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Abstract

Purpose: The outcome of patients with advanced hepatocellular carcinoma (HCC) has remained
unsatisfactory. Patients with HCC suffer from chronic hepatitis or liver cirthosis, and their reserve liver
function is often limited.

Experimental Design: To develop new therapeutic agents that act specifically on HCC but interfere
only minimally with residual liver function, we searched for genes that were upregulated in 20 cases of
HCC [namely, discovery sets 1 (n = 10) and 2 (n = 10)] in comparison with corresponding nontumorous
liver and a panel representing normal organs using high-density microarrays capable of detecting all
exons in the human genome.

Results: Eleven transcripts whose expression was significantly increased in HCC were subjected to siRNA-
based secondary screening of genes required for HCC cell proliferation as well as quantitative reverse
transcription-PCR analysis [validation sets 1 (n = 20) and 2 (n = 44)] and immunohistochemistry
(n =19). We finally extracted four genes, AKR1B10, HCAP-G, RRM2, and TPX2, as candidate therapeutic
targets for HCC. siRNA-mediated knockdown of these candidate genes inhibited the proliferation of HCC
cells and the growth of HCC xenografts transplanted into immunodeficient mice.

Conclusions: The four genes we identified were highly expressed in HCC, and HCC cells are highly
dependent on these genes for proliferation. Although many important genes must have been over-
looked, the selected genes were biologically relevant. The combination of genome-wide expression
and functional screening described here is a rapid and comprehensive approach that could be
applied in the identification of therapeutic targets in any type of human malignancy. Clin Cancer Res;

2518

16(9); 2518-28. ©2010 AACR.

Liver cancer is the fifth most common human cancer
worldwide and the third most common cause of cancer
mortality. Hepatocellular carcinoma (HCC) is the most
common histologic subtype of liver cancer and is highly
endemic in Southeast Asia and sub-Saharan Africa (1).
HCC develops mainly in liver affected by chronic hepatitis
or cirrhosis caused by persistent infection with hepatitis B
or C virus; however, the precise molecular mechanisms
that drive the transition from the background liver condi-
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tions to cancer are largely unknown. Liver resection,
ethanol injection, radiofrequency ablation, and chemoem-
bolization have been used successfully for the local
management of HCC; however, no single cytotoxic che-
motherapeutic agent has been proven effective for the sys-
temic treatment of HCC; thus, the outcome for patients
with locally advanced, multicentric, and/or metastatic
HCC who are not eligible for these local treatments has
remained unsatisfactory.

An increasing number of therapeutic agents targeting mo-
lecular components essential for cancer cell growth have be-
gun to be incorporated into oncological practice: Imatinib,
which blocks the Bcr-Abl fusion kinase of chronic myeloid
leukemia (CML), is currently the first-line therapy for CML
(2). The epidermal growth factor receptor inhibitors gefiti-
nib and erlotinib have been used in the treatment of ad-
vanced non-small cell lung cancer (3). Recently, it was
shown in a phase III study that sorafenib (BAY 43-9006),
a multikinase inhibitor, significantly improved the overall
survival of patients with advanced HCC (4, 5), and, conse-
quently, sorafenib has since been approved for the treat-
ment of patients with unresectable HCC by the American
Food and Drug Administration. However, most patients en-
rolled in those studies retained relatively well-compensated
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Translational Relevance

Liver cancer is the fifth most common human cancer
worldwide and the third most common cause of can-
cer mortality. Recently, a multikinase inhibitor, sorafe-
nib, has been approved as a systemic chemotherapeutic
drug for advanced hepatocellular carcinoma (HCC);
however, further improvement seems to be necessary.
To identify an “Achilles heel” of HCC cells and develop
new therapeutic agents that act specifically on HCC but
interfere only minimally with residual liver function,
we performed an unbiased survey of the whole ge-
nome. We finally identified four genes as candidates.
siRNA-mediated knockdown of these candidate genes
inhibited the proliferation of HCC cells and the growth
of HCC xenografts transplanted into immunodeficient
mice, confirming their feasibility as therapy targets.

liver function. In reality, the reserve liver function of HCC
patients is often limited due to underlying liver conditions.
Therefore, the safety and tolerability of sorafenib remain to
be determined in HCC patients with compromised liver
function. Therapeutic targeting molecules other than pro-
tein kinases have also been developed against various
tumors of other organs (6-8). To identify a molecule essen-
tial for HCC cell growth and develop new therapeutic
agents that would act specifically on HCC and only mini-
mally interfere with residual liver function, a survey of the
whole genome would be necessary.

In this study, we adopted a combined functional ap-
proach. We first searched for genes that were upregu-
lated in HCC in comparison with the background
nontumorous liver tissue. This was followed by siRNA-
based screening of genes required for HCC cell prolifer-
ation. Recently, whole-genome RNA interference
(RNAi)-based functional screening has been reported
to successfully identify genes that sensitize lung cancer
cells to a chemotherapeutic drug and genes required
for proliferation and survival of several cancer cell lines;
however, in those studies, the expressional specificity of
the identified targets was not taken into consideration
(9-12). Here, we report the identification of possible
therapeutic target molecules of HCC through a combi-
nation of genome-wide expression and functional
screening.

Materials and Methods

Patients and microarray analysis. Samples of HCC and
surrounding nontumorous liver tissue were collected from
84 patients who underwent liver resection for HCC at the
National Cancer Center Hospital (Tokyo, Japan) with in-
formed consent. The clinical and histologic data for these
patients are summarized in Supplementary Table S1. Total

RNA of normal human organs was obtained from a
commercial source (FirstChoice Human Total RNA Survey
Panel, Ambion).

One microgram of total RNA was converted to end-
labeled cRNA using a Whole Transcript Sense Target Label-
ing kit (Affymetrix). The fluorescent cRNA probes were
hybridized to Human Exon 1.0 ST arrays (Affymetrix), as
instructed by the supplier. Data analysis was carried out
using the ArrayAssist software package (version 5.5.1,
Stratagene). A GC content-based background correction
followed by quantile normalization was done with an
exonRMA algorithm available in the package. Multiple exo-
nic expression data were also summarized into a single va-
lue using the same algorithm, as instructed by the supplier
(http://www stratagene.com/manuals/ArrayAssist.pdf).

The protocol of this study was reviewed and approved
by the ethics committee of the National Cancer Center
(Tokyo, Japan).

Cell lines. Three human cell lines derived from HCC
were used in this study. KIM-1 was kindly provided by
Dr. Masamichi Kojiro (Kurume University, Kurume,
Japan). Hep3B was obtained from the Cell Resource Center
for Biomedical Research, Tohoku University (Sendai,
Japan). HLE was obtained from the Health Science
Research Resources Bank (Osaka, Japan). KIM-1 and Hep3B
were maintained in RPMI 1640 (Invitrogen) supplemented
with 10% fetal bovine serum. HLE was maintained in Dul-
becco's modified Eagle's medium (Invitrogen) supplemen-
ted with 10% fetal bovine serum.

siRNA-based functional screening. The day before siRNA
transfection, cells were seeded at 5 x 10° per well in
96-well plates to obtain 50% to 60% confluency. They
were then transfected with siRNA using Lipofectamine
2000 (Invitrogen) at a concentration of 10, 20, or
50 nmol/L in KIM1, Hep3B, or HLE cells, respectively.
Three days later, the relative proportion of living cells
was assessed using a Premix WST-1 Cell Proliferation
Assay System (Takara Bio) in accordance with the manu-
facturer's instructions. The siRNA was synthesized by
Ambion, and the identification (ID) numbers of siRNAs
used in this study are listed in Supplementary Table S4.
Silencer Negative Control #1 siRNA (Ambion) was used
as a nontargeting control. siRNA targeting TOP2A was
described previously (13).

Real-time PCR. First-strand cDNA was synthesized
from 1 pg of total RNA using SuperScript reverse tran-
scriptase (Invitrogen). Real-time PCR was done as de-
scribed previously (14). Primers and probes sets were
obtained from Applied Biosystems, and their Assay IDs
are provided in Supplementary Table S5. The amplifica-
tion reaction was done according to the manufacturer's
instructions (95°C for 10 minutes followed by 40 cycles
of 95°C for 15 seconds, 50°C for 2 minutes, and 60°C
for 1 minute).

Immunohistochemistry and immunoblot analysis. Anti-
AKR1B10 (clone 1A6) and anti-HCAP-G (clone 4B1)
monoclonal antibodies were purchased from Abnova.
Anti-RRM2 antibody (E-16) was purchased from Santa
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Fig. 1. Genes differentially expressed between HCC and nontumorous liver. A, hierarchical clustering of 124 genes whose expression differed significantly
(P < 0.001 and >3-fold change) between HCC and adjacent nontumorous liver. Transcriptional signal intensity is shown as a heat map. Red indicates
higher signals, whereas blue indicates lower signals. Arrows indicate eight genes selected for validation by real-time PCR (B). B, validation of the microarray
data by real-time RT-PCR. The expression levels of eight representative genes whose expression differed significantly between adjacent nontumorous
liver (left) and HCC (right) were validated by real-time RT-PCR (shown in arbitrary units). Significant correlation between array (discovery set 1) and
real-time RT-PCR data was confirmed by calculating correlation coefficient values in eight randomly selected genes (indicated by arrows in A): C7, 0.96;
COLEC10, 0.97; CRHBP, 0.98; HAMP, 0.98; CCNA2, 0.82; RGS5, 0.80; AKR1B10, 0.98; ANLA, 0.92. The significance of differential expression
between HCC and adjacent nontumorous liver tissue was assessed using a permutation paired t test, and Bonferroni-corrected P values are provided.
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Cruz Biotechnology. Anti-TPX2 antibody was purchased
from Novus Biologicals.

Formalin-fixed and paraffin-embedded liver tissues
containing HCC were obtained from the National Cancer
Center Hospital, and stained as described previously
(15, 16). Immunoblot analysis of the KIM-1 cell lysate
was done as described previously (15).

Animal experiments. Eight million KIM-1 cells suspended
in 0.1 mL of PBS were s.c. inoculated into the flanks of
5-week-old female BALB/c nu/nu nude mice (SLC). Eight

days later, the tumor-bearing mice were treated with siRNA
together with atelocollagen (Koken Co., Ltd.), as described
previously (17, 18). The final concentration of siRNA and
atelocollagen was 11 pmol/L and 0.5%, respectively, and
200 pL of the siRNA solution were injected directly into each
tumor. Tumor volume was determined every 3 days using
the formula V = 1/2 (A x B*), where A and B represent the
largest and smallest dimensions of the tumor, respectively.

Animal experiments were reviewed by the institutional
ethics committee and performed in compliance with the
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Fig. 3. Validation of differential expression. A, mMRNA expression levels of selected genes in 20 independent pairs of HCC (21-40T) and adjacent
nontumorous liver tissue (21-40N; validation set 1) determined by real-time PCR (left). The expression levels in HCC were realigned according to histologic
differentiation (right). W, well differentiated; W to M, well to moderately differentiated; M, moderately differentiated; M to P, moderately to poorly

differentiated, P, poorly differentiated.

guidelines for Laboratory Animal Research of the National
Cancer Center Research Institute (Tokyo, Japan).
Statistical analysis. To extract differentially expressed
genes from the array data, a paired ¢ test with no correction
was done (19) with asymptotic distribution to determine
the P value. Correlations between array data and real-time
PCR measurements were assessed using the Pearson

correlation coefficient. The significance of differential gene
expression between HCC and adjacent nontumorous
liver tissue was assessed using the permutation paired ¢ test
followed by Bonferroni correction.

The weights and volumes of tumors are given as means
(+SE). To evaluate the chronological effect of siRNAs on the
growth of xenografts in comparison with control siRNA,
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Fig. 3. Continued. B, expression levels of mRNAs for selected genes in 44 independent pairs of HCC (41-84T) and adjacent nontumorous liver tissue

(41-84N; validation set 2) determined by real-time PCR.

a generalized linear mixed-effects model was used (20). The
volume of the xenograft was modeled using y-error distribu-
tion and log link function. This model considers each siRNA
treatment as a fixed effect with control siRNA as an in-
tercept and the number of days after implantation as a
random effect. Estimates of variance components were
obtained using the Laplacian approximation method,
and the model fit was assessed using deviances. The sig-
nificance of effects was estimated from the degree of free-
dom and ¢ statistics followed by Bonferroni correction.
Analysis was done using the Imer function for fitting
generalized linear mixed-effects models, in the R statisti-
cal software package (version 2.6.0).

Results

Exon-based array analysis of HCC. Twenty paired
samples of HCC and adjacent nontumorous liver tissue
were subjected to genome-wide expression analysis using

two different batches of the GeneChip Human Exon 1.0 ST
arrays [discovery sets 1 (10 pairs) and 2 (10 pairs)]. Statis-
tical analysis was done separately, and genes expressed dif-
ferentially in the two sets were selected to eliminate any
experimental bias caused by batch-to-batch variations.
The exon array can detect mRNAs with low abundance as
well as alternatively polyadenylated and spliced mRNA
because the probes are designed to hybridize with the
entire sequences of the transcripts (21). We identified
124 annotated genes that were differentially expressed
between the background (nontumorous) liver tissue and
HCC [at least a 3-fold change in transcription signal; P <
0.001 (paired t test with no correction)] in discovery set
1 (Supplementary Tables S2 and S3). The genes were
clustered according to the similarity of their expression
profiles (Fig. 1A), and the differential expression of repre-
sentative genes was confirmed by real-time PCR (Fig. 1B).
It was noteworthy that although 103 genes were found to
be significantly downregulated, only 21 were apparently
upregulated.
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We selected 9 genes (AKR1B10, ANLN, CCNBI,
HIST1H3B, HIST1IH3C, HIST1H31, RRM2, TOP2A, and
TPX2) whose expression was upregulated in HCC (=3-fold
change in transcription signal; P < 0.001, ¢ test) in both
discovery sets 1 and 2. Furthermore, two additional genes
(HCAP-G and DEPDC1) were selected using a different
criterion (>2.5-fold change across all of the 20 cases in
discovery sets 1 and 2, and a raw signal of <50 in all 20
of the nontumorous liver tissues; P < 0.05, t test).

RNAi-based screening of genes required for HCC cell
proliferation. To identify genes that are essential for
HCC cell proliferation, siRNA-based screening was done
for the 11 genes that were upregulated in HCC. Two or
three constructs of siRNA were designed for each gene.
Relative cell viability was evaluated by the mitochondrial
succinate-tetrazolium reductase activity-based assay
3 days after transfection (Fig. 2A). We selected five
genes (TPX2, RRM2, HCAP-G, HIST1H3I, and AKR1B10)
based on the criterion that at least two siRNAs per
gene reproducibly suppressed cell proliferation by
>20% in all of three cell lines (KIM-1, Hep3B, and
HLE). Representative data are shown in Fig. 2A and B.
The baseline expression of these genes was determined
in the three cell lines by real-time reverse transcription-
PCR (RT-PCR; Fig. 2C). We confirmed the cell proliferation-
inhibitory activity of the siRNA by counting the numbers
of cells (Fig. 2D).

Validation of differential gene expression in additional
cases of HCC. The increased expression of the five genes
selected using the siRNA-based screen was validated in
20 cases of HCC (validation set 1) by real-time PCR
(Fig. 3A). The expression of all five genes was confirmed
to be increased in HCC. The expression of TPX2, RRM2,
HCAP-G, and HIST1H3 was associated with loss of histo-
logic differentiation (Fig. 3A, right). The expression of
AKR1B10 was upregulated in HCC regardless of differentia-
tion. We further confirmed the differential expression of
these genes between HCC and nontumorous liver tissues
in 44 additional independent cases of HCC (validation
set 2) by real-time PCR (Fig. 3B).

In the 18 normal organs examined, no significant
expression of TPX2, RRM2, or HCAP-G was observed,
except for the thymus (Fig. 4, left), which is largely invo-
luted in nonjuvenile adults. No organs showed higher
expression of AKR1B10 than was the case in HCC. We
did not select HIST1H3I, as this gene showed high
expression in several vital organs (Fig. 4).

Protein expression analysis. Expression of the products of
four candidate genes, TPX2, HCAP-G, RRM2, and AKR1B10,
was examined immunohistochemically in 19 independent
cases of HCC (Fig. 5). In 84% (16 of 19) of the cases,
AKR1B10 protein was detected in the cancer but was
hardly evident in the adjacent nontumorous liver tissue.
The nuclear staining of HCAP-G and TPX2 was stronger
in HCC than in the adjacent nontumorous liver in 42%
(8 of 19) and 58% (11 of 19) of cases, respectively. Patchy
staining of RRM2 was observed in 84% (16 of 19) of
the HCCs.

Inhibition of tumor growth in vivo. Finally, we per-
formed an in vivo experiment to evaluate the feasibility
of the four selected genes as therapeutic targets. siRNA
against AKR1B10, HCAP-G, RRM2, and TPX2 mixed with
atelocollagen was injected into tumors (31.5 + 1.9 mm?)
established by xenografting KIM-1 cells into the flank of
nude mice (Fig. 6). Atelocollagen forms a complex with
siRNA, thus enhancing its stability and allowing sus-
tained release of siRNA in vivo (17, 18). The silencing
of the target genes by each relevant siRNA was confirmed
by real-time PCR (Fig. 6A). Treatments with siRNA
against AKR1B10, HCAP-G, RRM2, or TPX2 given twice,
1 week apart, significantly suppressed tumor growth (Fig.
6B; Supplementary Table S6), and the growth-inhibitory
effects of siRNA were confirmed by weighing the excised
tumors (Fig. 6C).

Discussion

There is now strong epidemiologic evidence that persis-
tent infection with hepatitis B or C virus is a major cause of
HCC. However, the precise molecular mechanism behind
the development of HCC is still unclear. Mutation in the
tumor suppressor gene TP53 is most frequently observed
in HCC associated with aflatoxin B exposure as well as
chronic infection with hepatitis B and C viruses (22-24);
however, it seems to be a late event during multistep
carcinogenesis (22). Deregulation of the Wnt as well as
other signaling pathways has been reported in HCC (22,
25). Therefore, a therapeutic method that can normalize
these aberrantly activated oncogenic signals would be clin-
ically valuable. In an attempt to discover therapeutic tar-
gets with high specificity for HCC, we searched for genes
that are specifically upregulated in HCC in comparison
with nontumorous liver tissue and normal vital organs us-
ing high-density microarrays designed to detect all the
exons in the human genome (Figs. 1 and 4). This was fol-
lowed by siRNA-based screening of genes required for
HCC cell proliferation (Fig. 2) as well as quantitative RT-
PCR analysis and immunohistochemistry of additional
cases (Figs. 3 and 5). We finally identified four candidate
genes and confirmed their functional involvement in the tu-
mor growth of HCC xenografts (Fig. 6). These genes,
AKR1B10, HCAP-G, RRM2, and TPX2, were expressed
strongly and specifically in HCC, which is highly dependent
on these genes for proliferation, and their feasibility as
therapy targets also seems to be supported by the literature.

RRM2 is a subunit of ribonucleotide reductase that cata-
lyzes the conversion of ribonucleoside 5’-diphosphates
into their corresponding 2’-deoxyribonucleotides. Because
this reaction is the rate-limiting step of DNA synthesis, and
inhibition of ribonucleotide reductase stops DNA synthe-
sis and cell proliferation, RRM2 has been considered a
promising target for cancer therapy (26).

TPX2 (C200RF1) is a microtubule-associated protein
whose expression is restricted to the S, G,, and M phases
of the cell cycle. Suppression of TPX2 expression by RNAi
causes defects in microtubule organization during mitosis,
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leading to the formation of two microtubule asters that do
not form a spindle (27). TPX2 is necessary for maintaining
aurora A kinase in an active conformation (28, 29). Aurora
kinases are essential for the regulation of chromosome

reported to be overexpressed in a wide range of human
tumors. Several aurora kinase inhibitors, such as VX-680/
MK-0457, have been showed to have anticancer effects
in vitro and in vivo (30, 31). The binding of TPX2 modu-
lates the conformation of aurora A and reduces its affinity

segregation and cytokinesis during mitosis and have been
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Fig. 4. Expression in normal organs. Expression levels of mRNAs for selected genes in 10 pairs of HCC (1-10T) and adjacent nontumorous liver tissue
(1-10N; discovery set 1) and 18 normal organs determined by Human Exon 1.0 ST arrays (shown in arbitrary units). The significance of differential
expression between HCC and adjacent nontumorous liver tissue was assessed using permutation paired t test, and Bonferroni-corrected P values

are provided. S. muscle, skeletal muscle; S. intestine, small intestine.
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for VX-680 (32). Inhibition of TPX2 may increase the effi-
cacy of this class of aurora kinase inhibitors.

HCAP-G is a component of the condensin complex that
organizes the coiling topology of individual chromatids.
Condensin also contributes to mitosis-specific chromo-
some compaction and is required for proper chromosome
segregation, although the functional significance of HCAP-
G in the condensing complex is largely unknown (33, 34).

AKR1B10 (ARL1, aldose reductase-like 1) was origi-
nally isolated as a new member of the aldo-keto reductase

superfamily overexpressed in HCC and is reportedly related
to the histologic differentiation of HCC (35, 36). AKR1B10
was also overexpressed in squamous cell carcinoma of the
lung and its precursor conditions (37). Because the expres-
sion of AKR1B10 was highly specific to HCC and its
inhibition suppressed tumor growth (Fig. 6), chemicals
that specifically inhibit AKR1B10 activity may be useful
anticancer drugs with minimal side effects.

It cannot be denied that many important genes were
probably overlooked at every step of the present screen,

AKR1B10

250—
150—
100—

r—

15—
10—

KIM-1

Fig. 5. Protein expression in HCC. Hematoxylin and eosin (HE) staining (original magnification, x 100) and immunoperoxidase staining (original
magnifications, x 100 and x 400) of AKR1B10, HCAP-G, RRM2, and TPX2 proteins in HCC and adjacent nontumorous liver tissue. The specificity of
antibodies was determined by immunoblotting of the KIM-1 cell lysate (left). N, nontumorous liver.
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Fig. 6. Suppression of tumor
growth by siRNA. A, KIM-1 cells
were s.c. inoculated into the flanks
of nude mice. Eight days later,
control siRNA or siRNA against
AKR1B10, HCAP-G, RRM2, or
TPX2 was injected into the
developed tumors. The tumors
were excised 2 days after the
injection, and the expression levels
of the indicated genes were
determined by real-time PCR.
Values of control siRNA were

set at 1. B, chronological
changes in tumor volume after
two injections of the indicated
siRNA. Volume of tumors was
determined every 3 days as
described in Materials and
Methods. **, significantly different
with a Bonferroni-corrected

P value of <0.001. *,

significantly different with a
Bonferroni-corrected P value of
0.012. C, weight (mean + SE in mg)
of xenografts measured 18 days
after the second injection of the
indicated siRNA and controls.

D, macroscopic appearance of
xenografts injected with control
siRNA (top) and siRNA against
TPX2 (bottom).

although the four selected genes seem to be highly relevant
from a biological viewpoint. HCC has been recognized as a
single category of disease; however, the overall gene expres-
sion patterns seem to differ markedly among individual
cases. A search for the genes responsible for the different
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clinical outcomes of HCC will be the subject of a future

study. We used the cell proliferation assay for siRNA-based

functional screening. However, the use of other assays capa-
ble of evaluating cell motility, migration, drug sensitivity, or

No potential conflicts of interest were disclosed.

cell death may help to identify genes differing in their bio-
logical significance. The combination of genome-wide ex-
pression and functional screening described here provides a
rapid and comprehensive approach that could be applicable
for studies of various aspects of human cancer.
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