Katherine Dykes

Katherine Dykes
  • Doctor of Philosophy
  • Senior Researcher at Technical University of Denmark

About

66
Publications
27,290
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,843
Citations
Current institution
Technical University of Denmark
Current position
  • Senior Researcher

Publications

Publications (66)
Article
Full-text available
Data-driven wind farm flow control (WFFC) is an innovative approach that leverages the collected data and advanced analytics to enhance the performance of wind turbines within wind farms. Its significance lies in its ability to adapt to changing wind and turbine conditions and improve operations, boosting energy yield, extending turbine/component l...
Article
The preliminary financial evaluation of wind farm profitability requires fast analysis of energy production and costs while having very little specific information around the project. Early in the design process, the selection of specific wind turbines and the layout design may not yet be defined. Techno-economic and financial analysis models have...
Article
Full-text available
Optimization of the Levelized Cost of Energy (LCoE) in wind farms helps ensure profitability and competitiveness of the project. Recent work has explored driving down LCoE by allowing multiple wind turbines in a single wind farm - with different hub heights, rotor diameters, and rated powers. In this work, we performed optimization of the Lillgrund...
Conference Paper
This paper presents the results from the first IEA Wind Task 37 aerodynamic optimization case study. 8 participants applied their optimization tools to a purely aerodynamic problem and the results were compared. Overall, the different tools produced widely different designs, while there was better agreement in the improvement achieved. This highlig...
Article
Full-text available
For wind farms that participate actively in electricity markets versus receiving a fixed kiloWatt-hour payment, design and operational objectives must go beyond the levelized cost of energy (LCOE) to account for system value and profitability of the farm over its lifetime. This work introduces ”beyond LCOE” objectives for farm design and illustrate...
Article
Full-text available
Reference wind turbines (RWTs) that reflect the state-of-the-art of current wind energy technology are necessary in order to properly evaluate innovative methods in wind turbine design and evaluation. The International Energy Agency (IEA) Wind Technology Collaboration Platform (TCP) Task 37 has recently developed a new RWT geared towards offshore f...
Article
Full-text available
Wind farm control is an active and growing field of research in which the control actions of individual turbines in a farm are coordinated, accounting for inter-turbine aerodynamic interaction, to improve the overall performance of the wind farm and to reduce costs. The primary objectives of wind farm control include increasing power production, re...
Article
Full-text available
Lidar-assisted control is a promising technology for reducing the levelized cost of energy from wind turbines, but quantifying its impact at the overall system level requires sophisticated systems engineering analysis and optimization frameworks. The joint workshop on Optimizing Wind Turbines with Lidar-Assisted Control Using Systems Engineering wa...
Preprint
Full-text available
Wind farm control is an active and growing field of research in which the control actions of individual turbines in a farm are coordinated, accounting for inter-turbine aerodynamic interaction, to improve the overall performance of the wind farm and to reduce costs. The primary objectives of wind farm control include increasing power production, re...
Article
The design of renewable energy systems such as wind turbines or solar panels conventionally employs Levelized Cost of Energy (LCOE), but this metric fails to account for the time-varying value of energy. This is true both for a single turbine or an entire wind farm. To remedy this, two novel, relatively simple metrics are developed herein to value...
Article
Full-text available
Turbines in wind power plants experience significant power losses when wakes from upstream turbines affect the energy production of downstream turbines. A promising plant-level control strategy to reduce these losses is wake steering, where upstream turbines are yawed to direct wakes away from downstream turbines. However, there are significant unc...
Preprint
Full-text available
Turbines in wind power plants experience significant power losses when wakes from upstream turbines affect the energy production of downstream turbines. A promising plant-level control strategy to reduce these losses is wake steering, where upstream turbines are yawed to direct wakes away from downstream turbines. However, there are significant unc...
Article
Full-text available
A multifaceted future for wind power Modern wind turbines already represent a tightly optimized confluence of materials science and aerodynamic engineering. Veers et al. review the challenges and opportunities for further expanding this technology, with an emphasis on the need for interdisciplinary collaboration. They highlight the need to better u...
Article
Full-text available
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. Results exploring the observed performance of wake steering are presented an...
Article
Full-text available
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. Results exploring the observed performance of wake steering are presented, a...
Article
Full-text available
Wind farms are generally designed with turbines of all the same hub height. If wind farms were designed with turbines of different hub heights, wake interference between turbines could be reduced, lowering the cost of energy (COE). This paper demonstrates a method to optimize onshore wind farms with two different hub heights using exact, analytic g...
Article
Full-text available
Wind turbine extreme load estimation is especially difficult because turbulent inflow drives nonlinear turbine physics and control strategies; thus there can be huge differences in turbine response to essentially equivalent environmental conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are both unsatisfying: extr...
Conference Paper
In recent years, there has been a growing demand for high-power-density direct-drive generators in the wind industry owing to their high reliability, torque per unit volume, and conversion efficiencies. However, direct-drive wind turbine generators are very large, low-speed electric machines, which pose remarkable design and manufacturing issues th...
Article
Full-text available
Motivated by the need to develop reference wind energy systems for optimisation and technology assessment studies, the International Energy Agency Wind Task 37 on Wind Energy Systems Engineering is developing a reference offshore wind power plant at the Dutch offshore wind energy areas Borssele III and IV. This paper presents a comparison between t...
Article
Full-text available
In this paper, we introduce a data-driven machine learning framework for improving the accuracy of wind plant flow models by learning turbulence model corrections based on data from higher-fidelity simulations. First, a high-dimensional PDE-constrained optimization problem is solved using gradient-based optimization with adjoints to determine optim...
Article
Full-text available
The objective of this paper is to incorporate sparse sensor data to improve flow-field estimates in a wind farm, which can then be used to perform better online wind farm optimization and control. A sparse-sensing algorithm is used to determine the optimal locations of sensors to improve the overall estimation precision of the flow field within the...
Article
Full-text available
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulation...
Technical Report
Full-text available
To fully understand how loads and costs scale with turbine size, it is necessary to have identical turbine models that have been designed for different rated powers. This report presents updated aeroelastic representations of the Wind Partnership for Advanced Component Technologies (WindPACT) baseline models, which are a series of four baseline mod...
Article
Full-text available
This study explores the structural freedom and design opportunities of additive manufacturing for a 5-MW direct-drive generator for a wind turbine and compares it to more traditional spoke-arm designs using NREL’s GeneratorSE. The work focuses on light-weighting the stator within the generator, complementing previous rotor work. The light-weighting...
Article
Full-text available
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulation...
Technical Report
The potential for wind power in the United States and globally is vast. The U.S. wind resource alone could supply more than 7.5 times the nation’s total electricity generation in the year 2016. The nation has already begun to harness this potential. In 2016, new investments in U.S. wind power capacity were estimated at $14.5 billion and wind power...
Article
Full-text available
Wind turbine extreme loads estimation is especially difficult because turbulent inflow drives nonlinear turbine physics and control strategies, so there can be huge differences in turbine response to essentially equivalent environmental conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are both unsatisfying: extra...
Article
In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders’ requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders’ needs across the whole lifecycle of the wave energy farm are...
Article
Full-text available
Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as "wake steering," in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, ho...
Article
Full-text available
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independ...
Article
Full-text available
A research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Developm...
Article
Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmen...
Article
Full-text available
Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examin...
Article
Full-text available
U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yi...
Article
Full-text available
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear co...
Article
Full-text available
Using adjoint optimization and three-dimensional Reynolds-averaged Navier Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the nu...
Article
This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land-based and offshore applications. The analysis is performed with a new physics-based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of...
Article
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind t...
Thesis
This thesis takes an interdisciplinary look at wind energy innovation and diffusion through a historical case study and system dynamic quantitative model. The former uses a framework known as actor-network- theory (that allows technical as well social forces to shape historical outcomes) and applies it to an in-depth case study of the history of th...
Article
Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave hei...
Article
Recent research has demonstrated exciting potential for wind plant control systems to improve the cost of energy of wind plants. Wind plant controls seek to improve global wind plant performance over control systems in which each turbine optimizes only its individual performance by accounting for the way wind turbines interact through their wakes....
Article
Full-text available
For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more...
Conference Paper
This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for dif...
Article
The popular concept of a “Smart Grid” involves an integration of novel information and communications technologies across an evolving electricity system spanning generation, transmission, distribution and customer networks. For example, distributed generation, energy efficiency, and demand-side management will enable and affect many changes in the...
Article
During the last several years, a large number of reports and a complementary body of literature has surfaced regarding the effects of incorporating large amounts of wind energy into the electric grid. Studies have been performed by individual system operators, utilities, industry research organizations, as well as national and academic research pro...
Conference Paper
Full-text available
Progress in Computational Fluid Dynamics (CFD) methods holds potential for the advancement of wind energy resource assessment in complex urban terrain by modeling wind circulation around urban obstacles. The geometry in urban areas is significantly more complex than for open rural spaces and has a critical influence on wind flow at the micro-meteor...
Article
Full-text available
Common knowledge in the wind industry pinpoints inconsistent policy, such as the production- tax credit scheme in the US, as a key source for boom and bust cycles in the wind energy industry. This paper looks at the sources of the industry boom and bust via a system dynamics model for diffusion of wind energy technology. A model is developed throug...
Article
Full-text available
Over the last few decades, wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Coinciding with the industry's growth, significant innovation in the technology has resulted in larger turbines with lower associated costs of energy and more complex designs in all...

Network

Cited By