Kaspar E Vogt

Kaspar E Vogt
  • MD-PhD
  • Professor (Associate) at University of Tsukuba

About

95
Publications
11,313
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,985
Citations
Current institution
University of Tsukuba
Current position
  • Professor (Associate)
Additional affiliations
February 2014 - present
University of Tsukuba
Position
  • Professor (Associate)
February 2006 - September 2013
University of Basel
Position
  • Professor (Assistant)
May 2002 - January 2006
University of Zurich
Position
  • Professor (Assistant)
Description
  • SNF Professorship

Publications

Publications (95)
Article
Full-text available
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These s...
Preprint
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These slee...
Preprint
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These slee...
Preprint
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These slee...
Preprint
Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2-3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These slee...
Article
Full-text available
Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive with...
Preprint
Full-text available
The response to sleep loss, induced by experimental sleep deprivation (SD), provides insight into the function of sleep. Earlier observations have shown an overall increase in synaptic strength and number of cortical, glutamate, AMPA receptor (AMPAR) synapses in response to SD that is recovered by sleep. However, other aspects of glutamatergic tran...
Preprint
Despite the importance of sleep to the cerebral cortex, how much sleep changes cortical neuronal firing remains unclear due to complicated firing behaviors. Here we quantified firing of cortical neurons using Hawkes process modeling that can model sequential random events exhibiting temporal clusters. "Intensity" is a parameter of Hawkes process th...
Preprint
Full-text available
Traditionally, the neuronal dynamics underlying electroencephalograms (EEG) have been understood as arising from \textit{rhythmic oscillators with varying degrees of synchronization}. This dominant metaphor employs frequency domain EEG analysis to identify the most prominent populations of neuronal current sources in terms of their frequency and sp...
Article
Full-text available
Study objective Traditionally, age-related deterioration of sleep architecture in older individuals has been evaluated by visual scoring of polysomnographic (PSG) recordings with regard to total sleep time and latencies. In the present study, we additionally compared the non-REM sleep (NREM) stage and delta, theta, alpha, and sigma wave stability b...
Article
Full-text available
We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4...
Article
Full-text available
Non-rapid eye movement (NREM) sleep is tightly homeostatically regulated and essential for survival. In the electroencephalogram (EEG), oscillations in the delta (0.5–4 Hz) range are prominent during NREM sleep. These delta oscillations are, to date, the best indicator for homeostatic sleep regulation; they are increased after prolonged waking and...
Article
Full-text available
Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortic...
Article
Full-text available
Exercise can improve sleep by reducing sleep latency and increasing slow-wave sleep (SWS). Some studies, however, report adverse effects of exercise on sleep architecture, possibly due to a wide variety of experimental conditions used. We examined the effect of exercise on quality of sleep using standardized exercise parameters and novel analytical...
Article
Full-text available
Sleep is mandatory in most animals that have the nervous system and is universally observed in model organisms ranging from the nematodes, zebrafish, to mammals. However, it is unclear whether different sleep states fulfill common functions and are driven by shared mechanisms in these different animal species. Mammals and birds exhibit two obviousl...
Article
Significance Thalidomide was introduced in 1950s as a safe and effective hypnotic but was subsequently withdrawn from the market due to its devastating teratogenicity in humans. More recently, thalidomide has reemerged as an antineoplastic and immunomodulatory medicine. The teratogenic and immunomodulatory effects of thalidomide have been attribute...
Article
The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born...
Article
Full-text available
Cortical neurons fire intermittently and synchronously during non-rapid eye movement sleep (NREMS), in which active and silent periods are referred to as ON and OFF periods, respectively. Neuronal firing rates during ON periods (NREMS-ON-activity) are similar to those of wakefulness (W-activity), raising the possibility that NREMS-ON neuronal-activ...
Article
Full-text available
Cortical networks exhibit large shifts in spontaneous dynamics depending on the vigilance state. Waking and rapid eye movement (REM) sleep are characterized by ongoing irregular activity of cortical neurons while during slow wave sleep (SWS) these neurons show synchronous alterations between silent (OFF) and active (ON) periods. The network dynamic...
Article
The amount, quality and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neurop...
Article
Full-text available
Significance Narcolepsy-cataplexy is a debilitating disorder characterized by excessive daytime sleepiness (sleep attacks) and cataplexy, a sudden bilateral loss of muscle tone often triggered by emotion. The disease is caused by a selective loss of hypothalamic neurons producing the neuropeptide orexin. Currently, only symptomatic therapies are av...
Article
Full-text available
Hippocampal long-term potentiation (LTP) represents the cellular response of excitatory synapses to specific patterns of high neuronal activity and is required for learning and memory. Here we identify a mechanism that requires the calcium-binding protein Copine-6 to translate the initial calcium signals into changes in spine structure. We show tha...
Data
Copine-6 translocates into spines after addition of NMDA. Time lapse microscopy of DIV14 hippocampal neurons expressing Copine-6-GFP (green) and cytosolic tdRFP (red). The movie starts immediately after the application of NMDA. The movie spans 14 minutes with 30 sec/frame.
Data
Supplementary Figures 1-10 and Supplementary Reference
Data
Distribution of GFP in hippocampal neurons is not affected by NMDA treatment. Time lapse microscopy of DIV14 hippocampal neurons expressing GFP (green) and cytosolic tdRFP (red). The movie starts immediately after the application of NMDA. The movie spans 20 minutes with 20 sec/frame.
Article
GABAA receptor-mediated synaptic transmission is responsible for inhibitory control of neural function in the brain. Recent progress has shown that GABAA receptors also provide a wide range of additional functions beyond simple inhibition. This diversity of functions is mediated by a large variety of different interneuron classes acting on a divers...
Article
Membrane potential imaging using voltage-sensitive dyes can be combined with other optical techniques for a variety of applications. Combining voltage imaging with Ca(2+) imaging allows correlating membrane potential changes with intracellular Ca(2+) signals or with Ca(2+) currents. Combining voltage imaging with uncaging techniques allows analyzin...
Article
Full-text available
Neuregulin-1s (NRG-1s) are a family of growth and differentiation factors with multiple roles in the development and function in different organs including the nervous system. Among the proposed functions of NRG-1s in the nervous system is the regulation of genes encoding certain neurotransmitter receptors during synapse formation as well as of oth...
Article
Full-text available
Information processing in the central nervous system makes use of densely woven networks of neurons with complex dendritic and axonal arborizations. Studying signaling in such a network requires precise control over the activity of specific neurons and an understanding how the synaptic signals are integrated. We established a system using a recentl...
Article
Full-text available
Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-d...
Article
Full-text available
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of thei...
Article
Full-text available
Murine stem cell-derived neurons have been used to study a wide variety of neuropsychiatric diseases with a hereditary component, ranging from autism to Alzheimer's. While a significant amount of data on their molecular biology has been generated, there is little data on the physiology of these cultures. Different mouse strains show clear differenc...
Article
Full-text available
Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(...
Article
Full-text available
The ability to monitor Ca(2+) signals and membrane potential simultaneously at multiple locations on the same neuron facilitates further progress in our understanding of neuronal function. In particular, this method allows correlation of electrical and chemical signals from multiple sites, including those inaccessible to microelectrodes. This proto...
Article
Full-text available
Feedforward inhibition controls the time window for synaptic integration and ensures temporal precision in cortical circuits. There is little information whether feedforward inhibition affects neurons uniformly, or whether it contributes to computational refinement within the dendritic tree. Here we demonstrate that feedforward inhibition crucially...
Article
Full-text available
Neuronal signal integration as well as synaptic transmission and plasticity highly depend on the morphology of dendrites and their spines. Nogo-A is a membrane protein enriched in the adult central nervous system (CNS) myelin, where it restricts the capacity of axons to grow and regenerate after injury. Nogo-A is also expressed by certain neurons,...
Article
Full-text available
The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific...
Article
Full-text available
The functional relevance of brain-derived neurotrophic factor (BDNF) is beginning to be well appreciated not only in mice, but also in humans. Because reduced levels typically correlate with impaired neuronal function, increasing BDNF levels with well-tolerated drugs diffusing into the central nervous system may help in ameliorating functional defi...
Article
Full-text available
The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental o...
Data
Animation of a shunting inhibition experiment using combined voltage imaging and local GABA photorelease. Back-propagating action in a CA1 hippocampal pyramidal neuron apical dendrite under control conditions and 15 ms after an episode of 1 ms GABA photorelease. (WMV)
Article
Full-text available
Combining membrane potential imaging using voltage sensitive dyes with photolysis of L-glutamate or GABA allows the monitoring of electrical activity elicited by the neurotransmitter at different sub-cellular sites. Here we describe a simple system and some basic experimental protocols to achieve these measurements. We show how to apply the neurotr...
Article
GABAergic transmission regulates adult neurogenesis by exerting negative feedback on cell proliferation and enabling dendrite formation and outgrowth. Further, GABAergic synapses target differentiating dentate gyrus granule cells prior to formation of glutamatergic connections. GABA(A) receptors (GABA(A) Rs) mediating tonic (extrasynaptic) and phas...
Article
Combining voltage and Ca(2+) imaging allows the correlation of electrical and chemical activity at sub-cellular level. Here we describe a novel apparatus designed to obtain simultaneous voltage and Ca(2+) measurements with single-trial resolution from sites as small as a few microns. These measurements can be obtained with negligible optical cross-...
Chapter
A central question in neuronal network analysis is how the interaction between individual neurons produces behavior and behavioral modifications. This task depends critically on how exactly are signals integrated by individual nerve cells functioning as complex operational units. Regional electrical properties of branching neuronal processes that d...
Article
Studies of the spatio-temporal distribution of inhibitory postsynaptic potentials (IPSPs) in a neuron have been limited by the spatial information that can be obtained by electrode recordings. We describe a method that overcomes these limitations by imaging IPSPs with voltage-sensitive dyes. CA1 hippocampal pyramidal neurons from brain slices were...
Article
Full-text available
In the last decade, several experimental studies have demonstrated that particular patterns of synaptic activity can induce postsynaptic parallel fiber (PF) long-term potentiation (LTP). This form of plasticity can reverse postsynaptic PF long-term depression (LTD), which has been traditionally considered as the principal form of plasticity underly...
Article
The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently develop...
Article
Full-text available
Neuregulin-1s (NRG-1s) are a family of growth and differentiation factors with multiple roles in the development and function in different organs including the nervous system. Among the proposed functions of NRG-1s in the nervous system is the regulation of genes encoding certain neurotransmitter receptors during synapse formation as well as of oth...
Article
Full-text available
GABA B receptor subtypes are based on the subunit isoforms GABA B1a and GABA B1b, which associate with GABA B2 subunits to form pharmacologically indistinguishable GABA B(1a,2) and GABA B(1b,2) receptors. Studies with mice selectively expressing GABA B1a or GABA B1b subunits revealed that GABA B(1a,2) receptors are more abundant than GABA B(1b,2) r...
Data
Data not directly related to the main results of the report, but supporting the principal experiements (0.41 MB DOC)
Article
Valerian extracts have been used for centuries to alleviate restlessness and anxiety albeit with unknown mechanism of action in vivo. We now describe a specific binding site on GABA(A) receptors with nM affinity for valerenic acid and valerenol, common constituents of valerian. Both agents enhanced the response to GABA at multiple types of recombin...
Article
Full-text available
The architecture of parallel fiber (PF) axons contacting cerebellar Purkinje neurons (PNs) retains spatial information over long distances. PF synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to plastic changes that decode the PF input organization is unknown. By combining voltage and calcium imagin...
Article
Full-text available
The ability to monitor membrane potential (V m) and calcium (Ca2+) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V m and Ca2+ imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca2+ indicators. In all cases V m o...
Article
Full-text available
The architecture of parallel fiber axons contacting cerebellar Purkinje neurons retains spatial information over long distances. Parallel fiber synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to plastic changes that decode the parallel fiber input organization is unknown. By combining voltage and c...
Article
Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely...
Article
The main inhibitory neurotransmitter in the mammalian brain, GABA, mediates multiple forms of inhibitory signals, such as fast and slow inhibitory postsynaptic currents and tonic inhibition, by activating a diverse family of ionotropic GABA(A) receptors (GABA(A)Rs). Here, we studied whether distinct GABA(A)R subtypes mediate these various forms of...
Article
The main inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), mediates multiple forms of inhibitory signals, such as fast and slow inhibitory postsynaptic currents and tonic inhibition, by activating a diverse family of ionotropic GABAA receptors (GABAARs). Here, we have investigated whether distinct GABAAR subtypes m...
Article
Full-text available
Synapse formation and maintenance require extensive transsynaptic interactions involving multiple signal transduction pathways. In the cerebellum, Purkinje cells (PCs) receive GABAergic, axo-dendritic synapses from stellate cells and axo-somatic synapses from basket cells, both with GABAA receptors containing the alpha1 subunit. Here, we investigat...
Chapter
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in brain function. GABAergic interneurons are highly diverse. The respective GABAA receptor subtypes, therefore, provide new opportunities not only for understanding GABA-dependent pathophysiologies but also for targeting of selective neuronal circui...
Article
The amygdala is under inhibitory control from the cortex through the activation of local GABAergic interneurons. This inhibition is greatly diminished during heightened emotional states due to dopamine release. However, dopamine excites most amygdala interneurons, suggesting that this dopaminergic gate may be mediated by an unknown subpopulation of...
Article
The molecular mechanisms underlying general anesthesia are only beginning to be understood. In this summary, we describe how the role of specific GABAA receptor subtypes in mediating the clinically relevant actions of general anesthetics has been defined by genetic studies in vivo. In particular, we describe our findings with mice engineered to con...
Article
The targets which mediate the actions of the volatile general anaesthetic isoflurane are unknown. Based on pharmacological studies using GABA(A) receptor antagonists it has recently been suggested that GABA(A) receptors would not mediate the immobilizing action of isoflurane. Using the beta3(N265M) knock-in mouse model we found that the mutant mice...
Article
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in brain function. GABAergic interneurons are highly diverse. The respective GABA(A) receptor subtypes, therefore, provide new opportunities not only for understanding GABA-dependent pathophysiologies but also for targeting of selective neuronal circ...
Article
The occupation of the glycine binding-site is a prerequisite for NMDA receptor activation by glutamate. To analyze the regulation of NMDA receptor function by the glycine transporter 1 (GlyT1), we generated heterozygous constitutive GlyT1 knockout mice (GlyT1tm1.1(+/-)). These animals were fully viable. Using a newly generated antibody, the pattern...
Article
The physiological significance of the large diversity of GABA A receptors is poorly understood. Using mice, which carry a point mutation that renders specific subtypes of GABA A receptors diazepam insensitive, it was recently discovered that particular types of GABA A receptors are involved in specific, behaviorally relevant signaling pathways. We...
Article
Long-term potentiation (LTP) is the most prominent model for the molecular and cellular mechanisms of learning and memory. Two main forms of LTP have been distinguished. The N-methyl-D-aspartate-receptor-dependent forms of LTP have been studied most extensively, whereas much less is known about N-methyl-D-aspartate-receptor-independent forms of LTP...
Article
Full-text available
General anesthetics are widely used in clinical practice. On the molecular level, these compounds have been shown to modulate the activity of various neuronal ion channels. However, the functional relevance of identified sites in mediating essential components of the general anesthetic state, such as immobility and hypnosis, is still unknown. Using...
Article
Full-text available
The heterogeneity of gamma-aminobutyric acid type A (GABA(A)) receptors contributes to the diversity of neuronal inhibition in the regulation of information processing. Although most GABA(A) receptors are located synaptically, the small population of alpha5GABA(A) receptors is largely expressed extrasynaptically. To clarify the role of the alpha5GA...
Article
Full-text available
Recent evidence suggests that internal calcium stores and calcium-induced calcium release (CICR) provide an important source of calcium that drives short-term presynaptic plasticity at central synapses. Here we tested for the involvement of CICR in short-term presynaptic plasticity at six excitatory synapses in acute rat hippocampal and cerebellar...
Article
Full-text available
Cholinergic innervation of the hippocampus has been implicated in memory formation and retrieval. Here we study cholinergic modulation of excitatory transmission in the CA3 area of the rat hippocampus. We used a combination of optical measurements of presynaptic calcium and electrophysiological measurements of synaptic currents to study association...
Article
Zn2+ is present at high concentrations in the synaptic vesicles of hippocampal mossy fibers. We have used Zn2+ chelators and the mocha mutant mouse to address the physiological role of Zn2+ in this pathway. Zn2+ is not involved in the unique presynaptic plasticities observed at mossy fiber synapses but is coreleased with glutamate from these synaps...
Article
Mossy fiber synapses form the major excitatory input into the autoassociative network of pyramidal cells in the CA3 area of the hippocampus. Here we demonstrate that at the mossy fiber synapses, glutamate and gamma-aminobutyric acid (GABA) act as autaptic and heterosynaptic presynaptic inhibitory transmitters through metabotropic glutamate receptor...
Article
Introduction A skeletal muscle consists of several hundred motor units of different sizes. Due to the large number and the different properties of these units, their order of recruitment has to be specified in an suitable way. This task is autonomously performed by the motoneuron pool in the spinal cord. The pool as a whole receives input from the...
Article
Full-text available
This technical report is a survey of possible explanations of the size principle for recruitment of motor units. As a pre-study for further works, we collected existing explanations, suggested some new ones and collected them. According to the constitution of our own group, the report is divided into 2 parts: a collection from a physiological point...
Article
The distinction between pre- or postsynaptic expression of synaptic plasticity is difficult to make, unless the postsynaptic receptors can be investigated in isolation. We have studied single synaptic contacts in dissociated cultures of rat hippocampus. The reaction of postsynaptic receptor assemblies to the induction of synaptic plasticity was mea...
Article
this report 1 2 Sources of information 2 3 How to use this report 3
Article
Full-text available
The classical view of fast chemical synaptic transmission is that released neurotransmitter acts locally on postsynaptic receptors and is cleared from the synaptic cleft within a few milliseconds by diffusion and by specific reuptake mechanisms. This rapid clearance restricts the spread of neurotransmitter and, combined with the low affinities of m...
Article
A three-dimensional model for release and diffusion of glutamate in the synaptic cleft was developed and solved analytically. The model consists of a source function describing transmitter release from the vesicle and a diffusion function describing the spread of transmitter in the cleft. Concentration profiles of transmitter at the postsynaptic si...
Article
We consider a randomly connected neural network with linear threshold elements which update in discrete time steps. The two main features of the network are: (1) equally distributed and purely excitatory connections and (2) synaptic depression after repetitive firing. We focus on the time evolution of the expected network activity. The four types o...
Article
The spatial organization of receptor channels has a major influence on the speed and possible plasticity of synaptic signal transmission. We have studies glutamatergic synapses on neurons in organotypic cultures of rat spinal cord. In order to avoid the problems related to the analysis of currents of unknown origin within a neuron, we chose to exam...

Network

Cited By