
Kaye S MorganMonash University (Australia) · School of Physics, Clayton
Kaye S Morgan
BSc (Phys, Math), BE (Elec), PhD (Physics)
About
125
Publications
15,691
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,544
Citations
Citations since 2017
Introduction
Additional affiliations
January 2019 - March 2022
January 2015 - January 2019
January 2015 - July 2018
Publications
Publications (125)
Phase contrast x-ray imaging (PCXI) is a promising imaging modality, capable of sensitively differentiating soft tissue structures at high spatial resolution. However, high sensitivity often comes at the cost of a long exposure time or multiple exposures per image, limiting the imaging speed and possibly increasing the radiation dose. Here, we demo...
We present a simple x-ray phase imaging method that utilizes the sample-induced distortion of a
high contrast random intensity pattern to quantitatively retrieve the two-dimensional phase map at
the exit surface of a coherently illuminated sample. This reference pattern is created by placing a
sheet of sandpaper in the x-ray beam, with the sampl...
A single-exposure quantitative method of x-ray phase contrast imaging, suitable for animal in vivo observations, is described and shown experimentally both for a known static sample and an ex vivo biological airway. The ability to acquire the desired information within a single exposure is important for dynamic samples, as is sufficient sensitivity...
The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grati...
Unresolved spatially random microstructure, in an illuminated sample, can lead to position-dependent blur when an image of that sample is formed. For a small propagation distance, between the exit surface of the sample and the entrance surface of a position-sensitive detector, the paraxial approximation implies that the blurring influence of the sa...
The size of the smallest detectable sample feature in an x-ray imaging system is usually restricted by the spatial resolution of the system. This limitation can now be overcome using the diffusive dark-field signal, which is generated by unresolved phase effects or the ultra-small-angle x-ray scattering from unresolved sample microstructures. A qua...
Speckle-based phase-contrast X-ray imaging (SB-PCXI) can reconstruct high-resolution images of weakly-attenuating materials that would otherwise be indistinguishable in conventional attenuation-based X-ray imaging. The experimental setup of SB-PCXI requires only a sufficiently coherent X-ray source and spatially random mask, positioned between the...
Directional dark-field imaging is an emerging x-ray modality that is sensitive to unresolved anisotropic scattering from sub-pixel sample microstructures. A single-grid imaging setup can be used to capture dark-field images by looking at changes in a grid pattern projected upon the sample. By creating analytical models for the experiment, we have d...
Complementary to conventional and phase x-ray radiography, dark-field imaging has become central in visualizing diffusive scattering signals that come from spatially unresolved texture within an object. To date, most diffusive dark-field retrieval methods require either the acquisition of multiple images at the cost of higher radiation dose or sign...
X-ray imaging is a fast, precise and non-invasive method of imaging which, combined with computed tomography, provides detailed 3D rendering of samples. Incorporating propagation-based phase contrast can vastly improve data quality for weakly attenuating samples via material-specific phase retrieval filters, allowing radiation exposure to be reduce...
Speckle-based phase-contrast X-ray imaging (SB-PCXI) can reconstruct high-resolution images of weakly-attenuating materials that would otherwise be indistinguishable in conventional attenuation-based imaging. The experimental setup of SB-PCXI requires only a sufficiently coherent source and spatially random mask, positioned between the source and d...
Unresolved spatially-random microstructure, in an illuminated sample, can lead to position-dependent blur when an image of that sample is taken using an incoherent imaging system. For a small propagation distance, between the exit surface of the sample and the entrance surface of a position-sensitive detector, the paraxial approximation implies tha...
Emerging methods of x-ray imaging that capture phase and dark-field effects are equipping medicine with complementary sensitivity to conventional radiography. These methods are being applied over a wide range of scales, from virtual histology to clinical chest imaging, and typically require the introduction of optics such as gratings. Here, we cons...
The size of the smallest detectable sample feature in an x-ray imaging system is usually restricted by the spatial resolution of the system. This limitation can now be overcome using the diffusive dark-field signal, which is generated by unresolved phase effects or the ultra-small-angle x-ray scattering from unresolved sample microstructures. A qua...
Directional dark-field imaging is an emerging x-ray modality that is sensitive to unresolved anisotropic scattering from sub-pixel sample microstructures. A single-grid imaging set-up can be used to capture dark-field images by looking at changes in a grid pattern projected upon the sample. By creating analytical models for the experiment, we have...
A simple method of X-ray diffusive dark-field retrieval is presented, applicable to any single-mask imaging setup, with only one exposure of the sample. The approach, which is based on a model of geometric and diffusive reverse-flow conservation, is implicit and non-iterative. This numerically fast methodology is applied to experimental X-ray image...
The ill-posed problem of phase retrieval in optics, using one or more intensity measurements, has a multitude of applications using electromagnetic or matter waves. Many phase retrieval algorithms are computed on pixel arrays using discrete Fourier transforms due to their high computational efficiency. However, the mathematics underpinning these al...
Objective . To develop a robust technique for calculating regional volume changes within the lung from X-ray radiograph sequences captured during ventilation, without the use of computed tomography (CT). Approach . This technique is based on the change in transmitted X-ray intensity that occurs for each lung region as air displaces the attenuating...
Purpose
The rate of mucociliary transit (MCT) is an indicator of the hydration and health of the airways for cystic fibrosis (CF). To determine the effectiveness of cystic fibrosis respiratory therapies, we have developed a novel method to non-invasively quantify the local rate and patterns of MCT behaviour in vivo by using synchrotron phase contra...
Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and th...
Purpose: Propagation-based x-ray imaging (PBI) is a phase-contrast technique that is employed in high-resolution imaging by introducing some distance between sample and detector. PBI causes characteristic intensity fringes that have to be processed with appropriate phase-retrieval algorithms, which has historically been a difficult task for objects...
X-ray dark-field imaging reveals the sample microstructure that is unresolved when using conventional methods of x-ray imaging. In this paper, we derive a new method to extract and quantify the x-ray dark-field signal collected using a single-grid imaging set-up, and relate the signal strength to the number of sample microstructures, N. This was ac...
We present a robust technique for calculating regional volume changes within the lung from X-ray image sequences captured during ventilation without the use of computed tomography (CT). This technique is based on the change in transmitted X-ray intensity that occurs in each lung region as air displaces the attenuating lung tissue. Lung air volumes...
Purpose: We investigate how an intrinsic speckle tracking approach to speckle-based x-ray imaging is used to extract an object's effective dark-field (DF) signal, which is capable of providing object information in three dimensions. Approach: The effective DF signal was extracted using a Fokker-Planck type formalism, which models the deformations o...
Propagation-based phase-contrast x-ray imaging (PB-PCXI) generates image contrast by utilizing sample-imposed phase-shifts. This has proven useful when imaging weakly attenuating samples, as conventional attenuation-based imaging does not always provide adequate contrast. We present a PB-PCXI algorithm capable of extracting the x-ray attenuation β...
X-ray dark-field imaging reveals the sample microstructure that is unresolved when using conventional methods of x-ray imaging. In this paper, we derive a new method to extract and quantify the x-ray dark-field signal collected using a single-grid imaging set-up, and relate the signal strength to the number of sample microstructures, $N$. This was...
Emerging methods of x-ray imaging that capture phase and dark-field effects are equipping medicine with complementary sensitivity to conventional radiography. These methods are being applied over a wide range of scales, from virtual histology to clinical chest imaging, and typically require the introduction of optics such as gratings. Here, we cons...
When a macroscopic-sized noncrystalline sample is illuminated using coherent x-ray radiation, a bifurcation of photon energy flow may occur. The coarse-grained complex refractive index of the sample may be considered to attenuate and refract the incident coherent beam, leading to a coherent component of the transmitted beam. Spatially unresolved sa...
Propagation-based phase-contrast X-ray imaging (PB-PCXI) generates image contrast by utilizing sample-imposed phase-shifts. This has proven useful when imaging weakly-attenuating samples, as conventional attenuation-based imaging does not always provide adequate contrast. We present a PB-PCXI algorithm capable of extracting the X-ray attenuation, $...
Propagation-based phase-contrast imaging, used in conjunction with the phase retrieval algorithm based on the Transport-of-Intensity Equation (TIE) (Paganin et al., 2002), is commonly used to improve the sensitivity of X-ray imaging. Recently, a `Generalised Paganin Method' algorithm was published to correct the tendency of the TIE algorithm to ove...
When a macroscopic-sized non-crystalline sample is illuminated using coherent x-ray radiation, a bifurcation of photon energy flow may occur. The coarse-grained complex refractive index of the sample may be considered to attenuate and refract the incident coherent beam, leading to a coherent component of the transmitted beam. Spatially-unresolved s...
The lung is protected by multiple mechanisms, but the primary defense is mucociliary clearance (MCC). MCC is responsible for removing noxious particulates that may reduce lung health, but it can also clear inhaled pharmaceuticals. Effective MCC relies on the correct ciliary structure and pattern of movement, combined with mucus rheology characteris...
Energy-resolved attenuation data in spectral X-ray imaging enables material decomposition, in which the different materials inside an object can be identified and separated virtually. Material decomposition has the drawback of increased noise in the resulting material images relative to the measured images. Recently, spectral X-ray imaging was comb...
Material decomposition in X-ray imaging uses the energy-dependence of attenuation to digitally decompose an object into specific constituent materials, generally at the cost of enhanced image noise. Propagation-based X-ray phase-contrast imaging is a developing technique that can be used to reduce image noise, in particular from weakly attenuating...
To effectively diagnose, monitor and treat respiratory disease clinicians should be able to accurately assess the spatial distribution of airflow across the fine structure of lung. This capability would enable any decline or improvement in health to be located and measured, allowing improved treatment options to be designed. Current lung function a...
This study describes a new approach for material decomposition in x-ray imaging, utilizing phase contrast both to increase sensitivity to weakly attenuating samples and to act as a complementary measurement to attenuation, therefore allowing two overlaid materials to be separated. The measurements are captured using the single-exposure, single-grid...
This paper expands the LIPR formalism to achieve quantitative material thickness decomposition. Propagation-based phase contrast X-ray imaging with subsequent phase retrieval has been shown to improve the signal-to-noise ratio (SNR) by factors of up to hundreds compared to conventional X-ray imaging. This is a key step in biomedical imaging, where...
Accurate in vivo quantification of airway mucociliary transport (MCT) in animal models is important for understanding diseases such as cystic fibrosis, as well as for developing therapies. A non-invasive method of measuring MCT behaviour, based on tracking the position of micron sized particles using synchrotron x-ray imaging, has previously been d...
This work demonstrates the use of a scientific-CMOS (sCMOS) energy-integrating detector as a photon-counting detector, thereby eliminating dark current and read-out noise issues, that simultaneously provides both energy resolution and sub-pixel spatial resolution for X-ray imaging. These capabilities are obtained by analyzing visible light photon c...
This study describes a new approach for material decomposition in x-ray imaging, utilising phase contrast to both increase sensitivity to weakly-attenuating samples and to act as a complementary measurement to attenuation, therefore allowing two overlaid materials to be separated. The measurements are captured using the single-exposure, single-grid...
Most measures of lung health independently characterise either global lung function or regional lung structure. The ability to measure airflow and lung function regionally would provide a more specific and physiologically focused means by which to assess and track lung disease in both pre-clinical and clinical settings. One approach for achieving r...
Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source....
Propagation-based phase-contrast X-ray computed tomography is a valuable tool for high-resolution visualization of biological samples, giving distinct improvements in terms of contrast and dose requirements compared to conventional attenuation-based computed tomography. Due to its ease of implementation and advances in laboratory X-ray sources, thi...
The Fokker-Planck equation can be used in a partially-coherent imaging context to model the evolution of the intensity of a paraxial x-ray wave field with propagation. This forms a natural generalisation of the transport-of-intensity equation. The x-ray Fokker-Planck equation can simultaneously account for both propagation-based phase contrast, and...
X-ray imaging has conventionally relied upon attenuation to provide contrast. In recent years, two complementary modalities have been added; (a) phase contrast, which can capture low-density samples that are difficult to see using attenuation, and (b) dark-field x-ray imaging, which reveals the presence of sub-pixel sample structures. These three m...
Material decomposition in X-ray imaging uses the energy-dependence of attenuation to virtually decompose an object into specific constituent materials. X-ray phase contrast imaging is a developing technique that can enhance image contrast seen from weakly attenuating objects. In this paper, we combine spectral phase contrast imaging with material d...
Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combi...
The Fokker--Planck Equation can be used in a partially-coherent imaging context to model the evolution of the intensity of a paraxial x-ray wave field with propagation. This forms a natural generalisation of the transport-of-intensity equation. The x-ray Fokker--Planck equation can simultaneously account for both propagation-based phase contrast, a...
X-ray imaging has conventionally relied upon attenuation to provide contrast. In recent years, two complementary modalities have been added; phase contrast and dark-field x-ray imaging, capturing weakly attenuating and sub-pixel sample structures respectively. These three modalities can be accessed using a crystal analyser, a grating interferometer...
We have previously developed non-invasive in vivo mucociliary transport (MCT) monitoring methods using synchrotron phase contrast X-ray imaging (PCXI) to evaluate potential therapies for cystic fibrosis (CF). However, previous in vivo measurements of MCT velocity using this method were lower than those from alternate methods. We hypothesise this wa...
The complexity of lung diseases makes pre-clinical in vivo respiratory research in mouse lungs of great importance for a better understanding of physiology and therapeutic effects. Synchrotron-based imaging has been successfully applied to lung research studies, however longitudinal studies can be difficult to perform due to limited facility access...
We present a pixel-specific, measurement-driven correction that effectively reduces errors in detector response that give rise to the ring artifacts commonly seen in X-ray computed tomography (CT) scans. This correction is easy to implement, suppresses CT artifacts significantly, and is effective enough for use with both absorption and phase contra...
The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed to be the world's widest synchrotron X-ray beam, partly to enable clinical imaging and therapeutic applications for humans, as well as for imaging large-animal models. Our group is currently interested in imaging the airways of newly developed cystic fibrosis (CF) animal mo...
We present a pixel-specific, measurement-driven correction that effectively minimizes errors in detector response that give rise to the ring artifacts commonly seen in X-ray computed tomography (CT) scans. This correction is easy to implement, suppresses CT artifacts significantly, and is effective enough for use with both absorption and phase cont...
Propagation-based phase-contrast computed tomography has become a valuable tool for visualization of three-dimensional biological samples, due to its high contrast between materials with similar attenuation properties. However, one of the most-widely used phase-retrieval algorithms imposes a homogeneity assumption onto the sample, which leads to ar...
X-ray grating interferometry is a powerful emerging tool in biomedical imaging, providing access to three complementary image modalities. In addition to the conventional attenuation modality, interferometry provides a phase modality that visualises soft tissue structures, and a dark-field modality that relates to the number and size of sub-resoluti...
Coherent diffractive imaging (CDI), using both x-rays and electrons, has made extremely rapid progress over the past two decades. The associated reconstruction algorithms are typically iterative, and seeded with a crude first estimate. A deterministic method for Bragg Coherent Diffraction Imaging (Pavlov et al 2017 Sci. Rep. 7 1132) is used as a mo...
The Munich Compact Light Source: Biomedical Research At a Laboratory-Scale Inverse-Compton Synchrotron X-ray Source - Volume 24 Supplement - Benedikt Günther, Martin Dierolf, Regine Gradl, Elena Eggl, Christoph Jud, Lorenz Hehn, Stephanie Kulpe, Bernhard Gleich, Madleen Busse, Kaye S. Morgan, Klaus Achterhold, Franz Pfeiffer