Hindawi Publishing Corporation

The Scientific World Journal

Volume 2013, Article ID 896056, 10 pages
http://dx.doi.org/10.1155/2013/896056

Research Article

A Hierarchical Method for Removal of Baseline Drift from
Biomedical Signals: Application in ECG Analysis

Yurong Luo,' Rosalyn H. Hargraves,” Ashwin Belle,' Ou Bai,> Xuguang Qi,"
Kevin R. Ward,* Michael Paul Pfaffenberger,' and Kayvan Najarian'

! Department of Computer Science, School of Engineering, Virginia Commonwealth University, 401 West Main Street,

Richmond, VA 23284, USA

2 Department of Electrical and Computer Engineering, School of Engineering, Virginia Commonwealth University,

401 West Main Street, Richmond, VA 23284, USA

3 Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 401 West Main Street,

Richmond, VA 23284, USA

* Department of Emergency Medicine and Michigan Critical Injury and Illness Research Center, University of Michigan,

Ann Arbor, M1 48109, USA

Correspondence should be addressed to Ashwin Belle; bellea@vcu.edu

Received 12 February 2013; Accepted 9 April 2013

Academic Editors: G. Koch, J. Ma, and V. Positano

Copyright © 2013 Yurong Luo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Noise can compromise the extraction of some fundamental and important features from biomedical signals and hence prohibit
accurate analysis of these signals. Baseline wander in electrocardiogram (ECG) signals is one such example, which can be caused by
factors such as respiration, variations in electrode impedance, and excessive body movements. Unless baseline wander is effectively
removed, the accuracy of any feature extracted from the ECG, such as timing and duration of the ST-segment, is compromised. This
paper approaches this filtering task from a novel standpoint by assuming that the ECG baseline wander comes from an independent
and unknown source. The technique utilizes a hierarchical method including a blind source separation (BSS) step, in particular
independent component analysis, to eliminate the effect of the baseline wander. We examine the specifics of the components causing
the baseline wander and the factors that affect the separation process. Experimental results reveal the superiority of the proposed

algorithm in removing the baseline wander.

1. Introduction

The electrocardiogram (ECG) is an important physiological
signal that helps determine the state of the cardiovascular
system; however, this signal is often corrupted by interfering
noise. Baseline wander is a commonly seen noise in ECG
recordings and can be caused by respiration, changes in
electrode impedance, and motion. Baseline wander can
mask important information from the ECG, and if it is not
properly removed, crucial diagnostic information contained
in the ECG will be lost or corrupted. Therefore, it is vital
to effectively eliminate baseline wander before any further
processing of ECG such as feature extraction.

The simplest method of baseline wander (drift) removal is
the use of a high-pass filter that blocks the drift and passes all

main components of ECG though the filter. The main com-
ponents of ECG include the P-wave, QRS-complex, and T-
wave. Specifically, the PR-Segment, ST-Segment, PR-Interval,
and QT-Interval are considered as the main segments of the
ECG. Each of these intervals/segments has its corresponding
frequency components, and according to the American
Health Association (AHA), the lowest frequency component
in the ECG signal is at about 0.05 Hz [1]. However, a complete
baseline removal requires that the cut-off frequency of the
high-pass filter be set higher than the lowest frequency in the
ECG; otherwise some of the baseline drift will pass through
the filter. The frequency of the baseline wander high-pass
filter is usually set slightly below 0.5 Hz. Therefore, knowing
that the actual ECG signal has components between 0.05 Hz
and 0.5 Hz, the forementioned simple approach for baseline
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removal distorts and deforms the ECG signal. In particu-
lar, it affects the ST-segment that has very low frequency
components. Furthermore, ectopic beats occurring in the
ECG during the course of different types of diseases and
injuries change the frequency spectrum of both the baseline
wander and the ECG waveforms. All the above-mentioned
characteristics demand a more comprehensive approach that
works for a wider range of applications and avoids distorting
the main ECG waves when removing the baseline drift.

Digital filters are commonly employed method to elimi-
nate baseline wander. Cut-oft frequency and phase response
characteristics are two main factors considered in the major-
ity of these designs. The use of linear phase filters prevents the
issue of phase distortion [2]. For finite impulse response (FIR)
filters, it is rather straightforward to achieve linear phase
response directly. Feed-forward and feed-back technologies
such as infinite impulse response (IIR) filters can also provide
minimum phase distortion [3]. In all of these methods, the
cut-off frequency should be chosen so that the information
in the ECG signals remains undistorted while the baseline
wander is removed, which results in a trade-off. Usually, the
cut-off frequency is set according to the slowest detected
(or assumed) heart rate. However, if there are ectopic beats
in the ECG signal, it is even more difficult to find this
particular frequency. It is a prevalent phenomenon that the
overlap between the baseline wander and low frequency
components of the ECG compromises the accuracy of the
extracted features.

Time-variant filters are designed to increase flexibility in
the adjustment and control of the cut-off frequency. In such
methods, the cut-off frequency of the filter is controlled by
the low frequency characteristics of the ECG signal [4]. Cubic
spline curve fitting [5], linear spline curve fitting [6], and
nonlinear spline curve fitting [7] belong to another family of
filters that remove the baseline wander but often require some
reference points. For instance, the linear spline curve fitting
method [5] forms a subsignal of the ECG for a single cardiac
cycle starting 60 ms before the P-wave and ending 60 ms after
the T-wave and fits a first order polynomial to this sub-signal
after subtracting the mean of sub-signal. Multirate system
wavelet transform has also been utilized for the ECG baseline
wander removal. The approach using wavelet adaptive filter
(WAF) [8] consists of two steps. First, a wavelet transform
decomposes the ECG signal into seven frequency bands. The
second step is an adaptive filter that uses the signal of the
seventh lowest frequency band as the primary input and a
constant as a reference unit for filtering. Another multi-rate
system, empirical mode decomposition (EMD) [9], has also
been adopted to eliminate the baseline wander. Compared
with the wavelet technique that uses some predefined basis
functions to represent a signal, EMD relies on a fully data-
driven mechanism; that is, EMD does not require any a-priori
known basis.

Adaptive filters as a cascade structure [10] have also been
used for this application. The first step of this approach uses
an adaptive notch filter to eliminate the DC component of
the ECG. The second step forms a comb filter assuming that
the signal is an event-related signal. Blind source separation
(BSS), in particular independent component analysis (ICA)
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[11-13], is another choice to remove the baseline wander.
As a specific type of BSS method, ICA has been extensively
used in biomedical signals [14-16], such as the ECG and the
EEG. It has been used as an effective method to decom-
pose multichannel signals into fundamental components.
As many more applications of ICA are being recognized,
newer variations of ICA are being introduced. Standard ICA
[17] (sICA) is a technique that is used to estimate source
signals when several mixtures of signals are available. Both
the source signals and the mixing process are unknown, and
the sources are estimated only on the assumption that they
are statistically independent. Comparing the formulation of
the standard ICA, convolutive ICA (fICA) deems that the
finite impulse response is closely associated with the mixing
process, and the mixing process can be considered as a
weighted and delayed mixture of sources [18, 19]. Fast and
robust fixed-point ICA [20] is produced based on the idea
that it is feasible to use contrast function to approximate
negentropy. Through a fixed-point algorithm, the contrast
function is maximized to extract latent sources with high
speed. Temporally constrained ICA [21, 22] is a more flexible
model to separate latent sources. By using prior knowledge or
additional constraints, the targeted latent source is extracted.
Moreover, there are many other forms of ICA for different
applications such as topographic independent component
analysis [23] and spatial and temporal independent compo-
nent analysis [24].

In summary, the traditional methods are limited in either
frequency delineation or reference choice, and the case of BBS
in applications mentioned previously does not give sufficient
evidence in noise removal. Based on these points of view, in
the proposed method, a unified method utilizing an adaptive
notch filter and BSS is used for baseline drift removal. Specif-
ically, multichannel signals are constructed using a single-
channel signal, and ICA is applied to the ECG. The main
contributions of our work lie in combining the capabilities
of adaptive filters and BSS, expanding the capabilities of the
independent components for this application by customizing
the ICA method towards the removal of the ECG baseline
wander. Furthermore, the factors affecting the performance
of the separation process are explored and improved in this
paper.

The rest of the paper is organized as follows. The overall
structure of the proposed method is illustrated in Section 2.
The adaptive notch filter, as employed in the paper, is
described in Section 3. The concepts and formulation of the
ICA, the fast and robust fixed-point ICA, and the customized
form are introduced in Section 4. Section 5 introduces the
process of detecting the components that cause the baseline
wander and verifies this process. This section also explores
the factors that affect the separation of the results. Finally,
Section 6 concludes the paper.

2. Method

Figure 1 shows the framework of the proposed method. As it
can be seen in Figure 1, the first step of the proposed method
is an adaptive notch filter, designed to form subsignals of
the ECG, as described later. Next, as shown in Figure 1,
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FIGURE 1: Schematic diagram of proposed method.
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the proposed method utilizes ICA to remove the baseline
drift. Considering the noisy nature of the typical raw ECG
signal, in this study, subsignals in low frequencies of the ECG
are formed and these filtered signals are, then, formed by
an adaptive notch filter, then used as the input to the ICA
algorithm. Moreover, with regard to the inputs fed to the ICA
algorithm, in this study, only a single-channel ECG signal is
available. Therefore, knowing that ICA requires multichannel
signals to process as its input, in order to use ICA to remove
baseline wander, one needs to build multichannel signals
from the single-channel ECG. In order to address this issue
in the proposed method, a systematic process was created in
which delayed versions of the ECG are stacked to form the
multi-channel signal. In addition, as shown in Figure 1, the
independent component formed by the ICA as the output,
which is originally labeled as the baseline wander, needs
to be further adjusted to form a better estimate of the
baseline wander. This is due to the fact that, while one of the
components resembles the baseline drift, it is unlikely that any
of the original components detected by the ICA is “purely” the
baseline wander.

The specific steps shown in Figure 1 are further described
below.

(a) Form sub-signals of ECG using an adaptive notch
filter: as shown in Figure 1, the adaptive notch filter
[25, 26] is designed and customized to form the sub-
signal. The reason for using the adaptive notch filter
is its flexibility as well as its relatively superior per-
formance compared with other filters. As mentioned
above, applying the ICA algorithm on a sub-signal
of the ECG has the advantage of reducing the errors

coming from multi-channel signals in estimating the
baseline wander.

(b) Construct multi-channel signals: applying ICA re-
quires that the signals are multi-channel ones. How-
ever, in many ECG processing applications only the
single-channel ECG signal is available and/or pro-
cessed. The proposed method applies the method-
ology in [11] to construct multi-channel signals by
delaying the single-channel signal. In our study, the
multi-channel signals are constructed using sixty
signals, which are delayed 10 sample points (~83 ms)
of the original signal in succession.

(c) Adjust the baseline wander extracted by ICA: the
baseline wander extracted by ICA is an approxima-
tion of the true baseline wander because (1) there
will be some errors in the resulting component due
to the fact that the estimation process used in the
ICA (in particular in the first few attempts) may be
nonoptimal; (2) in the ICA analysis there may be
more than one maximum in the estimation function
and, therefore, the true baseline wander may not be
located accurately; (3) the constructed multi-channel
signals cannot convey all information about the base-
line wander and, as such, the proposed process may
alleviate the issues associated with the non-optimal
construction of multi-channel signals. The 10-sample
shift of the signals provides large enough variations
between the multisignal component to alleviate the
issues concerning dependencies for ICA processing.

3. Adaptive Notch Filter

The adaptive notch filter [26] is based on the same theoretical
foundations as adaptive noise cancellation [25]. There are
two inputs in the structure of the adaptive noise cancelling.
One is the primary input, containing the signal and the
noise and the other one is the reference input, which is
the reference signal related to the noise in the primary
input. Using least mean square (LMS) criterion, the reference
signal is gradually approached to the noise in the primary
input. When the stability is achieved, the output is acquired
through subtracting the reference input from the primary
input. This type of filter can deal with inputs that are
deterministic or stochastic, stationary or time-variant. If the
inputs are stationary stochastic, the solution of the adaptive
noise cancelling approaches closely Wiener filter [25]. As to
the adaptive notch filter, the reference signal is the signal
with one- or multifixed frequencies, which are treated as the
frequencies to be excluded.

The advantages of adaptive notch filters lie in the fol-
lowing aspects: (1) if the frequency of the interference is not
precisely known or the interference drifts in the frequency,
the exact excluded frequency could be measured/adapted
during the filtering process; (2) the filter is tunable since
the null point moves with the reference frequencies; (3) the
adaptive notch filter can be made very sharp at the reference
frequency; (4) through adjusting the parameters, the adaptive
notch filter can be considered as a time-invariant filter by



FIGURE 2: The diagram of adaptive noise cancelling.

lessening the influence of the time-varying components. The
inference of adaptive notch filter is described in [25, 26]. The
diagram of adaptive noise cancelling is shown in Figure 2. The
system is an N-stage tapped delay line (TDL). The weight of
the filter is updated according to the following equations:

_.T
Yk = Wi Xk
& = dk = Yo ®
Wiy = Wy + 08X

where x is the reference input, d is the desired response, y is
the output of the filter, w is the weight of the filter, 0 is the
adaptation constant, and k is the time index. As described in
[26], the response from E(z) to Y(z) includes two parts. In
practical applications, it is feasible to make the time-varying
component to be insignificant (3/N = 0) by changing the
values of N and setting 3 as follows:
sin (Nw,T)

p= sin (w,T) @
where w, is the frequency of the interference. If the reference
input is considered to be the following form:

x = Ccos(w,T +6), 3)

the transfer function of adaptive notch filter can be expressed
as follows:

z* -2z cos (w,T) + 1
2-2(1-NoC?/4)zcos (w,T) + (1 - NoC?/2)’
(4)

Therefore, the parameter N can be set to the fixed value as
described above. It can be seen that the above-mentioned
filter is very flexible and can be adjusted using the adaption
constants 0 and C to provide the desired bandwidth and
depth of a suitable notch filter.

H(z) =
z

4. Independent Component Analysis

After applying the notch filter, the main step used is ICA.
First, the “standard” ICA is described. ICA can be briefly
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explained using a simple example of separating two source
signals s, (t) and s, (t) that were mixed by an unknown linear
process. Two different linear mixtures, x;(¢) and x,(t), are
given as follows:

xp (£) = €181 + €128y, 5)

X, () = 181 + 68,

where ¢}, ¢,, 6;, and ¢,, are unknown coefficients. The
objective of the problem is to recover the signal s, (¢) and s, ()
from mixture signals x,(t) and x,(¢) without knowing any
prior information about the source signals s, (£) and s,(t) and
the mixing process (i.e., ¢;1, €12, 61> and ¢,,), except that s, (¢)
and s, (¢) are statistically independent.

In the generalized case, where there are more latent
sources and more mixture of signals, the formal definition of
ICA is as follows:

X; () = ¢18; + sy ++--+ 6,8, i€[ln], (6)
where s;(¢) is called latent source, x;(t) is the mixture signal,
G;j is the mixing coefficient between x;(t) and s (D), and n is
the number of latent sources and mixture signals. The above
formulation can be expressed as the following matrix form:

X=C,,S, @)

where X is the matrix of mixture signals, in which each
column is one mixture signal; S is the matrix of latent signals,
in which each column is one latent signal; and C,,,, is the
matrix for mixing coefficients.

The feasibility of solving the ICA problem lies in the
condition that the latent sources are independent of each
other. According to the Central Limit Theorem, the distribu-
tion of a sum of independent random variables approaches
a Gaussian distribution. This implies that the solution of ICA
can be achieved when distribution diverges from Gaussianity.
The deviation from Gaussianity can be determined using
measures such as Negentropy.

Negentropy is one measure of non-gaussianity defined
based on the concept of entropy, which is the fundamental
concept of information theory. Entropy, E, as a measure of
information in random variables is defined for a discrete
random variable y as folows:

nxn

E(y)=-) P(y=¢)logP(y=q), (8)

where ¢; is the possible values of Y and P(Y = ¢;) means the
probability when the value of Y is ¢;. For a continuous random
variable y, entropy E is defined as the following equation:

EG) =~ | F0)log(f () ©

where f is the probability distribution function. Negentropy,
], is then defined as follows:

](y) :E(ygauss)_E(y)’ (10)
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where y,,, is a Gaussian random variable with the same
covariance matrix as y. A fundamental conclusion in infor-
mation theory is that a Gaussian variable has the largest
entropy among all random variables of equal variance. Hence,
negentropy is always nonnegative, and it is zero only if Y has
a Gaussian distribution.

The exact calculation of negentropy requires an accurate
estimation of the probability distribution function, which
may be computationally costly or data intensive. There-
fore, it is often preferred to find simple approximations of
negentropy. Simple approximations of negentropy have been
introduced [27], which are based on the maximum entropy
principle. In general, the following family of approximations
is the most commonly used group:

10)= Y KEGO) -EGWIF )

where k; are constants and v is a gaussian random variable
with zero mean and unit variance. Often, the value of p and k;
can be set to one. Therefore, the above formulation becomes
as follows:

J () =[E(G(y) - EGW)]™ (12)

The following formulations of G functions have proved very
useful in practical applications:

1
G, (y) = —logcosh (my), g1 (y)=tanh(ay),
1

1 a 2 a 2
Gz(y)=——exp(—i>, gz(y)=yexp<-i)’

a, 2 2

1
G =" a0)=y

(13)

where 1 < g, < 2,a, = 1, and g is the first derivative of the
function G.

Before applying the main processing operations of the
ICA, it is often necessary to perform some preprocessing.
Usually, the two different operations are conducted: centering
and whitening. Centering requires that the random variable
y is a zero-mean random variable, and it is performed by
subtracting its mean vector. Whitening will make the random
variable uncorrelated and set their variances equal to unity
by using the eigenvalue decomposition of their covariance
matrix:

E{yy'} = DVD', (14)

where D is the orthogonal matrix of eigenvectors and V' is the
diagonal matrix of eigenvalues. Now, assuming that z is a new
random variable after whitening, consider the following:

z=DV D"y, (15)

Whitening makes the problem change from estimating mix-
ing matrix to estimating a new one C:

z = DV'*D"Cs = Cs. (16)

Among several improvements of ICA, fast and fixed-point
independent component analysis [20], as a direct extension
of the standard ICA, was developed for calculating latent
sources with high speed. The basic rule of fast and fixed-point
independent component analysis is to find a direction, which
can maximize non-Gaussianity of w’ x. Non-Gaussianity is
decided according to the approximation of nongaussianity as
mentioned above. The following is the basic description of the
algorithm.

(a) Initialize a weight vector w in one direction.

(b) Change the weight vector according to the following
criteria: w' = E{xg(wa)} - E{g'(wa)}w, and nor-
malize the weight vector as w = w' /W]

(c) If the weights have not converged, go back to step (b),

where w is the weight vector to calculate latent source s =
w” x and convergence means that the old weight vector and
the new weight vector are in the same direction.

In this study, the fast and fixed-point independent com-
ponent analysis [20] is used as the implementation of ICA
block shown in Figure 1.

5. Results

An ECG dataset of human volunteer undergoing lower body
negative pressure (LBNP) [28] as a surrogate of hemorrhage
was employed to verify the effectiveness of removing baseline
wander. This data set was created under Institutional Review
Board approval. The LBNP dataset consisted of a total of 91
subjects. Each subject had a single vector lead ECG recording
collected at the sampling rate of 500 Hz. The baseline wander
in ECG signals demonstrated significant level of variations
in the amplitude over the course of the LBNP experiment.
During LBNP, subjects are exposed to increasing negative
pressure to their lower bodies. This causes a redistribution of
blood volume to the lower extremities and abdomen causing
a decrease in blood pressure and cardiac output and resulting
in an increased respiratory rate.

The results of the proposed method are compared with a
reference method, called robust locally weighted regression
[29], which is often treated as one of the most robust and
commonly used methods to remove baseline drift. The robust
locally weighted regression method employs two techniques:
the local fitting of polynomials and an adaptation of iterated
weighted least squares to remove the baseline drift.

5.1 Results of Adaptive Notch Filter. One objective of the
proposed system is the removal of unwanted frequencies
around 0 Hz as well as 60 Hz. As the frequencies around zero
are excluded, the filter acts as a high-pass filter. In order to
lessen the influence of the time-varying components, one
needs to first set a suitable parameter N to obtain a desirable
level of time-varying component, 3/N. Figure 3 shows the
value of the time-varying component 3/N for different values
of N.

Figure 3 indicates that the value of N determines the
degree at which the time varying component influences
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FIGURE 5: Transfer function of the adaptive notch filter around
60 Hz.

the filter. In general, with the increase in the value of N, this
influence decreases gradually. In this study, the value of N was
set to 10,000. The parameter 0 identifies whether or not the
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FIGURE 4: Transfer function for two choices of adaptive notch filters (a) C = 1; (b) C = 0.01.
1.4 adaptation converges [25]. The value of 0 should be greater
than 0 but less than the reciprocal of the largest eigenvalue,
12 1 A, of the matrix R, which is defined as the correlation matrix
of signal [25]. In this study, the value of 0 was set to 0.0001.
1 A\ The bandwidth of the filter can be approximated using the
following equation [26]:
R 1 Noc?
& BW = (rad/s). (17)
S 06t : 2T
Figure 4 shows the transfer function of the resulting
04 1 adaptive notch filter, and, as expected, this filter acts as a high-
pass filter. Note that the value of C provides yet another degree
02t 1 of freedom for this filter design process, and, hence, Figure 4
presents the transfer function for two different filters formed
0 : : : : using two different values of C, each resulting in a very
0 50 100 150 200 250

different bandwidth. A main advantage of the adaptive notch
filter used here is that changing the values of parameters N,
0, and C can provide a wide spectrum of desired filters with
diverse shapes of transfer function.

Adaptive notch filter for frequencies around 60 Hz is
designed similarly. The parameter N was to 2048, 0 to 0.001,
and C to 0.1. Figure 5 depicts the transfer function of the
resulting adaptive notch filter.
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TABLE 1: Experimental results of removing the baseline wander.

Subject Shift/elevation Error, Error,
1 290/0 2.0996 0.7847
2 250/1 28.1832 2.7037
3 300/4 193.9524 3.4495
4 300/1 24.3905 1.0727
5 300/3 89.1358 3.6282
6 290/2 17.9017 11614
7 300/1 28.955 1.0623
8 200/0 107.7542 13.4439
9 300/2 203.8138 4.0846
10 290/2 81.7942 2.2818
11 290/2 256.3747 8.7264
12 300/2 41.0977 2.4223
13 260/1 44.2238 2.279
14 260/2 101.7592 2.3317
15 310/2 700.1481 101.429
16 290/1 12.7575 1.3522
17 290/1 45.6429 2.6412
18 310/0 36.8833 11.8224
19 290/1 9.1224 1.88
20 290/2 181.3923 23.0193
21 300/2 25.4492 2.6421
22 370/4 252.4353 8.5616
23 260/2 304.7066 7.4637
24 2901 116.9048 3.77
25 300/1 16.3922 1.05
26 290/0 3.4748 0.6671
27 300/2 144.4347 1.8579
28 290/0 23.9724 2.1641
29 290/1 14.5089 0.2205
30 290/1 155.3859 3.6707
31 300/1 50.6959 2.6757
32 300/1 27.2665 1.101
33 300/1 56.7045 1.999
34 290/2 324.4399 10.0313
35 300/1 42.6266 0.8791
36 290/2 539.7357 31.3238
37 29011 19.8874 0.8131
38 290/1 14.3623 2.6499
39 260/1 8.8582 6.4787
40 300/4 135.0286 3.0056
41 290/1 29.5551 2.7541
42 300/1 43.3923 3.0052
43 290/0 51.0465 6.9241
44 290/0 31.9213 5.4646
45 290/1 9.7597 1.3328
46 270/1 22.7897 1.3598
47 290/2 93.5265 1.899
48 290/0 8.7422 1.5607
49 350/6 892.829 74.3034
50 300/3 209.4986 6.3436

7
TaBLE 1: Continued.

Subject Shift/elevation Error, Error,
51 300/3 60.5121 2.6645
52 290/1 3.7123 0.9486
53 290/4 247.2271 5.138
54 250/1 32.0128 2.8609
55 310/0 20.1471 1.336
56 310/0 5.2858 4.0839
57 290/0 71664 0.9526
58 300/1 35.4656 0.8932
59 290/1 10.9895 0.8653
60 300/3 115.7327 4.8387
61 300/1 26.7803 0.7141
62 290/2 9.3222 2.8809
63 29071 16.9436 0.9469
64 300/0 277014 1.7794
65 290/1 55.1891 4.9226
66 310/6 620.3234 8.0999
67 400/2 23.6969 0.5595
68 290/2 36.63757 1.4766
69 290/2 241.5044 11.7279
70 2901 5.5229 0.3386
71 290/2 173.1734 7.0318
72 300/2 774627 3.2468

5.2. Experimental Results and Problems Analysis. The results
of both methods, that is, the proposed and the reference
methods, are examined and compared in all 91 subjects. A
unified “span” value, described in the reference method [29],
which is designed to assess the quality of the methods in
removing the baseline wander, is calculated for all cases. This
value for all experimental results was 1500, which is the level
identifying a very high quality of baseline removal.

The 91 cases, based on the closeness of the results of the
two methods, are divided into two groups. The details of the
results are shown for 72 out of 91 subjects in Table 1; for these
subjects the proposed algorithm achieves almost identical
results as the reference method. The results of the remaining
19 subjects, which will be discussed separately, show that
the proposed method cannot be able to remove the baseline
drift optimally.

In Table 1, “shift” and “elevation” are the values for adjust-
ments to the original independent component (baseline
wander) to form the new baseline wander in the horizontal
and vertical directions; “error;” represents the difference
between the old baseline wander (sig,) before shift and
the baseline wander (sig) from the reference method calcu-
lated as follows:

. . \2
error, = 81~ s8] 18)
n

where n is the number of sample points in the baseline
wander, and finally “error,” represents the difference between
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FIGURE 6: Value of “shift” that adjusts the old baseline wander to
form the new one for all 72 subjects.
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FIGURE 7: Value of “elevation” that adjust the old baseline wander to
form the new one for all 72 subjects.

the new baseline wander (sig,) and the baseline wander (sig)
from the reference method calculated as follows:

(sig, — Sig)Z. (19)
n

error, =

As it can be seen in Table 1, for all cases error, is significantly
smaller than error, which shows the impact of that method in
“purifying” the baseline wander and creating a better estimate
of the drift. In order to better assess the performance of the
proposed method in removing the baseline wander, more
analyses are conducted on the results.

Figures 6 and 7 show the shift and elevation for all 72
subjects. As can be seen, both of these variables are almost
the same for all subjects and do not change across different
subjects (x-axis) or vary in a small scope. This observation
illustrates the reason to adjust the parameters between the old
baseline wander and the new baseline wander.

Figure 8 shows the error reduction in 72 subjects after
adjusting shift and elevation value. It can be seen that in all
of these cases the errors decrease significantly after adjusting
the baseline wander compared with the baseline wander. The
average percentage of error reduction Aver E reaches up to
90.13%. The formulation of the average percentage of error
reduction is shown in the following:

. (error; — error,)
percentage (i) = —————,
error,

ie[l,n],
(20)

i=n
Aver E = Z percentage (i),

i=1

where i is the index of subject and # is the total number of
subjects.

Sample signals before baseline removal and after baseline
removal with the proposed method as well as the reference
method are shown in Figure 9. As shown in Figure 9, the
results of the two methods in all above-mentioned 72 subjects
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FIGURE 8: Improved percentages of error after adjustment.
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FIGURE 9: Comparison between the proposed method and the
reference method.

are very similar. In addition, as it can be seen, both methods
are very effective in removing the baseline drift.

However, as mentioned above, on the ECG of the
remaining 19 subjects, the results of the proposed method
and the reference method are not as similar; that is, the
value of error, (which shows the difference between the
two methods) is significant. This is because in these signals
the inherent pattern observed from ECG is highly distorted
hence leading to spurious estimations. As mentioned before,
we have visually inspected all 91 cases. By examining the
signals for these 19 cases, it was discovered that the high value
of error, does not seem to come from the inability of the
proposed method to remove the baseline wander. In such
case, the possible reason and improvement are discussed in
the following part.

As a comparison between the proposed method and
reference method, some such sample results are shown in
Figure 10. In these cases, due to the presence of significantly
stronger baseline drifts, the reference method seems not to
be eliminating almost all the baseline drift. The reason for
this might lie in the fact that the reference method relies
heavily on the parameters set that may work very well for
some ECG signals but not for others. As shown in Figure 10,
our proposed method shows more effective performance in
removing the baseline around times such as 4700, 5500, 7500,
and 9500. Another major advantage is that the proposed
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F1GURE 10: Comparison of the proposed method to the reference
method.

method is computationally faster than the reference method
while achieving the same quality of results.

5.3. Further Experimental Analysis of Method. As mentioned
above, in the experiment, multi-channel signals are con-
structed through a single-channel signal. The multi-channel
signals are constructed using sixty signals, which are 10
sample point delayed successions of the original signal. By
observation, the number of the constructed signals greatly
impacts the success of finding the true baseline wander.
Moreover, the degree of delay has a close relationship with
the smoothness of the baseline wander. Experimentally, it can
be considered that more channels and smaller delayed signals
may achieve better results, meaning that the constructed
multi-channel signals may convey enough information in
order to accurately extract the baseline wander.

In addition, as discussed above, the LBNP dataset shows a
significant level of variations in the baseline drift. Therefore,
in further analysis of the method, the sub-signals were seg-
mented to verify whether the slow changes in the trend of the
baseline wander affect the results of the proposed method in
separating the baseline wander. The sub-signals were chosen
to be only 10,000 sample points long from the beginning
of the original signal in LBNP dataset. Experimental results
showed that the slow changing trend of the baseline wander
did not affect the performance of the proposed method in
extracting the baseline wander. In other words, the baseline
drift with slow changing trends can also be successfully
extracted using the proposed method.

6. Conclusion

While using the blind source separation paradigm, the ECG
baseline wander or drift may be removed. The present
paper demonstrates a hierarchical method utilizing ICA to
significantly improve the performance of this process and
achieve improved performance. Compared with the existing
methods, the proposed method has the following advantages.
(1) The proposed method provides more flexibility with

regard to parameter estimation and selection. (2) When fol-
lowing the steps proposed for adjustment of ICA process, the
fundamental assumption of baseline noise coming from an
independent source can be further verified, which supports
the validity of using the method for ECG baseline removal.
Such an assumption, verified by additional experimental
results, would present a chance to remove other types of noise.
(3) The filtering process proposed for forming the multi-
channel signals provides a highly flexible method to form the
input to ICA.
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