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A B S T R A C T   

DDoS attacks, also known as distributed denial-of-service attacks, pose a significant risk to networks in the cloud. 
The attackers aim to flood the target system with an overwhelming amount of data and requests until it becomes 
completely overloaded and unable to function properly. These attacks are becoming smarter and more dangerous 
all the time. A low-rate DDoS attack is one such strategy that makes detection difficult. At the same time, cloud 
infrastructure is rapidly evolving. Container-based technology makes it possible for cloud computing to use 
resources efficiently and scale services in a flexible way. Existing methods for detecting DDoS attacks in cloud 
computing are insufficient when adversaries use low-rate DDoS attacks. A method is required that can not only 
identify the attack but also prevent it to some extent. A Low-Rate DDoS Attack Detection Framework (LRDADF) 
was proposed for this purpose when adversaries use low-rate DDoS attacks. A comprehensive approach is 
required because low-rate DDoS attacks are difficult to detect. In addition to employing deep learning methods to 
detect such attacks, we proposed a mathematical model to realize a mitigation strategy. As a result, we proposed 
a new algorithm called the Hybrid Approach for Low-Rate DDoS Detection (HA-LRDD). The algorithm employs 
an AI-enabled method comprised of deep convolutional neural networks (CNN) and a deep auto encoder. We 
defined another algorithm called Dynamic Low-Rate DDoS Mitigation (DLDM), which mitigates the impact of an 
attack once it has been identified. It also ensures that the attack is defeated and that the infrastructure continues 
to operate. A comprehensive simulation study revealed that the proposed framework is capable of detecting and 
mitigating low-rate DDoS attacks to ensure an acceptable level of service in cloud computing environments.   

1. Introduction 

In the past few years, there has been a surge in Distributed Denial of 
Service (DDoS) attacks on cloud-based services due to the widespread 
use of cloud computing [1]. These attacks are a form of cyber-attack 
where an attacker floods a server, website, or network with excessive 
traffic or requests to interrupt its regular functioning. As a result, 
legitimate users are unable to access the service, causing significant 
harm, particularly in cloud computing environments where multiple 
services rely on one another. 

The detection of low-rate DDoS attacks in cloud computing envi
ronments is a challenging task due to the large-scale and dynamic nature 
of cloud environments [2], the wide range of possible attack vectors, and 

the need to balance detection accuracy with minimal impact on legiti
mate traffic. Traditional signature-based detection methods are not 
effective against these attacks as they rely on identifying known attack 
patterns, which are often modified by attackers to avoid detection. 
Moreover, cloud environments are highly heterogeneous, consisting of 
various devices with different capabilities and resources, making it 
difficult to deploy a uniform defense mechanism across the entire 
environment. 

The main problem addressed in this research is the detection of low- 
rate DDoS attacks in cloud computing environments. Low-rate attacks 
are particularly challenging to detect as they involve a small amount of 
traffic that is spread over a long period, making it difficult to distinguish 
from legitimate traffic [3]. The proposed solution aims to detect these 
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attacks by leveraging machine learning techniques and network traffic 
analysis to identify anomalous traffic patterns that are indicative of a 
DDoS attack. 

The reason for conducting this research is to enhance the safety of 
cloud computing environments by implementing an effective and effi
cient system for identifying low-rate DDoS attacks. These attacks have 
the potential to cause substantial harm to cloud services, resulting in 
negative publicity and financial loss for both the cloud service providers 
and their customers. The solution proposed is to create an AI-based 
framework capable of detecting these attacks instantly, thereby mini
mizing their impact and bolstering the overall security of cloud 
environments. 

In cloud computing environments, various devices are considered, 
including servers, virtual machines, storage devices, and networking 
devices [4]. These devices have different capabilities and resources, and 
they are often provided by different vendors, leading to a highly het
erogeneous environment. The heterogeneity of cloud environments 
poses a challenge for developing a uniform defense mechanism that can 
be applied to all devices. The proposed solution aims to address this 
challenge by providing a device-agnostic framework that can be applied 
to various devices in the cloud environment. 

The heterogeneity of cloud environments refers to the diversity of 
devices, platforms, and services that make up the environment [5]. This 
heterogeneity makes it challenging to develop a uniform defense 
mechanism that can be applied to all devices. The proposed solution 
aims to address this challenge by providing a device-agnostic framework 
that can be applied to various devices in the cloud environment. This 
framework leverages machine learning techniques to identify anoma
lous traffic patterns and can be applied to different devices, regardless of 
their capabilities or resources [6]. 

The device request specification refers to the process of specifying 
the requirements of a device that will be used to support the proposed 
solution. These requirements include the hardware and software speci
fications, network connectivity, and other resources needed to deploy 
and operate the solution. The device request specification process is 
critical to ensuring that the solution can be deployed effectively and 
efficiently across the cloud environment [7]. The proposed solution aims 
to provide a flexible and scalable approach to detecting low-rate DDoS 
attacks in cloud computing environments. Therefore, the device request 
specification needs to consider the heterogeneity of devices within the 
cloud environment [8]. This refers to the fact that the cloud infra
structure comprises a variety of devices with different hardware speci
fications, software versions, and network configurations. The solution 
needs to be able to operate on this heterogeneous infrastructure seam
lessly. Hence, the device request specification process needs to take into 
account the different types of devices that will be considered for the 
solution, their capabilities, and limitations [9]. This will enable the 
proposed solution to be optimized for each device, leading to better 
performance and improved detection accuracy. 

In this paper, we’re suggesting a technique that relies on deep 
learning, specifically using CNN and deep autoencoders. Our contribu
tions can be summarized as follows.  

1. The paper proposes a framework for detecting low-rate Distributed 
Denial of Service (DDoS) attacks using a combination of Sparse 
Autoencoder (SAE) and Convolutional Neural Network (CNN).  

2. The proposed framework is implemented using an algorithm called 
Hybrid Approach for Low-Rate DDoS Detection (HA-LRDD), which 
involves feature extraction, normalization, deep neural networks, 
and classification.  

3. The paper introduces two evaluation metrics, detection rate and false 
positive rate, to compare the proposed method with existing methods 
and demonstrates the effectiveness of the proposed method. 

This paper introduces a new framework and algorithm that can 
detect low-rate DDoS attacks. By using an autoencoder, dropout 

techniques, and CNN, the proposed method shows better performance 
than previous methods. The evaluation metrics used provide a 
comprehensive analysis of the proposed method’s performance. 

The paper is organized as follows: Section 2 covers literature on 
different types of attacks and solutions, providing valuable insights and 
identifying research gaps. Section 3 introduces the proposed system, 
while Section 4 presents experimental results and performance evalua
tion. Finally, Section 5 concludes the paper and provides directions for 
future research. 

2. Related work 

This section provides a literature review of the tools that can be used 
to detect DDoS attacks in the cloud. It also elucidates low-rate. 

2.1. DDoS attack detection in cloud environments 

In view of cloud computing, DDoS attackers shifted their targets to 
cloud environments. Sharma et al. [10] explored DoS attacks in the 
cloud and defined a method based on Shannon’s entropy for detection. 
In addition to discarding the traffic, it could detect such attacks and 
generate an alarm. Srilakshmi p et al. [11] investigated the DDoS attack 
defence mechanisms for cloud environments. They discussed different 
kinds of DDoS attacks, such as reflective attacks, spoofing, web-service 
addressing, coercive parsing, port scanning, user-to-root attacks, 
spoofing, and flooding. They classified attacks based on the IDS 
approach, scalability, user authentication, and response mechanism. 
They intend to conduct additional research on VM attacks in the cloud. 
Agrawal and Tapaswi [12] studied methods to defend DDoS attacks in 
the cloud and observed certain challenges in defence mechanisms. The 
open challenges they found include the heterogeneity of botnet devices 
in IoT use cases, the vulnerability of SDNs, cheaper means of creating 
botnets, and the presence of DeNy attacks in the cloud. 

Bhushan and Gupta [13] explored SDN-based solutions to detect 
DDoS attacks in cloud environments. They exploited the features of SDN 
in order to have a better and more focused approach towards attack 
detection. Their architecture has different components for data, appli
cation, and control planes. Hezavehi and Rahmani [14] proposed a 
third-party auditing approach in their anomaly-based DDoS attack 
detection framework. Anomaly auditing was carried out by third-party 
auditors. It makes use of deviations in response times in order to 
detect attack scenarios. Wani et al. [15] investigated ML approaches for 
the detection of DDoS attacks. Their attack model has a botnet with 
zombies in order to analyse the proposed method. Hu et al. [16] defined 
a system known as DDoS Flooding Attack Detection and Mitigation 
(FADM). It is in the presence of an SDN-based controller that collects 
traffic patterns. An entropy-based measure and ML techniques like SVM 
are used to detect attacks. In the future, they intend to improve it to 
detect DDoS attacks at the application layer. 

Buragohain and Medhi [17] proposed an SDN-based system to detect 
such attacks in the cloud. They employed a 4-port tree topology in the 
empirical study. Their solution is named FlowTrApp. Bhushan and 
Gupta [18] used an SDN-assisted cloud to propose a DDoS attack 
detection method. In such clouds, they observed many security vulner
abilities linked to scalability, availability, access control, threats from 
applications, fraudulent flow rules, authentication and authorization, 
DDoS attacks, and flow table overloading. Their approach could protect 
SDN from DDoS attacks. 

Kushwah and Ranga [19] provided a system to detect DDoS attacks. 
It is an approach based on voting machines with extreme learning ca
pabilities. It is a kind of artificial neural network (ANN) used to detect 
network attack traffic effectively. Sahi et al. [20] developed a system to 
detect flooding attacks that deplete cloud resources. Their solution has 
detection and prevention mechanisms. It could reduce the chances of 
attacks and optimize resource utilization. Dong et al. [21] explored SDN 
architecture for the cloud and its vulnerabilities, along with defence 
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mechanisms against DDoS attacks. Tsai et al. [22] do similar research 
that focuses more on VM attacks. Somani et al. [23] investigated 
methods to combat DDoS attacks. The methods include attack filtering, 
mitigation through time, and collaboration approaches. They antici
pated trouble with DDoS attacks in the future due to the emerging "DDoS 
for hire" services. 

Liu et al. [24] proposed an algorithm known as BIRTH based on a 
novel network flow grouping method. It could prevent periodic swarm 
DDoS attacks. Autocorrelation of frequency domain characteristics is 
used to achieve this. Kamboj et al. [25] studied various DDoS attacks, 
including distributed reflective denial of service (DRDoS). Prathyusha 
and Kannayaram [26] proposed an artificial immune system that is 
based on a cognitive procedure to mitigate DDoS attacks. Rios et al. [27] 
combined ML and fuzzy logic to propose a method to detect 
reduction-of-quality DDoS attacks. Osanaiye et al. [28] explored DDoS 
attacks in the cloud and mitigation strategies. 

2.2. Dealing with low rate DDoS attacks 

DDoS attacks exhibit large volumes of traffic. Low-rate DDoS attacks, 
on the other hand, maintain low traffic, making detection difficult. 
Perez-Diaz et al. [29] explored a software-defined network (SDN)-based 
architecture for detecting and mitigating DDoS attacks. Their solution is 
based on machine learning techniques. They trained an IDS in order to 
have protection from DDoS attacks. Their method could produce higher 
accuracy in detecting low-rate DDoS attacks and mitigating them. 
Agrawal and Tapaswi [30] proposed a lightweight method for detecting 
low-rate DDoS attacks belonging to the IP spoofing category. It is an 
adaptive approach that could handle high-rate DDoS attacks as well in 
an Eucalyptus cloud environment. In the future, they intend to focus on 
differentiating legitimate packets from spoof packets. 

Bhushan and Gupta [31] proposed a hypothesis and tested it with 

respect to low-rate DDoS attacks in cloud environments. Attack repre
sentation and detection processes are discussed in detail. It could 
differentiate between an attack period and a non-attack period. Their 
algorithm cloud detects attacks with a traffic sampling rate and 
threshold. Liu et al. [32] proposed a methodology using edge computing 
and deep CNN-based Q-Learning to detect low-rate DDoS attacks. In the 
process, they also used ML techniques like SVM to classify traffic pat
terns. They intended to improve it further to deal with sparse traffic as 
well. Zhang et al. [33] proposed a PSD and ML-based technique. PSD 
entropy and adaptive threshold are used to achieve this effectively. 
Sahoo et al. [34] used information-distance metrics to detect attacks in 
SDN-based cloud data centers. An OpenFlow SDN controller is used for 
empirical study. In an SDN-based cloud computing scenario, they could 
look into security issues at the control plane. 

Yevsieieva and Helalat [35] focused on finding the effects of low-rate 
DDoS attacks on cloud environments. Zhou et al. [36] proposed a 
method based on the expectation of packet size to detect low-rate DDoS 
attacks. They used it as a measure to distinguish between good traffic 
and malicious traffic pertaining to pulsing attacks and constant attacks. 
Different tolerance factors are used in order to have an effective solu
tion. Liu et al. [37] proposed a method based on a measure known as 
behavior divergence and data compression to ascertain the presence of 
low-rate DDoS. Agrawal and Tapaswi [38] defined a defence against 
such attacks based on "power spectral density analysis." By monitoring 
traffic patterns, their method could identify the attacks. Wu et al. [39] 
proposed an algorithm based on sequence alignment detection for 
detecting synchronous low-rate DDoS attacks. Literature has shown that 
there have been methods to detect low-rate DDoS attacks. However, 
supervised machine learning is not suitable for such attacks due to 
inadequate training samples. In this paper, we propose a method based 
on deep learning, particularly CNN and deep autoencoders. 

Fig. 1. The system model showing the problem context for low rate DDoS attacks.  
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3. Proposed methodology 

The proposed methodology is described in the following subsections 
that focus on the attack model, the proposed framework, and algorithm 
and evaluation procedure. 

3.1. The attack model 

With low-rate DDoS attacks, the attacker performs attacks at a low 
cost. However, it comes at the cost of wasting bots’ capabilities. In the 
presence of edge computing, there are more chances of being vulnerable 
to low-rate DDoS attacks. Fig. 1 shows a system model showing the 
context of the problem for low-rate DDoS attacks (see Fig. 2). 

As presented in Fig. 1, the system model includes traditional cloud 
infrastructure and also edge computing resources. There are normal 
users and also abnormal users who launch shrewd attacks. 

3.2. Deep autoencoder 

The deep autoencoder has mechanisms for encoding and decoding. 
The former generates low-dimensional space from its high-dimensional 
space for given data. This transformation of data is useful to arrive at 
features that contribute to the detection of attack traffic. In the presence 
of autoencoders, regularization and dimensionality reduction have a 
role to play. Particularly, regularization identifies nodes that have a high 
impact on the outcomes of the network. An approximation process is 
learned at the hidden layer while the data reconstruction takes place at 
the output layer. 

A simple autoencoder is aimed at reducing loss, improving model 
accuracy, and speeding up convergence. The autoencoder learns from 
traffic patterns and helps in recognizing attack traffic. The extracted 
statistical features help in the detection of such traffic. A min-max-based 
approach shown in Eq. (1) is used for normalization. 

xnorm =
xi − xmin

xmax − xmi n
(1)  

Where xnorm is the normalized value xi is a feature’s value; xmin and xmax 
are minimum and maximum values respectively. 

3.3. Proposed framework 

The framework for detecting low-rate DDoS attacks using a combi
nation of sparse auto-encoders (SAE) and convolutional neural networks 
(CNN) consists of the following steps.  

1. Data collection: The initial step is to gather information from the 
network traffic, comprising both regular and offensive traffic. The 
information is accumulated in the time zone, which indicates that it 
is documented over a particular period of time. 

Dataset used: The CIC-DDoS2019 dataset has been used to perform 
step 1 of the DDoS detection process. The CIC-DDoS2019 dataset is a 
publicly available dataset that contains network traffic traces generated 
in a controlled environment to simulate various DDoS attack scenarios. 
The dataset contains 15 different attack scenarios, with different types of 
attacks, traffic volume, and number of attacking machines. The first 
stage of identifying any potential DDoS activity includes utilizing 
datasets to teach a machine learning algorithm how to differentiate 
between regular and malware network traffic, during the process of 
model training on a particular dataset consisting of labeled data benign 
network activities are marked ’normal’ whilst attacks such as DDoS are 
marked ’malicious’. The detection of DDoS attacks in real-time through 
classification of incoming traffic into benign or malignant categories is 
facilitated by the use of labeled data that helps learn normal and mali
cious network behaviors. 

Fig. 2. Deep autoencoder structure.  
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2. Pre-processing: so this involves removing noise and unwanted data 
from the initial dataset. It encompasses duties like discarding replicas 
of packets and sifting through minor traffic to normalize the data. 

3. Feature extraction: to extract appropriate features. This case in
volves the extraction of time-domain characteristics like mean value 
along with statistical properties including variance and standard 
deviation, so to calculate these features we can use mathematical 
equations.  
• Mean: 

( 1
N
)
∗ sum(x), where N is the number of data points and x is 

the data value  
• Variance: 

( 1
N
)
∗ sum((x − mean)2

), where N is the number of data 
points, x is the data value, and mean is the mean value  

• Standard deviation: sqrt(variance).  
• Maximum value: max(x).  
• Minimum value: min(x).  
• Signal entropy: sum(p ∗ log(p)), where p is the probability of each 

data value  
4. SAE feature learning: Passing through a sparse autoencoder (SAE), 

the extracted features are learned and the compression and recon
struction of input data is realized through minimizing reconstruction 
errors in an SAE neural network. To achieve this result, the input 
data is transformed into a lower-dimensional space and then con
verted back to its original form, so during the encoding process of 
data by SAE’s, it learns to identify important features that are 
necessary for detecting DDoS attacks. 

Mathematical model of the SAE feature learning: 
Let X be the input data with dimensionality dx and N samples, rep

resented as X ∈ Rdxx N. 
The SAE consists of an encoder function f and a decoder function g, 

with a bottleneck layer in between, represented as h. 
The encoder function takes the input data X and maps it to a lower- 

dimensional representation, h = f(X), where h ∈ Rdhx N, with dh < dx. 
The decoder function takes the lower-dimensional representation h 

and maps it back to the original space, X̂ = g(h), where X̂ ∈ Rdxx N. 
The goal of SAE feature learning is to learn the encoder and decoder 

functions such that the reconstruction error between the input data X 
and the reconstructed data X̂ is minimized. 

This can be formulated as an optimization problem, where we want 
to find the parameters θ of the encoder and decoder functions that 
minimize the mean squared error (MSE) between X and X̂: 

min
θ
||X − X̂ ||

2 (2) 

As the training process goes on, the encoder function f becomes adept 
at recognizing significant characteristics in the data that are necessary 
for detecting DDoS attacks. This is accomplished by compressing the 
input data into a space with fewer dimensions, while preserving the 
essential information. 

Overall, the SAE feature learning process helps to extract useful 
features from the input data, which can then be used for DDoS attack 
detection.  

5. CNN classification: The process of classifying involves passing the 
features learned by the SAE through a convolutional neural network 
(CNN) and the CNN is highly effective in identifying local patterns 
and features in data which makes it a powerful tool for image and 
signal processing tasks. CNN distinguishes between normal and 
attack traffic based on the features learned from input data through 
SAE. 

Mathematical model: 
Let X be the input data, which is a matrix of size N x M, where N is the 

number of samples and M is the number of features. 
Let Y be the output, which is a vector of size N x 1, where each 

element represents the class label (normal or attack) for the corre
sponding input sample. 

The CNN (Convolutional Neural Network) is made up of different 
layers such as convolutional layers, pooling layers, and fully connected 
layers. Let C1,C2, ...,Cn be the convolutional layers, P1,P2, ...,Pm be the 
pooling layers, and F1, F2, ..., Fk be the fully connected layers. 

The output of each layer is obtained by applying a set of filters or 
weights to the input. Let W1,W2, ...,Wn be the filters for the convolu
tional layers, and Wk be the weights for the fully connected layers. 

The output of the CNN can be represented as: 

Y = softmax(Fk(hk)) (3)  

where hk is the output of the last fully connected layer, which is obtained 
by applying the weights Wk to the output of the previous layer. The 
softmax function is used to convert the output into a probability distri
bution over the two classes (normal and attack). 

The input to the CNN is the features learned by the SAE. Let Z be the 
output of the SAE, which is a matrix of size N x L, where L is the number 
of hidden units in the SAE. 

The output of each convolutional layer is obtained by applying a set 
of filters to the input. Let fi be the filter for the ith convolutional layer. 
Then the output of the ith convolutional layer is given by: 

Ci= relu(conv(Z, fi)) (4)  

where conv(Z, fi) is the convolution operation between Z and fi, and 
relu(x) is the rectified linear unit activation function. 

The output of each pooling layer is obtained by downsampling the 
input. Let pi be the pooling operation for the ith pooling layer. Then the 
output of the ith pooling layer is given by: 

Pi= pi(Ci) (5) 

The output from the final pooling layer is flattened into a vector with 
one dimension (1D), and then fed into the fully connected layers to get 
the ultimate output. The CNN weights are taught using backpropagation 
and gradient descent, with the cross-entropy loss function used to 
calculate the loss between the predicted probabilities and the actual 
labels.  

6. Evaluation: To assess the performance of the system several metrics 
such as accuracy and F1 score are employed which include precision 
and recall. Moreover, quantitative measurement of the system’s 
ability to detect DDoS attacks can be done through time-domain 
analysis. 

The proposed framework includes specific steps such as feature 
extraction, normalization, deep neural networks, and classification. 
First, the autoencoder learns from the data to understand its charac
teristics using unsupervised learning. As there is a feature engineering 
technique in the autoencoder, it can learn iteratively from the hidden 
features of given data. In the process, the autoencoder is capable of 
learning associations among features and gaining optimal knowledge in 
order to minimize features and extract representative features. Once 
features are learned, the autoencoder is trained. Random initialization 
of weight is made, and the setup of different variables such as sparse 
rate, dropout rate, denoising parameters, and learning rate is made. An 
average sparsity is computed. The sparse cost function is measured using 
Eq. (6), while and are updated using Eqs. (7) and (8), respectively. 

Csparse(w, b)=
1
n

∑n

i=1
‖xi − yi‖

2

+
λ
2

(
∑ls − 1

l=1

∑D

i− 1

∑C

j− 1
Wij(l)+ β

∑C

j=1
ρ log

ρ
ρj
+(1 − ρ)log

1 − ρ
1 − ρj

)

(6)  
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Fig. 3. Illustrates the complete framework based on simple autoencoder and CNN.  
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Wij : =Wij − ∈
a
a
Csparse(W, b) (7)  

bi : = bi − ∈
a
a

Csparse(W, b) (8)  

In Eq. (6), a sparse penalty is added to the underlying cost function. The 
parameters such as and must be defined while performing the coding 
process in the auto encoding. These two parameters are trained using the 
stochastic gradient descent (SGD) method. Eqs. (7) and (8) represent the 
method and the learning process, respectively. In order to minimize 
overfitting of the network, dropout is configured. The autoencoder- 
based CNN is subjected to dropout to leverage the learning process. 
CNN is initialized with parameters for a simple autoencoder. The 
network is fine-tuned adaptively from time to time. Finally, the frame
work CNN employs categorizes network traffic as benign or malicious. 
The complete framework is shown in Fig. 3. 

As presented in Fig. 3, the framework has its functionality divided 
into three distinct steps (see Fig. 4). In step 1, a sparse autoencoder is 
used for normalization and feature extraction. The outcome of step 1 
was used to train a deep neural network (DNN). Then, the outcome of 

Fig. 4. Training time for different detection algorithms.  

Table 1 
List of variables and its meaning.  

Variables Meaning 

x norm normalized value 
x i feature’s value 
x min Minimum value 
x max Max value 
W,b Random initialization parameters: W: weights between the input layer 

and the hidden layer; b : biases 
n number of data samples 
D Given dataset 
a activation of the hidden layer 
DR Data rate 
FPR False Positive rate 
SGD stochastic gradient descent 
ρj the average activation of each hidden neuron 
SAE Sparse Auto-Encoder 
sr sparse rate, 
lr Learning rate 
dr Dropout rate 
T test data 
R Low-rate DDoS attack detection results  

Table 2 
Simulation Parameters setting up of SAE-based DNN Methods.  

SAE 

Parameter Meaning Value 

M Input nodes 2000 
S2 hidden nodes 600 
out output nodes 2000 
ρ sparse target 0.08 
sr sparse rate 0.4 
lr Learning rate 1 
dr Dropout rate 0.3 

DNN 
M Input nodes 2000 
S hidden nodes 600 
Out output nodes 2000 
Dr Dropout rate 0.3 
Lr Learning rate 1  

Table 3 
Shows training time of different algorithms against varied training data size.  

Training Dataset Size Training Time (m) of Different Algorithms 

K -Means FCM ISVM SL-IDS HA-LRDD 

1 19.9 99.5 79.6 25.87 24.875 
2 44.775 248.75 159.2 66.665 64.675 
3 64.675 348.25 278.6 121.39 119.4 
4 84.575 447.75 373.125 172.135 169.15 
5 99.5 547.25 447.75 200.99 199  

Table 4 
Shows performance of different algorithms in terms of detection rate and false 
positivity rate.  

Detection Algorithms Performance (%) 

Detection Rate False Positivity Rate 

K-Means 74.99492 6.84315 
FCM 78.32825 9.77022 
ISVM 93.58349 0.47952 
Sl-IDS 92.73264 1.34865 
HA-LRDD 95.31522 0.56943  
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the second step is used in step 3 for the actual classification or prediction 
of class labels such as benign and malicious. Fig. 3(a) shows how an 
autoencoder is used with unsupervised learning to learn from data and 
provide features to DNN. The autoencoder has an iterative process to 
learn features from the hidden data. In other words, it is capable of 
feature engineering. It can extract more representative features by 

Fig. 5. Detection rate and false positivity rate comparison of different detection algorithms.  

Table 5 
Shows the congestion window in terms of attacks and deep learning model 
functioning to prevent attack.  

Time (Sec) Congestion Window 

Attacks Deep Learning 

0 0 40 
5 7 40 
10 10 40 
15 5 40 
20 3 40 
25 12 40 
30 9 40  

Fig. 6. Congestion changes vs. attacks and deep learning.  

Table 6 
Shows the packet loss rate (%) in different network conditions.  

Network Condition Packet Loss Rate (%) 

Normal 0.024 
Attacks 0.06 
Attacks while HA-LRDD Protection 0.032  
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learning the characteristics of data. The sparse cost function is measured 
using Eq. (6), while the parameters W and b are updated using Eqs. (7) 
and (8). The outcome of step 1 is used to initialize the first layer of DNN 
in step 2 (Fig. 3 (a)). Training parameters are set for the forward prop
agation algorithm for classification purposes. The cost function is 
computed using Eq. (5). Then the back propagation algorithm is 
executed without sparse terms. The back propagation algorithm is 
executed again to fine-tune the network and adjust weights. In step 3, as 
shown in Fig. 3 (c), testing is carried out to test network traffic and 
classify it as benign or malicious. 

3.4. Algorithm design: Hybrid Approach for Low-rate DDoS detection 
(HA-LRDD) 

The proposed framework for finding low-rate DDoS attacks uses an 
algorithm called Hybrid Approach for Low-Rate DDoS Detection (HA- 
LRDD). This algorithm is used to implement the proposed framework. 

Algorithm. Hybrid Approach for Low-Rate DDoS Detection (HA- 
LRDD)   

Fig. 7. Packet loss rate analysis under different network conditions.  
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3.5. Performance metrics 

Performance metrics are used to measure the effectiveness of a se
curity system in detecting and preventing intrusions or attacks. There 
are several metrics that are commonly used to evaluate the performance 
of a security system, including detection rate (DR) and false positive rate 
(FPR). Detection rate (DR) is a metric that measures the percentage of 
detected intrusion data that is correctly identified by the security sys
tem. The formula for calculating DR is: 

DR=
number of detected intrution data correctly

total intrution attack data
× 100 (9) 

False positive rate (FPR) is a metric that measures the percentage of 
normal data that is incorrectly identified as an intrusion or attack by the 
security system. The formula for calculating FPR is: 

FPR=
miss − detected rate

total normal data
× 100 (10) 

The detection rate and false positive rate metrics defined in Eqs. (9) 
and (10) are used to evaluate the proposed method and are compared 
with the state of the art. 

4. Experimental results 

Experiments are made with the proposed HA-LRDD method, and its 
performance is compared with different existing methods against varied 
training data sizes. The existing methods used for evaluation include K- 
Means, Fuzzy C Means, Surface Learning IDS (SL-IDS), and Incremental 
Support Vector Machines (ISVM). Observations are made in terms of the 
training time, detection rate, false positivity rate, congestion window 
changes due to attacks, and packet loss rate. 

This Table 2 (see Table 1). Shows the simulation parameters that 
were used to set up SAE-based DNN (deep neural network) methods for a 
certain task. 

For the SAE (stacked autoencoder) method, the input data has 2000 
nodes, the hidden layer has 600 nodes, and the output layer also has 
2000 nodes. The target for sparsity is set to 0.08, which means that the 
activations of each hidden node should be close to zero for about 8% of 
the input data samples. The sparse rate (sr) is set to 0.4, which means 
that only 40% of the hidden nodes will be active at any given time 
during training. The learning rate (lr) is set to 1, and the dropout rate 
(dr) is set to 0.3. 

For the DNN method, the input data has 2000 nodes, the hidden layer 
has 600 nodes, and the output layer also has 2000 nodes. The dropout 
rate (dr) is set to 0.3, and the learning rate (lr) is set to 1. 

These parameters were chosen to optimize the performance of the 
SAE-based DNN methods for the specific task at hand, which could be 
anything from image recognition to speech processing to natural lan
guage understanding. 

To aid in comprehension of the proposed SAE-based DNN, all 
simulation parameters and their respective values have been listed in 
Table 2, so in all Based methods that use the stochastic gradient descent 
method for updating model parameters from training sample-based 
cross entropy errors via layer-wise back-propagation. The simulation 
of all algorithms performed in the experiments was carried out using 
MATLAB R2011b software environment. 

Table 3 shows the time required for training for various detection 
algorithms as the size of the training data increases. 

Table 3 has five columns representing the number of instances in the 
training dataset and the corresponding training time (in minutes) for 
different algorithms - K-Means, FCM, ISVM, SL-IDS, and HA-LRDD. For 
instance, when the training dataset has one instance, K-Means takes 
19.9 min to train, FCM takes 99.5 min, ISVM takes 79.6 min, SL-IDS 
takes 25.87 min, and HA-LRDD takes 24.875 min. Similarly, for a 
training dataset with two instances, the training times increase for all 
algorithms. This trend continues as the size of the training dataset 

increases.Table 3 provides useful information on the scalability of 
different detection algorithms as the training dataset size increases. For 
instance, we can see that HA-LRDD consistently takes the least amount 
of time to train. 

Table 4 displays the performance of different detection algorithms in 
terms of two metrics: detection rate and false positivity rate. The 
detection rate represents the percentage of attacks or anomalies that 
were correctly identified by the algorithm. For instance, the ISVM al
gorithm detected 93.58% of attacks, while HA-LRDD achieved a higher 
detection rate of 95.32%. The false positivity rate refers to the per
centage of normal or legitimate activities that were mistakenly identi
fied as attacks or anomalies. This is also known as the false alarm rate. 
For instance, the K-Means algorithm had a false positivity rate of 6.84%, 
which means that around 7% of normal activities were mistakenly 
flagged as attacks. On the other hand, the ISVM algorithm had a very 
low false positivity rate of 0.48%, indicating that it produced very few 
false alarms. Overall, the results suggest that the HA-LRDD algorithm 
performed the best in terms of both detection rate and false positivity 
rate, followed closely by the ISVM and Sl-IDS algorithms. The K-Means 
and FCM algorithms had lower detection rates and higher false positivity 
rates, indicating that they were less effective in identifying attacks and 
more prone to producing false alarms. 

As presented in Fig. 5, the performance of different algorithms is 
compared in terms of detection rate and false positivity rate. The 
detection algorithms are provided on a horizontal axis. The performance 
of each detection model is shown on a vertical axis. It was discovered 
that the algorithms performed differently due to differences in their 
modes of operation. The proposed HA-LRDD algorithm showed the 
highest detection rate, at 95.31522%. K-Means has the lowest detection 
rate of all the algorithms, with 74.99492%. The false-positive rate of the 
proposed method is 0.56943%, which is better than all other existing 
methods except ISVM. 

As presented in Table 5, it shows the congestion window dynamics in 
the presence of attacks and in the presence of a deep learning model to 
handle attacks. 

As presented in Fig. 6, the congestion dynamics in the presence of 
attacks and a deep learning-based detection model are provided. The 
elapsed time of simulation is presented on the horizontal axis, and the 
vertical axis shows congestion window details. In the presence of attacks 
and the proposed detection model, it is analyzed. The results revealed 
that, in the presence of the attacks (without the proposed solution), the 
network is always congested. The congestion is minimized when the 
proposed solution is in place. 

As shown in Table 6, the rate of packet loss is measured under 
different network conditions where tests are run. 

As presented in Fig. 7, different network conditions are presented on 
the horizontal axis, and the packet loss rate is shown on the vertical axis. 
The packet loss rate is observed as it measures the performance of the 
network and the effect of a low-rate DDoS attack on the network. Low 
packet loss rates indicate high performance of the proposed model. 
Under normal conditions, attack conditions, and attack conditions while 
the proposed model HA-LRDD is in place, observations are made on 
packet loss rate. The empirical results revealed that there is the least 
packet loss rate at 0.024 under normal (no attacks) conditions. When 
there are attacks, the packet loss is increased by 0.06. In the presence of 
the attacks and the HA-LRDD, the packet loss rate is reduced to 0.032. It 
shows the minimal impact on the system even in the presence of attacks 
when the proposed solution is employed. 

5. Conclusion and future work 

Considering the contemporary challenge in cloud computing due to 
DDoS attacks and the evolving strategies of attackers, this paper focuses 
on building defenses against low-rate DDoS attacks by proposing an AI- 
enabled framework. The rationale behind this is that low-rate DDoS 
attacks are one of the strategies of attackers to disrupt cloud services. 
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Container-based technology enables cloud computing to have light
weight approaches to resource utilization and flexibility in scaling ser
vices. As cloud infrastructure is evolving rapidly, it is essential to protect 
it from such attacks. From the review of the literature, it is understood 
that the existing methods lack adequate mechanisms to deal with low- 
rate DDoS attacks. Based on the need for detecting and defeating such 
attacks, we proposed a framework named the Low-Rate DDoS Attack 
Detection Framework (LRDADF). Since low-rate DDoS attacks are 
difficult to defeat, we proposed a mathematical model to realize a 
mitigation strategy besides employing deep learning methods to have an 
effective means of detecting such attacks. We proposed an algorithm 
named Hybrid Approach for Low-Rate DDoS Detection (HA-LRDD). The 
algorithm uses artificial intelligence (AI)-enabled methods comprising a 
deep convolutional neural network (CNN) and a deep autoencoder. We 
defined another algorithm named Dynamic Low-Rate DDoS Mitigation 
(DLDM), which reduces the impact of the attack once it is detected. It 
also tries to ensure that the attack is defeated and the infrastructure 
works as usual even under the attack. An extensive simulation study 
revealed that the proposed framework is able to detect low-rate DDoS 
attacks and also mitigate the attacks to ensure there is acceptable quality 
of service in cloud computing environments. In the future, we intend to 
investigate further deep learning methods to defeat low-rate DDoS at
tacks more effectively. 
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