017). 

Recently, the fractional differential equations have gained much attention of 
researchers due to the fact that they generate fractional Brownian motion which is 
generalization of Brownian motion(Podlubny, 1999). Das, Visha, Gupta and Saha 
Ray(2011) stated that time fractional diffusion equation, which is one of the fractional 
differential equations, is obtained from the classical diffusion equation in mathematical 
physics by replacing the first order time derivative by a fractional derivative of order α
where 10 <<α . Time fractional diffusion equation is an evolution equation that 
generates the fractional Brownian motion (FBM) which is a generalization of Brownian 
motion (Das, et al., 2011; Podlubny, 1999). Due to the fact that fractional derivative 
provides an excellent tool for describing memory and hereditary properties for various 
materials and processes(Caputo & Mainardi, 1971), the time fractional diffusion 
equations(A. Kumar et al., 2017; Cetinkaya & Kiymaz, 2013;Das, 2009; Kebede, 2018; 
Kumar et al., 2012 ) were extended to the form 

which is generalization of equation ( )1.1 , was considered in this study. Here, 






∂
∂

= − ),,,(),( 21
1 txxxu

t
JtxuD ntt ββ , and ( ),t, x, , xxuu n21= . 

The fractional derivative β
tD is considered in the Caputo sense which has the 

main advantage that the initial conditions for fractional differential equations with 
Caputo derivative take on the same form as for integer order differential equations 
(Caputo, 1967). Due to this, considerable works on fractional diffusion equations have 
already been done by different authors to obtain exact, approximate analytic and pure 
numerical solutions by using various developed methods. 

Recently, Adomian Decomposition Methodby Saha Ray and Bera in 2006 (As 
cited in Cetinkaya & Kiymaz, 2013; Kumar et al., 2012; Das, 2009), variational 
iteration method (Das, 2009), Homotopy Analysis Method(Das, et al., 2011), Laplace 
Transform Method (Kumaret al., 2012), Generalized Differential Transform 
Method(Cetinkaya & Kiymaz, 2013)and Residue fractional power series method 
(Kumaret. al., 2017), fractional reduced differential transform method (kebede, 
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2018)which have their own inbuilt deficiencies: the complexity and difficulty of solution 
procedure for calculation of adomain polynomials, the restrictions on the order of the 
nonlinearity term or even the form of the boundary conditions and uncontrollability of 
non-zero end conditions, unrestricted freedom to choose base function to approximate 
the linear and nonlinear problems, and complex computations respectively,  were used to 
obtain solutions of ( )11( + dimensional time fractional diffusion equations with initial 
conditions. To overcome these deficiencies,  the iterative fractional Laplace transform 

method(IFLTM)was preferably taken in this paper  to solve )1( +n  dimensional time 
fractional diffusion

 
equations with initial conditions of the form ( )a2.1

 
given that ( )b2.1

 analytically. 
 The iterative method was firstly introduced by Daftardar-Gejji and Jafari(2006) 

to solve numerically the nonlinear functional equations. By now, the iterative method 
has been used to solve many integer and fractional boundary value problem

 
( Daftardar-

Gejji & Bhalekar, 2010). Jafari et al.(2013) firstly solved the fractional partial 
differential equations by the use of iterative Laplace transform method (ILTM). More 
recently, Yan (2013), Sharma and Bairwa (2015), and

 
Sharma and Bairwa(2014)were 

used ILTM for solving Fractional Fokker-Planck equations, generalized time-fractional 
biological population model, and Fractional Heat and Wave-Like Equations respectively.

 
In this paper, the author has been examined how to obtain the solutions of )1( +n

 dimensional time fractional diffusion equations with initial conditions in the form 
infinite fractional power series, in terms of Mittage Lefler function of one parameter and 
exact form by the use of iterative fractional

 
Laplace transform method

 
(IFLTM). The 

basic idea of IFLTM was developed successfully. To see its effectiveness and 
applicability, three test examples were presented. Their closed solutions in the form of 
infinite fractional power series and in terms of Mittag-Leffler functions in

 
one parameter, 

which rapidly converge to exact solutions, were successfully derived by the use iterative 

fractional Laplace transform method (IFLTM). The results show that the iterative 
fractional Laplace transform method

 
works successfully in solving )1( +n dimensional time 

fractional diffusion equations

 

in a direct way without using linearization, perturbation, 
discretization or restrictive assumptions, and hence it can be extended to other 
fractional differential equations.

 This paper is organized as follows: in the next sections which is the methodology, 
which is the way the study was designed to go through, was discussed. In section 3, 
results and discussion which include: some definitions, properties and theorems of 
fractional calculus theory, the results which are is the basic idea of fractional Laplace 
transform method, application models  and discussion of application of the results 
obtained were presented. Finally, conclusions are presented in Section 4.

 
II.

 
Methodology
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In this paper, it was designed to set the theoretical foundation of the study to 
come to its objective. Next, it was designed to consider time fractional differential 
equations under initial conditions, which are )1( +n dimensional time fractional diffusion 
equations with initial conditions of the form: ( )a2.1 given that ( )b2.1 and then use 
analytical design to solve the manalytically by using iterative fractional Laplace 
transform method by following the next five procedures sequentially. First, it was 
designed to revisit some basic definitions and properties of fractional calculus and 
Laplace transform. Secondly, it was designed to develop basic idea of iterative fractional 

Laplace transform method for ( )a10.3 given that ( )b10.3 and then obtain a remark 3.2.2.1. 

Notes



  

 

  

  

 

 III.

 

Results

 

and Discussion

 

a)

 

Preliminaries and Notations

 

i.

 

Fractional Calculus

 

Here, some basic definitions and properties of fractional calculus and Laplace 
transform were revisited as follows to use them in this paper; see

 

(Kilbas,Srivastava, & 
Trujillo, 2006; Mainardi, 2010;  Podlubny, 1999; Millar & Ross, 1993). 

Definition 3.1.1.

 

A real valued function

 

0, ),,( >∈ tIRxtxu , is said to be in the space

 

IRC ∈µµ  , , if there exists a real number µ>q

 

such that

 

),()( 1 txutxu q= , where
)),0[(),(1 +∞×∈ IRCtxu and it is said to be in the space mCµ if ( ) INnCtxu m ∈∈  ,),( µ . 

Definition 3.1.2. The Riemann-Liouville fractional integral operator of order 0≥β

 

of a

 

function -1 ,),( >∈ µµCtxu is defined as 

 
( )3.1                                                    

0 ),,(

0,t0  ,),()(
)(

1
),( 0

1









=

><<−
Γ= ∫ −

β

βξξξξ
β

β
β

txu

dxux
txuJ

t

t

 

Consequently, for -1 ,)( ,)( ,,0, >∈∈∈≥ µβα µµ Cx,tuCx,tuIRC m , the operator β
tJ

has the following properties:

 

i.

 

)()()( x,tuJJx,tuJx,tuJJ ttttt
αββαβα == +

 
ii.

 

αα

α
tccJt 







+Γ

=
)1(

. 

iii.

 

αγγα

αγ
γ +









++Γ
+Γ

= ttJ t )1(
)1(

. 

The Riemann Liouville derivative has the disadvantage that it does not allow the 
utilization of initial and boundary conditions involving integer order derivatives when 
trying to model real world problems with fractional differential equations. To beat this 
disadvantage of Riemann Liouville derivative (Millar & Ross, 1993; Podlubny, 1999), 
Caputo proposed a modified fractional differentiation operator β

aD (Caputo & Mainardi, 
1971)to illustrate the theory of viscoelasticity as follows:
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Thirdly, it was designed to obtain closed solutions of ( )a2.1 given that ( )b2.1 in the form 

of infinite fractional power series by using the remark 3.2.2.1. Fourthly, it was designed 

to determine closed solutions equations of the form of ( )a2.1 given that ( )b2.1 in terms of 
Mittag-Leffler functions in one parameter from these infinite fractional power series.

Lastly, it was designed to obtain exact solutions of ( )a2.1 given that ( )b2.1 for the special 

case 1=α .

( ) ( )                                      0 ,)()(
)(

1)()( 1 ≥−
−Γ

== ∫ −−− βξξξ
β

βββ dfx
m

xfDJxfD m
x

a

mmm
aa 3.2

Notes



 

 

where   and  ,1  
1

mCfaxmm
−

∈><<− β . 

This Caputo fractional derivative allows the utilization of initial and boundary 
conditions involving integer order derivatives, which have clear physical interpretations 
of the real situations.
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The reader is kindly requested to go through (Kilbas, Srivastava, & Trujillo, 
2006; Mainardi, 2010)

 

in order to know more details about the mathematical properties 
of fractional derivatives and fractional integrals, including their types and history, their 
motivation for use, their characteristics, and their applications.
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b) Main Results

i. Some basic definitions of fractional calculus and Laplace Transform 
Here, some definitions of fractional calculus and Laplace transform, one theorem 

and basic idea of iterative fractional Laplace transform method were developed and 
introduced.

Definition 3.2.1: A real valued ( )1+n dimensional function ),,,( 21 txxxu n , where 

0,),,( 21 >∈ tIRxxx n
n is said to be in the space IRC ∈µµ , , if there exists a real number 
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ii. Basic idea of Iterative fractional Laplace transform method
The basic idea of this method is illustrated as follows.

Step 1. Consider a general ( )1+n dimensional time fractional non-linear non 

homogeneous partial differential equation with initial conditions of the form:

( )
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where
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r xxxgu = , ),,,,( 21 txxxuD nt β is the Caputo 

fractional derivative of the function, L

 

is the linear operator, N

 

is general nonlinear 

operator and ),,,,( 21 txxxf n

 

is the source term respectively.

 

Step2.

 

Now apply fractional Laplace transform method to ( )a10.3

 

given that ( )b10.3 . as 

follows. 
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Applying the Laplace transform denoted by L

 

in equation ( )a10.3 , we obtain: 
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Taking inverse Laplace transform of equation ( )12.3 , we get: 

 

[ ] [ ] ( )   3.13                                                                                                          
1

 

1 11
1

0

1




 +−
















+= −−−

−

=

− ∑ NuRuL
S

LfLsu
S

Lu r
r

r

r
β

β
β

 

Step3.

 

Now we apply the iterative method

 

to ( )13.3 as follows.
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be the solution of ( )a10.3

 

and has the infinite series form
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v. Now from Equation ( )17.3 , we define recurrence relations as follows:
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Continuing with this procedure, we get
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Therefore the thi term approximate solution of Equation ( )a10.3 given that ( )b10.3
in

 

series form is given by
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Step4.

 

The infinite power series form solution of ( )a10.3 given that ( )b10.3

 

as INp∈

 

approaches ∞ , is obtained from Equation ( )23.3 and it is given as Equation ( )14.3 .

 

Step5.
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in term of Mittag Leffler function of one 
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iii. Applications
To validate (show) the simplicity, effectiveness and applicability of iterative 

fractional Laplace transform method (IFLTM) for determining closed solutions of )1( +n
dimensional time fractional diffusion equations of the form ( )a2.1 given that ( )b2.1 in
infinite fractional power series form, in terms of Mittag-Leffler functions in one 
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parameter

 

and exact form, three

 

application examples were considered and solved as 
follows. 
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(A.Kumar et al., 2017; Cetinkaya & Kiymaz, 2013; Kebede, 2018; Kumar et al., 
2012),consider the initial value problem: 
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By
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were computed as they were shown below by tables 3.1and 3.2 by considering the th5
order approximate solution, { }1 ,75.0 ,5.0 ,25.0,,, 
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without loss of generality.

 

Table 3.1:
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order

 

using IFLTM
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50.0

 

356235.7

 

253027.2

 

544978.0

 

000276.0

 

75.0

 

75.0

 

356235.7

 

253027.2

 

544978.0

 

000276.0

 

75.0

 

00.1

 

356235.7

 

253027.2

 

544978.0

 

000276.0

 

00.1

 

25.0

 

108369.8

 

660339.2

 

591061.0

 

001615.0

 

00.1

 

50.0

 

108369.8

 

660339.2

 

591061.0

 

001615.0

 

00.1

 

75.0

 

108369.8

 

660339.2

 

591061.0

 

001615.0

 

00.1

 

00.1

 

108369.8

 

660339.2

 

591061.0

 

001615.0

 

Table 3.2: Absolute error of approximating the solution of Equation(3.27a) given that 
Equation (3.27b) to 6th

 

order

 

using IFLTM

 

Variables Absolute error, ( ) ),(~),( 1616 txutxuuE exact −=

 

t

 

1x

 

25.0=α

 

50.0=α

  

1=α

 

25.0

 

25.0

 

915278.4

 

194657.1

  

810249937.1 −×

 

25.0

 

50.0

 

915278.4

 

194657.1

  

810249937.1 −×

 

25.0

 

75.0

 

915278.4

 

194657.1

  

810249937.1 −×

 

25.0

 

00.1

 

915278.4

 

194657.1

  

810249937.1 −×

 

50.0

 

25.0

 

494771.6

 

791466.1

  

610652645.1 −×

 

50.0

 

50.0

 

494771.6

 

791466.1

  

610652645.1 −×

 

50.0

 

75.0

 

494771.6

 

791466.1

  

610652645.1 −×

 

50.0

 

00.1

 

494771.6

 

791466.1

  

610652645.1 −×

 

75.0

 

25.0

 

681970.7

 

32334.2

  

510919142.2 −×

 

75.0

 

50.0

 

681970.7

 

32334.2

  

510919142.2 −×
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75.0=α
047116.0
047116.0
047116.0
047116.0
087453.0
087453.0
087453.0
087453.0
126940.0
126940.0

75.0 75.0 681970.7 32334.2 126940.0 510919142.2 −×
75.0 00.1 681970.7 32334.2 126940.0 510919142.2 −×

Notes



      

      
00.1

 

25.0

 

609871.8

 

827005.2

 

595306.0

 

000226.0

 
00.1

 

50.0

 

609871.8

 

827005.2

 

595306.0

 

000226.0

 
00.1

 

75.0

 

609871.8

 

827005.2

 

595306.0

 

000226.0

 
00.1

 

00.1

 

609871.8

 

827005.2

 

595306.0

 

000226.0

 Example 3.2.3.2.

 

Taking

 

1 ,),( 2121 =−−= λxxxxF , )  , ,( 21 txxuu =

 

and choosing 

2121 ),( xxxxf += ,

 

in Equation ( )a2.1 ,

 

consider the initial value problem: 

 

( )

( )







+=

≤<>>>+







∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

 3.37b                                                                            )0 ,,( condition  initial  Subject to

                               10 0, t,0 ,0 , )(

2121

2121
21

2
2

2

2
1

2

xxxxu

xxuxx
xxx

u
x

u
t
u ββ

β

 

Since 1 ,),( 2121 =−−= λxxxxF and 2121 ),( xxxxf +=

 By Equation ( )24.3 :

 

[ ] ( )[ ] ( )
 

1     1    )0 , ,( 1)  , ,( 2121
110

21
110

21
01

210 xxxx
S

Lsxx
S

Lsxxu
S

Ltxxu +=



 +×=



 +=



= −−−−−−− β

β
β

β

    
( )   3.38                                                                                                                                 )  ,,()  ,,( 21210210 xxtxxutxxu +==

 By Equation ( )25.3 : 

( ) ( )[ ]    )(11)  ,,(( 2121
11

212
2

2

2
1

2
1

211

































+×−−








∂
∂

+
∂
∂

−+








∂
∂

+
∂
∂

×= − xxxx
xx

 xx 
xx

 L
S

Ltxxu β
 

[ ] [ ] ( )
)1(

3
 3311  331)  ,,(( 21

21
1

21
1

211 +Γ
+

=



 +××=



 += −−

β

β

ββ

txx
xx

sS
LxxL

S
Ltxxu  

( ) ( )3.39                                         0 0, ,0 ,10   ,
)1(
 3),,( 21

21
211 >>>≤<

+Γ
+

= txxtxxtxxu β
β

β  

By Equation ( )26.3 :

 

 For ,1=p ( ) ( )    uuuxF
x

uuu
x

DL
S

 Lu β
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∂
∂

= −
0101

1
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1

2
1

2 )(1
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)1(
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  311),,( 21

21
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21
21

21
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2
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2
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∂
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∂
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×= − xxtxxxxxx
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 L
S
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( ) 3.37a                                                                            

( ) ( )
)12(

 3)(31  
)1(

 31),,(
2

21
2

1
21

2
121

2
1

212 +Γ
+

=






 +
×=
















+Γ
+

= +
−−

ββ

β

ββ

β

β

txx
s

xx
S

LtxxL
S

Ltxxu
        

Notes



( )3.40                                                    0 0, ,0 ,10   ,
)12(

)(3),,( 21

2
21

2

212 >>>≤<
+Γ

+
= txxtxxtxxu β

β

β

 

Continuing with this process, we obtain that:

 

( )3.41            ,1321 ,0  ,0  ,0  ,10   ,
)1(
)(3),,(),,( 21

21
21121 INP,P, , , itxx

i
txxtxxutxxu

ii

pi ∈+=>>>≤<
+Γ

+
== + β

β

β

 

The thi order approximate solution of Equation

 

( )a37.3

 

given that ( )b37.3 , 

denoted by ),,(~
21 txxui

 

is given by:

 

( )3.42                                                  0 0, ,0 ,10 , 
)1(
)(3),,(~

21

1

0

21
21 >>>≤<

+Γ
+

=∑
+

=

txx
i

txxtxxu
p

i

ii

i β
β

β

 

By letting INp∈

 

to

 

∞

 

or

 

taking limit of both sides of Equation

 

( )

 

3.33 as
∞→∈ INp , the closed solution of Equation ( )3.27a

 

in the form of infinite fractional 

power series denoted by ),,( 21 txxu is:

 

( )3.43                                                  0 0, ,0 ,10 , 
)1(
)(3),,( 21

0

21
21 >>>≤<

+Γ
+

=∑
∞

=

txx
i

txxtxxu
i

ii

β
β

β

 

Thus, by using Equation ( )

 

3.4 in Equation ( )

 

3.43 , the closed solution of Equation

( )3.37a

 

in

 

terms of Mittag-Leffler function

 

of one parameter is given by:

 

( ) ( )3.44                                                    0 0, ,0 ,10 ,3)(),,( 212121 >>>≤<+= txxtExxtxxu ββ
β

 

Lastly, the exact solution of equation ( )3.37a

 

, ),,( 21 txxuexact

 

can be obtained from 

Equation ( )3.27

 

as

 

β approaches to 1from left and it is given by

 

( )3.45                                                        0 0, ,0 1, ,)( ),,( 21
3

2121 >>>=+= txxexxtxxu t
exact β

 

In order to show the agreement between the exact solution, equation ( )45.3

 

and 

the thi order approximate solution, equation ( )42.3 of equation ( )3.37a

 

given that equation

( )b.373 , the absolute errors: ( ) ),,(~),,( 214214 txxutxxuuE exact −=

 

and

( ) ),,(~),,( 215215 txxutxxuuE exact −= were computed as they were shown below by tables 3.3 

and 3.4 by considering the rd4 order approximate solutions,







∈

+Γ
+

= ∑
=

1 ,
3
2 ,

3
1,,,, 

)1(
)(3),,(~

21

4

0

21
214 β

β

β

txx
i

txxtxxu
i

ii

and the th5 order approximate solutions,
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∈

+Γ
+

= ∑
=

1 ,
3
2 ,

3
1,,,, 

)1(
)(3),,(~

21

5

0

21
215 β

β

β

txx
i

txxtxxu
i

ii

of equation ( )3.37a given that equation

( )3.37b without loss of generality.

Notes



 

   

Table 3.3:

 

Absolute error of approximating the solution of Equation(3.37a) given that 
Equation(3.37b) to4thorderusing IFLTM

 

Variables Absolute error, ( ) ),,(~),,( 214214 txxutxxuuE exact −=

 

t

 

1x

 

2x

 
  

 3
1

 

3
1

 

3
1

 

084832.20

 

803182.2

 

031324.0

 
3
1

 

3
2

 

3
2

 

169667.40

 

606364.5

 

062648.0

 
 

093972.0

 

3
1

 

1

 

1

 

254500.60

 

409546.8

 3
2

 

3
1

 

3
1

 

182782.41

 

875512.5

 

654432.0

 3
2

 

3
2

 

3
2

 

365564.82

 

751027.11

 

308864.1

 3
2

 

1

 

1

 

548346.123

 

626554.17

 

963296.1

 
1

 

3
1

 

3
1

 

516178.59

 

990026.16

 

473692.2

 

1

 

3
2

 

3
2

 

032359.119

 

980055.33

 

947384.4

 

1

 

1

 

1

 

548536.178

 

970084.50

 

421074.7

 
 

Table 3.4:

 

Absolute error of approximating the solution of Equation(3.37a) given that 
Equation (3.37b) to 5th

 

order

 

using IFLTM

 

Variables Absolute error, ( ) ),,(~),,( 215215 txxutxxuuE exact −=

 

t

 

1x

 

2x

   
 3

1

 

3
1

 

3
1

 

36.532842

 

25242.3

 

025768.0

 3
1

 

3
2

 

3
2

 

06569.73

 

504837.6

 

051536.0

 
 

077304.0

 

3
1

 

1

 

1

 

598534.109

 

757256.9

 3
2

 

3
1

 

3
1

 

535262.97

 

539632.11

 

476655.0
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3
2

3
2

3
2

070521.195 079261.23 95331.0

3
2 1 1 60578.292 618892.34 429965.1

Notes

3
1

=α
3
2

=α 1=α

3
1

=α
3
2

=α 1=α



   
   

 
     

1

 

3
1

 

3
1

 

187744.167

 

483632.34

 

123692.1

 

1

 

3
2

 

3
2

 

375491.334

 

967261.68

 

247384.2

 

1

 

1

 

1

 

563236.501

 

450892.103

 

371074.3

 
      

 

Example 3.2.2.3.

 

Taking

 

1 ,),,( 321
321 == −−− λxxxexxxF , and )  ,, ,( 221 txxxuu =

 

in

 

( )a2.1 and 

choosing 321)( xxxexf ++= in equation ( )b2.1 ,

 

we have the initial value problem: 

 

( )

( )






=

>>≤<
∂
∂

−
∂
∂

=
∂
∂

++

−−−

3.47b                                                                                                                 )0,(

                                                              0 ,0 ,10),(

321

321
2

2

xxx

xxx

exu

txue
xx

u
t
u ββ

β

 
Since 321),,( 321

xxxexxxF −−−= and 321)( xxxexf ++= , 

 

By

 

Equation ( )24.3 :

 

[ ] ( )[ ] ( )

 

1     1    )0 ,, ,( 1)  ,, ,( 321321321 110110
321

01
3210

xxxxxxxxx ee
S

Lse
S
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S
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 ×=



=



= β

β
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( )  3.48                                                                                                                                )  ,,( 321
3210

xxxetxxxu ++=

 

By Equation ( )25.3 :
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LeeeL
S
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( )3.49                                     0 0, 0, ,0 ,10   ,
)1(
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>>>>≤<
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=
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xxx

β
β

β

 

By Equation ( )26.3 : 
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3.47a

Notes



( )
)12(

 331  
)1(

 31),,,(
2 2

1

2
1

2
1

3212

321321321

+Γ
×

=






 ×
×=
















+Γ

=
++

+

++
−

++
−

ββ

β

ββ

β

β

te
s
e

S
LteL

S
Ltxxxu

xxxxxxxxx

( )3.50                            0  0, 0, ,0 ,10   ,
)12(

3),,,( 321

22

3212

321

>>>>≤<
+Γ

×
=

++

txxxtetxxxu
xxx

β
β

β  

Continuing with this process, we obtain that:
 

( )  3.51            ,1321  ,0  ,0  ,0   ,0   ,10   ,
)1(

3),,,(),,,( 321

 

  

3211321

321

INP,P, , , itxxx
i

tetxxxutxxxu
ixxxi

pi ∈+=>>>>≤<
+Γ

×
==

++

+ β
β

β

.
 

Then the
 

thi order approximate solution of Equation ( )a47.3 given that ( )b47.3 , 
denoted by ),,,(~

321 txxxui  is given by: 

( )3.52                             0 0,  ,0   ,0 ,10 , 
)1(

3),,,(~
321

1

0

 
  

321

321

>>>>≤<
+Γ

=∑
+

=

++

txxx
i

tetxxxu
p

i

ixxxi

i β
β

β  

By
 

letting INp∈  to∞ or
 

taking limit of both sides of Equation ( ) 3.52 as
∞→∈ INp , the closed solution of Equation ( )3.47a 

in the form of infinite fractional 

power series denoted by ),,,( 321 txxxu is: 

( )                                                 0 0,  ,0   ,0 ,10 , 
)1(

3),,,( 321
0

 
  

321

321

>>>>≤<
+Γ

=∑
∞

=

++

txxx
i

tetxxxu
i

ixxxi

β
β

β

 

Thus, by using Equation ( ) 3.4 in Equation ( ) 3.53 , the closed solution of Equation

( )3.47a in terms of Mittag-Leffler function of one parameter is given by: 

           

( ) ( )3.54                              0 0,  ,0   ,0 ,10 ,3),,,( 321 
  

321
321 >>>>≤<= ++ txxxtEetxxxu xxx ββ

β  

Lastly, the exact solution of Equation ( )3.47a , ),,,( 321 txxxuexact  can be obtained 

from Equation ( )3.54 as β approaches to 1from left and it is given by 

( )3.55                                      0 0,  ,0   ,0 1, , ),,,( 321
3   

321
321 >>>>== ++ txxxeetxxxu txxx

exact β  

In order to show the agreement between the exact solution, Equation ( )55.3  and 

the thi order approximate solution, Equation ( )52.3 of Equation ( )3.47a given that ( )3.47b , 

the absolute errors: ( ) ),,,(~),,,( 32143214 txxxutxxxuuE exact −=  
and ( ) ),,,(~),,,( 32153215 txxxutxxxuuE exact −=

 

were computed as shown below by tables3.5 and3.6 by considering the th4 order 

approximate solutions, 






∈

+Γ
= ∑

=

++

1 ,
3
2 ,

3
1,,,,, 

)1(
3),,,(~

321

4

0

   

3214

321

β
β

β

txxx
i

tetxxxu
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ixxxi

 
and the th5  

order approximate solutions, 
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+Γ
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=
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3
2 ,

3
1,,,,, 

)1(
3),,,(~

321

5

0

   

3215

321

β
β

β

txxx
k

tetxxxu
i

kxxxi
of 

Equation ( )3.47a given that ( )3.47b  without loss of generality. 
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3.53

Notes



Table 3.5: Absolute error of approximating the solution of Equation(3.47a) given that (3.47b) 
to 4th  order  using IFLTM  

Variables Absolute error, ( ) ),,,(~),,,( 32143214 txxxutxxxuuE exact −=  

t
 

1x 2x  3x  

3
1

=α  
3
2

=α  1=α
 

3
1
 3

1
 3

1
 3

1
 894351.81

 
11429758

 
027033.0

 

3
1
 

3
2
 

3
2
 

3
2
 611942.222

 
570542.30

 
073517.0

 
 

199811.0
 

3
1
 

1 1 1 
121992.605

 
455123.84

 

3
2
 

3
1
 3

1
 3

1
 919612.167

 
956946.23

 
446234.8

 

3
2
 

3
2
 

3
2
 

3
2
 45283.456

 
121748.65

 
479623.11

 

3
2
 

1 1 1 767433.1240  01926.177  803233.20  

1
 

3
1
 3

1
 3

1
 672618.242

 
275518.69

 
086288.10

 

1 
3
2
 

3
2
 

3
2
 652584.659  310399.188  417373.27  

1 1 1 1 121606.1793  880752.511  528128.74  

Table 3.6:
 

Absolute error of approximating the solution of Equation(3.47a)given that(3.47b) 
to 5thorder using IFLTM

 

Variables Absolute error, ( ) ),,,(~),,,( 32153215 txxxutxxxuuE exact −=
 

t

 

1x
 

2x
 

3x
 

3
1

=α
 

3
2

=α
 

1=α

 

3
1 

3
1 

3
1 

3
1 

148.959841

 

261491.13

 

165307.0

 

3
1 

3
2 

3
2 

3
2 

914862.404

 

048454.36

 

449334.0

 
 

221402.1

 

3
1 1

 
1
 

1
 

672701.1100

 

989863.97

 

3
2 

3
1 

3
1 

3
1 692495.397

 

051958.47

 

446234.8

 

3
2 

3
2 

3
2 

3
2 040267.1081

 

900466.127

 

479623.11

 

3
2 1

 

1
 

1
 

572099.2938

 

669517.347

 

803233.20
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Notes



1
 

3
1 

3
1 

3
1 69511.681

 
604345.140
 

581767.4
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Here, the results obtained from the three application examples considered above 

are discussed. Through the  three examples above, the iterative fractional Laplace 
transform method (IFLTM)was successfully applied to the time fractional diffusion 

equations, that is, Equation ( )a2.1 given that ( )b2.1 , for 11)( xxF −= with initial conditions

1)( 1 =xf , 2121 ),( xxxxF −−=
 
with initial conditions

 2121 ),( xxxxf += , 321),,( 321
xxxexxxF −−−=
 with initial conditions 321),,( 321

xxxexxxf ++= , 1=λ
 

and
 

10 ≤< β .
 As a result, through example one, the closed solutions of Equation ( )a2.1 given 

that ( )b2.1 in the form of infinite fractional power series and in terms of Mittag-Leffler 

function in one parameter as well as its exact solution were

 

obtained and they are in 
complete agreement with the results obtained by

 

Cetinkaya and Kiymaz(2013), 

kebede(2018), Kumar et al.(2012)and A. Kumar et al.(2017). For 
2
1

=β

 

with

 

)( 1xF ,λ

 and )( 1xf

 

specified in example one above, the closed solutions of equation ( )a2.1 given
 that ( )b2.1 in the form of infinite fractional power series and in terms of Mittag-Leffler 

function in one parameter as well as

 

their

 

exact solution, which were obtained by 

IFLTM, are in complete agreement with the results obtained by

 

kebede(2018)and S. 
Das (2009).

 

From the application of IFLTM to Equation ( )a2.1 given that ( )b2.1 through the 
second and third examples above, where 2121 ),( xxxxF −−= with initial condition

2121 ),( xxxxf += , 321),,( 321
xxxexxxF −−−= with initial condition 321),,( 321

xxxexxxf ++= and

10 ≤< β ,

 

the

 

closed solutions in the form of infinite fractional power series and in 

terms of Mittag-Leffler function in one parameter as well as exact solution

 

were

 

obtained.

 
   

 

 

 

  
  

( )
( )
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exact
; { } ( ]1,01 ,75.0 ,5.0 ,25.0 ⊆∈∀β ,
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Without loss of generality the 5th and 6th order approximate solutions of Equation

( ) { } { } { }1,75.0,5.0,25.0  ,1,75.0,5.0,25.01,75.0,5.0,25.0),(;27.3 1 ∈∀×∈∀ βtxa , and the 4rd and 5thorder

 approximate solutions of Equations: ( )a37.3 and ( )a47.3






×







×







∈∀ 1,

3
2,

3
11,

3
2,

3
11,

3
2,

3
1),,,( 21 txx

and






×







×







×







∈∀ 1,

3
2,

3
11,

3
2,

3
11,

3
2,

3
11,

3
2,

3
1),,,,( 321 txxx respectively were considered to compute 

absolute errors in this paper. The validity, accuracy and convergence of the IFLTM was 
checked through the computed absolute errors:

Notes
c) Disscusion

( )
( )





−=

−=

),,(~),,(

),,(~),,(

215215

214214

txxutxxuuE

txxutxxuuE

exact

exact
; ( ]1,01 ,

3
2 ,

3
1

⊆






∈∀β  ,



 
( )
( )





−=

−=

),,,(~),,,(

),,,(~),,,(

32153215

32143214

txxxutxxxuuE

txxxutxxxuuE

exact

exact
; ( ]1,01 ,

3
2 ,

3
1

⊆






∈∀β , 

where

 

,t)(xu 15

 

is

 

the 5th

 

order approximate solutions,

 

,t)(xu 16

 

is the 6th

 

order approximate 

solutions and

 

,t)(xuexact 1

 

is the exact solutions of example one;

 

,t)x(xu 214 , is the 4th

 

order 

approximate solutions, ,t)x(xu 215 ,

 

is the 5th

 

order approximate solutions and ,t)x(xuexact 21,
is the exact solution

 

of example two; ,t)xx(xu 3214 ,, is the 4th

 

order approximate solutions, 

,t)xx(xu 3215 ,,

 

is the 5th

 

order approximate solutions and ,t)xx(xuexact 321 ,,

 

is the exact 

solution of example three.

 

From observation made through tables 3.1 to 3.6,

 

the 
absolute errors: (u)E5 and (u)E6 decrease as { }1 ,75.0 ,5.0 ,25.0∈β

 

increases from 0.25 to 1; 

(u)E4

 

and (u)E5

 

decrease as






∈ 1 ,

3
2

 

,
3
1β increases from 

3
1 to 1. These imply that the 5th

 

order approximate solutions and the 6th

 

order approximate solutions of Equation 
(3.27a)converge to their exact solution as { }1 ,75.0 ,5.0 ,25.0∈β

 

increases

 

from 0.25 to 1; the 

4th

 

order approximate solutions and the 5th

 

order approximate solutions of 

Equations(3.37a)and (3.47a)converge to their exact solutions as






∈ 1 ,

3
2

 

,
3
1β

 

increases from 

3
1

 

to 1. It was also observed that

 

(u)E(u)E 65 >

 

for each { } { }1 ,75.0 ,5.0 ,25.01 ,75.0 ,5.0 ,25.0),( 1 ×∈tx

and

 

for each { }1

 

,75.0 ,5.0 ,25.0∈β

 

throughout tables: 3.1 and 3.2; (u)E(u)E 54 >

 

for each

 







×







×







∈ 1 ,

3
2

 

,
3
11 ,

3
2 ,

3
11 ,

3
2 ,

3
1),,,( 21 txx

 

and for each

 







∈ 1 ,

3
2

 

,
3
1β

 

throughout tables: 3.3 and 3.4; 

(u)E(u)E 54 >

 

for each






×







×







×







∈ 1 ,

3
2

 

,
3
11 ,

3
2 ,

3
11 ,

3
2 ,

3
11 ,

3
2 ,

3
1),,,,( 321 txxx

 

and for each






∈ 1 ,

3
2

 

,
3
1β

 

throughout tables: 3.5 and 3.6.

 

These show that

 

the validity, accuracy and convergence of the fractional power 

series solutions of equations ( )a27.3 , ( )a37.3 and ( )a47.3 can be improved by calculating 

more term in the series solutions by using the present method, IFLTM.

 

iv.

 

Conclusion

 

In this study, basic idea of iterative fractional Laplace transform method 

(IFLTM) for

 

solving ( )1+n

 

dimensional time fractional diffusion equations with initial 

conditions of the form ( )a2.1 given that ( )b2.1 was developed. The IFLTM

 

was applied to 

three ( )1+n

 

dimensional time fractional diffusion equations with initial conditions to 

obtain their closed solutions in the form of infinite fractional power series and

 

in terms 
of Mittag-Leffler functions in one parameter

 

which rapidly converge to exact

 

solutions. 
The closed solutions in the form of infinite fractional power series and in terms of 
Mittag-Leffler functions in one parameter, which rapidly converge to exact solutions, 
were successfully derived by the use of iterative fractional Laplace transform method 
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(IFLTM). The results evaluated for the first time fractional diffusion equations is in a 
good agreement with the one already existing in the literature. Precisely, IFLTM works 
successfully in solving time fractional diffusion equations with initial conditions to 

Notes

obtain their closed solutions in the form of infinite fractional power series and in terms 
of Mittag-Leffler function in on parameter as well as exact solutions with a minimum 
size of calculations.



 
 

 

Thus, we can conclude that the IFLTM used in solving time fractional diffusion 
equations with initial conditions

 

can be extended to solve other fractional partial 
differential equations with initial conditions which can arise in fields of sciences. 
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