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Exposure prediction approaches used in air pollution
epidemiology studies: Key findings and future recommendations
Lisa K. Baxter1, Kathie L. Dionisio1, Janet Burke1, Stefanie Ebelt Sarnat2, Jeremy A. Sarnat2, Natasha Hodas3, David Q. Rich4,
Barbara J. Turpin3, Rena R. Jones5, Elizabeth Mannshardt6, Naresh Kumar7, Sean D. Beevers8 and Halûk Özkaynak1

Many epidemiologic studies of the health effects of exposure to ambient air pollution use measurements from central-site monitors
as their exposure estimate. However, measurements from central-site monitors may lack the spatial and temporal resolution
required to capture exposure variability in a study population, thus resulting in exposure error and biased estimates. Articles in this
dedicated issue examine various approaches to predict or assign exposures to ambient pollutants. These methods include
combining existing central-site pollution measurements with local- and/or regional-scale air quality models to create new or
‘‘hybrid’’ models for pollutant exposure estimates and using exposure models to account for factors such as infiltration of pollutants
indoors and human activity patterns. Key findings from these articles are summarized to provide lessons learned and
recommendations for additional research on improving exposure estimation approaches for future epidemiological studies. In
summary, when compared with use of central-site monitoring data, the enhanced spatial resolution of air quality or exposure
models can have an impact on resultant health effect estimates, especially for pollutants derived from local sources such as traffic
(e.g., EC, CO, and NOx). In addition, the optimal exposure estimation approach also depends upon the epidemiological study design.
We recommend that future research develops pollutant-specific infiltration data (including for PM species) and improves existing
data on human time-activity patterns and exposure to local source (e.g., traffic), in order to enhance human exposure modeling
estimates. We also recommend comparing how various approaches to exposure estimation characterize relationships between
multiple pollutants in time and space and investigating the impact of improved exposure estimates in chronic health studies.
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INTRODUCTION
Given the limited spatial coverage of air pollution data, air
pollution epidemiologic studies largely rely on data from central-
site monitors, such as those reported in the United States (U.S.)
Environmental Protection Agency’s (EPA’s) Air Quality System
(AQS), to characterize a population’s exposure to ambient air
pollutants (e.g., all people living within 10 miles of a monitoring
station).1–3 However, measurements from central-site monitors
often do not adequately capture the spatial and temporal
variability of pollutant concentrations, which may result in an
underestimation of the variability in the study population
exposures.4–10 Similarly, central-site monitors do not account for
exposures in different microenvironments (e.g., indoors and in-
vehicle) where pollutant infiltration11–13 and indoor sources14–16

can substantially impact total exposures. Consequently, there is a
potential for exposure error and a resulting bias (e.g.,
underestimation of relative risks) when solely depending on
ambient monitors to characterize exposure.

Exposure error in a study of the health effects of exposure to air
pollution typically falls into two categories: classical error and
Berkson error. Classical error occurs when the average of many
replicate measurements of exposure does not equal the true

exposure.17 For example, if ambient air pollutant measurements
taken over a week long period in different seasons are used to
represent the annual pollution level. Berkson error occurs when
one measure of exposure is used as a proxy for the exposure of
many subjects.17 For example, using measurements from one
central-site monitor to represent the exposure of all participants
living within 10 km of the monitor. Under the classical error model,
the health effect estimate is biased with the degree of attenuation
increasing as the variance of the exposure error increases, whereas
Berkson error results in unbiased estimates, but the error increases
the variance of the coefficients resulting in wider confidence
intervals.18 In reality, exposure estimates in most air pollution
epidemiological studies will include elements of both types of
error, which can complicate the interpretation of results.19,20

A number of refined exposure assessment approaches have
recently been developed and applied in the investigation of air
pollution health effects. Many of the articles in this dedicated issue
of JESEE were presented at a symposium focused on issues of air
pollution exposure and health (‘‘Estimating Air Pollution Exposures
for Health Studies: Comparison and Evaluation of Prediction
Approaches’’), held at the October 2011 International Society of
Exposure Science (ISES) annual conference in Baltimore, MD. These
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alternative exposure assessment approaches included using various
models to estimate exposure to ambient outdoor pollution with a
finer degree of spatial and/or temporal resolution, accounting
for factors such as outdoor-to-indoor transport (infiltration) and
time-activity patterns, or combining existing models to create new,
‘‘hybrid’’ models for exposure. Many of the studies included a
comparison of exposure estimation techniques across multiple
pollutants. The studies were all conducted with a goal of comparing
various approaches for estimating exposure and assessing their
impact in epidemiology studies. A brief description of these articles
is provided in Table 1 of Özkaynak et al.21 The shared goal for all of
these refined approaches is to reduce exposure error and its
resulting bias, in order to provide more power to detect potential
epidemiologic associations of interest.

Although the use of more refined exposure estimates may lead
to reductions in some forms of exposure error, it is possible that
new errors may also be introduced leading to greater uncertainty
in observed health effect associations.20,22 Improvements
provided by these more refined exposure estimation approaches
will depend on factors such as the influence of infiltration and
human activity patterns on the pollutant concentration, the spatial

and temporal patterns of the pollutant of interest, and the
epidemiological study design (i.e., time series or cross-sectional
designs). This article summarizes the key findings from a collection
of papers and discusses the lessons learned in using alternative
exposure estimation approaches for epidemiological studies of
the short-term health effects of exposure to ambient air pollution.
We then provide suggestions for future work to further refine and
extend these techniques.

KEY FINDINGS AND LESSONS LEARNED
A summary of the key findings and conclusions from exposure
and epidemiological research articles on this topic can be found in
Tables 1 and 2. A variety of approaches were used as alternative
methods for exposure assessment, including the use of improved
approaches for predicting residential air exchange rates (an
important predictor of indoor air concentrations and thus
exposure) and the use of air quality or exposure modeling to
provide spatially and/or temporally refined exposure estimates.
The approaches attempted to quantify exposure differences in the
study population both within an urban area and between multiple

Table 1. Air pollution exposure studies: Summary of key findings and conclusions for air pollution exposure studies included in this issue.

Pollutant(s)
investigated

Study location
Spatial coverage
Spatial
resolution

Exposure estimation
approach(es)

Key findings Key conclusions

Baxter
et al.25

PM2.5 New Jersey
7 cities
Within 10 km of
monitor & 22
ZIP codes

Ambient
monitoring.
SHEDS.
aAER and MB
outdoor-to-indoor
transport models.
Hybrid of (2) and
(3).

Daily correlations between all
exposure tiers were strong
(r40.94).
Exposure difference between
monitoring areas appeared to be
driven by AERs.
Seasonal patterns for exposure
estimates appeared to be due to
variations in PM composition and
time-activity patterns.

High correlations between exposure
surrogates suggest that the temporal
variability in PM2.5 concentrations
were adequately captured by the
central-site monitor.
Geographic heterogeneity in housing
stock (AER) and demographics
(activity patterns) result in
heterogeneity in ambient PM2.5

exposure both within and between
cities that is not captured by the
central-site monitor.

Dionisio,
et al.27

PM2.5

EC
SO4

O3

NOx

CO

Atlanta, Georgia
Atlanta metro
area
169 ZIP codes

Ambient
monitoring.
Modeled regional
background
(statistical model).
AERMOD modeling.
Hybrid of (2) and
(3).
bExposure
modeling (APEX or
SHEDS).

Hybrid and exposure model
estimates exhibit high spatial
variability for CO, NOx, and EC but
little spatial variability among ZIP
codes for PM2.5, SO4, and O3.
Degree of temporal variability
represented was similar across
exposure metrics for all pollutants
except NOx.
Daily correlations between hybrid
and exposure model estimates
were strong (r40.82) for all
pollutants

The use of ambient monitoring as an
exposure surrogate for CO, NOx, and
EC ignores spatial variability at the ZIP
code level.
When temporal variability of
pollutants is of interest, the use of
hybrid or exposure model estimates
may yield similar results.
Exposure models affect the
magnitude and distribution of
exposure compared with ambient
monitoring, especially for local
pollutants (CO, NOx, EC).

Beevers
et al.26

PM2.5

PM10

NO2

NOx

London, UK
City of London
20� 20m grid
cells

Hybrid approach
combining CMAQ-
urban with the KCL
urban model

NO2 has large variations within
10’s of meters of major roads.
NOx can range by factor of 6
between early morning minimum
and rush hour maximum.
PM2.5 can double close to road
sources.
PM10 from brake wear is 8 times
greater near major roads than at
suburban background.

Emissons-dispersion models can
predict air quality spatially, temporally,
and by source category.
Temporal changes in pollutant
concentrations can be replicated by
dispersion models, especially in the
complex near-road environment.
Dispersion model results agree well
with measurements in London; source
apportionment results are uncertain.
Human travel patterns are highly
complex and support the need for the
development of hybrid models and
sophisticated human exposure
models.

Abbreviations: AER, air exchange rate; AERMOD, AMS/EPA regulatory model (atmospheric dispersion modeling system); APEX, air pollutants exposure model;
CMAQ, community multiscale air quality model; MB, mass balance; SHEDS, stochastic human exposure and dose simulation model.
aLawrence Berkeley National Laboratory (LBNL) Aerosol Penetration and Persistence (APP) and Infiltration Models. bBoth APEX and SHEDS used local, spatially
varying air exchange rates as input. SHEDS was used for modeling PM2.5, EC, SO4, and O3; APEX was used for modeling NOx and CO.
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urban areas. The exposure estimates obtained had varying
influences on the health effect estimates when used in
corresponding health studies. The health studies employed a
variety of analysis methods, including case-crossover, case-control,
and time-series epidemiologic studies and Bayesian analysis, to
examine associations between air pollution and respiratory and/or
cardiovascular morbidity.

Influence Air Exchange Rates and Human Activity Patterns
Individuals spend the majority of their time indoors,23 yet the use
of an ambient pollutant measurement from an outdoor monitor to
approximate exposure is still the most common exposure
surrogate. Each individual’s exposure is likely to be different
based on their time-activity behaviors and home characteristics.24

Exposure models can provide insight into the between-individual
variability of exposure to ambient pollution not captured
by the central-site monitor by incorporating demographic
differences, time-activity patterns and air exchange rates
(AERs).25–28 As an example, AER is a contributor to home-to-
home variations in infiltration of outdoor pollution to the indoor
environment that can in turn influence the personal exposure to
ambient concentration relationships. Higher AERs suggest higher
exposures to ambient air pollution indoors. Modeled estimates of
AER can vary both spatially and temporally based on meteorology
and housing characteristics.25,27 Personal activities such as
commuting can also affect exposures. Ambient concentrations
for pollutants such as CO, EC, and NOx are higher close to
roadways, thus the amount of time spent in traffic can be a major
contributor to personal exposures for these pollutants.

Epidemiological results varied when human exposure models
were used to obtain estimates of exposure. In Mannshardt et al.,29

the investigators observed a reduction in the uncertainty
associated with the health effect estimates when utilizing
human exposure models with Hierarchical Bayesian methods.
Other analyses did not observe a significant difference in health
effect estimates when utilizing human exposure models
compared with air quality models30 or compared with ambient
monitoring data.28,31 In addition to examining human exposure
models, which incorporate a variety of human exposure
factors, the effect of AER alone was analyzed. When used as an
effect modifier, AER (or the exposure-concentration ratio, another
surrogate for infiltration) significantly changed the health
effect estimates of some pollutants (PM2.5, O3, NOx, and CO).
Higher health effect estimates were observed for some
pollutants when AERs (or the exposure-concentration ratios)
were higher.28,31,32 These results suggest that accounting for
a single well-characterized exposure factor such as AER may
help to identify exposure variability in a population that is not
typically accounted for with current exposure estimation
techniques and point to the importance of incorporating
exposure factors in exposure estimation approaches for air
pollution epidemiology.

Spatial and Temporal Variability
The various air quality models applied appeared to increase the
spatiotemporal variability of ambient concentrations of pollutants
compared with the use of central-site monitoring data alone,
especially for pollutants produced by local sources (i.e., EC, NOx,
and CO).26,27,29 For example, hybrid approaches (i.e., combining
different modeling approaches) provided full spatiotemporal
coverage of study areas as opposed to the limited point
locations provided by the ambient monitoring network.27,29,33

The improved spatial resolution of air quality models had
noticeable impacts on some epidemiologic health effect
estimates. For traffic-related pollutants (e.g., EC, CO, and NOx),
Sarnat et al.,30 showed larger relative risks (RR) and/or narrower
confidence intervals (CIs) using spatially refined, modeled, ambient

concentrations compared with central-site monitoring. However,
the epidemiological study results for regional pollutants (e.g.,
PM2.5, O3) were mixed, with some studies seeing significant
changes in health associations and/or narrower CIs29,33 when using
spatiotemporally resolved air quality modeling output (e.g.,
AMS/EPA Regulatory Model [AERMOD]—an atmospheric disper-
sion modeling system, Community Multiscale Air Quality model
[CMAQ]—a regional-scale multipollutant transport and transfor-
mation model, remote sensing) compared with using central-site
monitor measurements, whereas others did not.28,30,31

Improved characterization of spatial variability using air quality
models can also help to better examine air pollution and socio-
economic status (SES) relationships. Depending on the location of
the monitors, the exposures of certain subpopulations may not
be well represented by the central-site monitor, leading to
differential exposure error. Sarnat et al.,30 showed significant
effect modification by socioeconomic status (SES) for CO, NOx,
PM2.5, and EC using the more spatially refined exposure estimates
(e.g., air quality models estimates) but not when using the central-
monitoring data. Relative risks were higher for the low SES group
compared with the high SES group. However, Jones et al.,28 only
observed significant effect modifications with age (for O3) and
ethnicity (for PM2.5) using the central-site monitoring data and not
with the exposure model estimates.

Characterization of spatiotemporal variability of ambient
pollutant concentrations and related exposures may also be
improved by utilizing remote sensing33 and sophisticated air
quality modeling techniques (i.e., CMAQ).29 Satellites have daily
global coverage and can be used to retrieve estimates of air
quality at a given location and time in a cost-effective manner.
Kumar et al.,33 combined satellite data with the in situ data at
central-monitoring sites to develop robust estimates of daily
exposure to PM2.5 at any given location. Dionisio et al.,27 found
that the temporal variability may differ spatially across a
metropolitan area when utilizing estimates combining regional
background and dispersion models. For example, the temporal
pattern of daily elemental carbon (EC) in the city center
may be highly variable (likely due to traffic patterns), although
there may be less temporal variability outside of the city center
where traffic volume is lower. However, it is important to note
that, in the studies summarized here, the mean temporal
variability for most pollutants was adequately captured by the
ambient monitor.25,27

Study Design
In studies of the health effects of exposure to ambient air
pollution, the type of epidemiologic study design has important
implications for the study results and their interpretation.28–31

Case-crossover and time-series studies take advantage of
temporal contrasts in exposures. Because of the above findings
regarding temporal variability, the use of refined exposure
estimation approaches may have minimal effects when used in
case-crossover and time-series studies, especially for regional
pollutants (e.g., PM2.5) that exhibited greater spatial
homogeneity.28,30,31 It is noteworthy, however, that Sarnat
et al.,30 observed modestly stronger associations with more
refined exposure estimates for local pollutants in a time-series
study, when both the exposure estimates and health outcome
data were resolved at the ZIP code level in Atlanta.

The emphasis of the studies summarized here has been on the
short-term health effects of exposure to ambient air pollution.
Cohort-based exposure and health studies are driven by both
temporal and spatial contrasts in exposures. Improvements in the
spatial characterization of exposures may be desirable in these
studies as ambient monitors may not adequately capture spatial
variability25–27,33 depending on the pollutant of interest (regional
vs local) and household factors (e.g., AER). In addition, personal
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exposure factors such as time-activity patterns (e.g., commuting)
may lead to greater exposure error and bias of the health effect
estimate obtained and in some cases may even mask a true
association.

RECOMMENDATIONS FOR FUTURE WORK
We can draw from this collection of studies a number of lessons
helpful in planning future research to improve exposure estimates
for use in health studies. The epidemiological study designs
and methodological considerations will determine whether
exposure factors (e.g., infiltration and time-activity patterns)
can potentially modify the health effect estimates. A number of
the studies in this issue found that increases in infiltration,
characterized by residential AER31,32 or the ambient exposure-con-
centration ratio,28 were a source of important effect modification
in epidemiological studies of ambient air pollution health effects.
Consequently, improvements in the current prediction methods of
AER, through evaluation and refinement of existing tools, will be
highly valuable. Epidemiological study designs and methodo-
logical considerations (in particular, case-crossover vs time series
for short-term effects studies) can make a difference in our ability
to estimate the role of infiltration on health effects.28,30,31

Researchers should test alternative model specifications to
ensure that the statistical methods employed do not diminish
their ability to study or estimate the role of building infiltration
and other inter-subject ambient exposure-related factors (as in the
case of case-crossover studies).

In addition to AER, other factors related to both personal
exposure and ambient pollution (e.g., pollutant-specific residential
infiltration rates, and time spent on or near roadways) may also
be effect modifiers in epidemiological studies of both local and
regional pollutants.26,30,34–36 As epidemiological studies begin to
focus more on PM2.5 components, relevant residential infiltration
models must be developed to account for component-specific
penetration efficiencies and decay rates. Efforts should also be
made to refine current tools and information for modeling
exposures to ambient pollutant species in key exposure micro-
environments (e.g., outdoors near home, commuting micro-
environments, and non-residential indoor environments).
Recently developed light-weight global positioning system (GPS)
sensors used for continuous time-location data collection
can greatly improve upon the accuracy and spatiotemporal
resolution of existing time-activity surveys (e.g., EPA’s
Consolidated Human Activity Database (CHAD) or the American
Time Use Survey (ATUS)), which are integral to exposure
models. The information from these sensors can be combined
with personal monitoring data in order to evaluate and/or modify
our current exposure models. More attention should also be given
to examining potential confounding because of correlation
between SES-related factors and predicted or measured AER
values.32

Increased spatial variability of ambient pollution exposure
estimates was observed using both air quality and exposure
models, especially for gaseous pollutants and PM species derived
from local sources. Focusing on improvements in traffic/road
proximity factors and local source emissions, which differ in time
and space, may provide additional information related to exposure
variability, which is typically lost when average or population-level
exposures (e.g., county or ZIP code level) are used. We anticipate
that current monitoring systems and the aforementioned GPS-
based sensor technologies could provide a range of new infor-
mation that could help with refining exposure estimates. Further,
combining existing and new techniques for exposure estimation
has shown value. Promising approaches include combining CMAQ
and AERMOD model results, or incorporating highly resolved
satellite data33 using a Hierarchical Bayesian framework to blend

ambient concentrations, and housing and exposure-related

information.29

Available health data typically have their own spatial or
temporal limitations (e.g., hospital admissions by county vs ZIP
code, or by month vs day). If exposure estimates can be produced
at a fine spatiotemporal scale, these will only be useful if
health data are also available on the same scale. It is necessary
to determine the relative importance of spatial vs temporal
resolution in both exposure estimates and health data specifica-
tion, for various types of epidemiological study designs, in order to
make best use of development efforts for new or highly resolved
exposure estimates, as well as for the planning of future studies. In
addition, combining exposure modeling and epidemiology with
knowledge gained from toxicological studies can help our
understanding of which pollutant or group of pollutants are likely
to be linked with health effects.

Finally, two topics that were not addressed by the studies
published in this issue were multipollutant relationships and
the differences between acute and chronic studies. As epidemio-
logical studies begin to incorporate multiple pollutants into
their models, it is important to understand the relation-
ships between the pollutants. These between-pollutant relation-
ships may not be accurately characterized by the existing
central-site monitors. Ambient pollutants can have different
spatiotemporal patterns because of their sources, chemical/
physical properties, and pollutant-specific interactions with
meteorology, all of which may cause pollutant concentrations to
not be correlated with each other. For example, a pollutant such
as O3 may be relatively homogeneous within an urban area, but
the location of roads may greatly affect the spatial pattern of
pollutants such as CO or NOx. Because of this, the O3-CO or NOx

relationships may be different depending on which exposure
estimation approach (e.g., central-site monitors vs air quality
models) is selected. Additional work is needed to better under-
stand how the choice of exposure estimation approach affects
the observed relationships between pollutants. Finally, studies
examining longer exposure windows (e.g., 10 years or more) and
related disease processes (e.g. cancer) were not adequately
addressed by this collection of papers. Therefore, a systematic
evaluation of the value of refined exposure characterization for
both acute and chronic exposures, as they apply to related
epidemiological studies, is of keen interest for advancing the
knowledge base on air pollution exposures and associated health
effects.
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