
Katharina Eggensperger- University of Tübingen
Katharina Eggensperger
- University of Tübingen
About
32
Publications
27,611
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,753
Citations
Current institution
Publications
Publications (32)
The field of automated machine learning (AutoML) introduces techniques that automate parts of the development of machine learning (ML) systems, accelerating the process and reducing barriers for novices. However, decisions derived from ML models can reproduce, amplify, or even introduce unfairness in our societies, causing harm to (groups of) indiv...
Modern machine learning models are often constructed taking into account multiple objectives, e.g., minimizing inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models, and the approximation of the Pareto front is used to assess their performance. In practice, we also...
The field of automated machine learning (AutoML) introduces techniques that automate parts of the development of machine learning (ML) systems, accelerating the process and reducing barriers for novices. However, decisions derived from ML models can reproduce, amplify, or even introduce unfairness in our societies, causing harm to (groups of) indiv...
Modern machine learning models are often constructed taking into account multiple objectives, e.g., to minimize inference time while also maximizing accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return such candidate models and the approximation of the Pareto front is used to assess their performance. However, when estimat...
We present TabPFN, an AutoML method that is competitive with the state of the art on small tabular datasets while being over 1,000$\times$ faster. Our method is very simple: it is fully entailed in the weights of a single neural network, and a single forward pass directly yields predictions for a new dataset. Our AutoML method is meta-learned using...
Machine Learning (ML) is hard. It is hard because the available data grows, the complexity of applications increases and the requirements change rapidly. At the same time, ML provides the key to modern disruptive AI-driven technology. New ML methods arise and yield powerful solutions. However, often not the method but rather its hyperparameter sett...
Algorithm parameters, in particular hyperparameters of machine learning algorithms, can substantially impact their performance. To support users in determining well-performing hyperparameter configurations for their algorithms, datasets and applications at hand, SMAC3 offers a robust and flexible framework for Bayesian Optimization, which can impro...
To achieve peak predictive performance, hyperparameter optimization (HPO) is a crucial component of machine learning and its applications. Over the last years,the number of efficient algorithms and tools for HPO grew substantially. At the same time, the community is still lacking realistic, diverse, computationally cheap,and standardized benchmarks...
In this short note, we describe our submission to the NeurIPS 2020 BBO challenge. Motivated by the fact that different optimizers work well on different problems, our approach \emph{switches} between different optimizers.\footnote{Switching between algorithms also relates to work on \emph{chaining} or \emph{algorithm schedules}.} Since the team nam...
In many fields of study, we only observe lower bounds on the true response value of some experiments. When fitting a regression model to predict the distribution of the outcomes, we cannot simply drop these right-censored observations, but need to properly model them. In this work, we focus on the concept of censored data in the light of model-base...
Automated Machine Learning, which supports practitioners and researchers with the tedious task of manually designing machine learning pipelines, has recently achieved substantial success. In this paper we introduce new Automated Machine Learning (AutoML) techniques motivated by our winning submission to the second ChaLearn AutoML challenge, PoSH Au...
Bayesian Optimization (BO) is a common approach for hyperparameter optimization (HPO) in automated machine learning. Although it is well-accepted that HPO is crucial to obtain well-performing machine learning models, tuning BO's own hyperparameters is often neglected. In this paper, we empirically study the impact of optimizing BO's own hyperparame...
Hyperparameter optimization and neural architecture search can become prohibitively expensive for regular black-box Bayesian optimization because the training and evaluation of a single model can easily take several hours. To overcome this, we introduce a comprehensive tool suite for effective multi-fidelity Bayesian optimization and the analysis o...
The success of machine learning in a broad range of applications has led to an ever-growing demand for machine learning systems that can be used off the shelf by non-experts. To be effective in practice, such systems need to automatically choose a good algorithm and feature preprocessing steps for a new dataset at hand, and also set their respectiv...
Many state-of-the-art algorithms for solving hard combinatorial problems in artificial intelligence (AI) include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-al...
The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation o...
Many state-of-the-art algorithms for solving hard combinatorial problems include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance, across runs with different pseudo-random number seeds. Knowledge about the runtime distributions (RTDs) of algorithms on given problem instances can be exploited in va...
We apply convolutional neural networks (ConvNets) to the task of distinguishing pathological from normal EEG recordings in the Temple University Hospital EEG Abnormal Corpus. We use two basic, shallow and deep ConvNet architectures recently shown to decode task-related information from EEG at least as well as established algorithms designed for thi...
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to v...
Good parameter settings are crucial to achieve high performance in many areas of artificial intelligence (AI), such as satisfiability solving, AI planning, scheduling, and machine learning (in particular deep learning). Automated algorithm configuration methods have recently received much attention in the AI community since they replace tedious, ir...
Good parameter settings are crucial to achieve high performance in many areas of artificial intelligence (AI), such as propositional satisfiability solving, AI planning, scheduling, and machine learning (in particular deep learning). Automated algorithm configuration methods have recently received much attention in the AI community since they repla...
The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation o...
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, i.e. learning from the raw data. Now, there is increasing interest in using deep ConvNets for end-to-end EEG analysis. However, little is known about many important aspects of how to design and train ConvNets for end-to-e...
To achieve peak performance, it is often necessary to adjust the parameters of a given algorithm to the class of problem instances to be solved; this is known to be the case for popular solvers for a broad range of AI problems, including AI planning, propositional satisfiability (SAT) and answer set programming (ASP). To avoid tedious and often hig...
Hyperparameter optimization is crucial for achieving peak performance with many machine learning algorithms; however, the evaluation of new optimization techniques on real-world hyperparameter optimization problems can be very expensive. Therefore, experiments are often performed using cheap synthetic test functions with characteristics rather diff...
Since hyperparameter optimization is crucial for achieving peak performance with many machine learning algorithms, an active research community has formed around this problem in the last few years. The evaluation of new hyperparameter optimization techniques against the state of the art requires a set of benchmarks. Because such evaluations can be...