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Abstract 

Content Delivery Networks (CDNs) intelligently cache 

content on behalf of content providers and deliver this 
content to end users. New services have been rolled out 

recently by CDNs that enable content providers to deliver 

entire web sites from the distributed CDN servers. Using 

analytical models, we address the optimal pricing of these 

services.  
Our results suggest that, consistent with industry 

practices, CDN pricing functions should provide volume 

discounts to content providers. They also show that the 

most likely subscribers to CDN services are those content 

providers with high volume of traffic and with content 

having low security requirements. Significantly, our 
model also shows that larger CDN networks can charge 

higher prices in equilibrium, which should strengthen any 

technology-based economies of scale and make it more 

difficult for entrants to compete against incumbent firms. 

We find that CDNs will have to lower prices in light of 

increasing security concerns associated with content 
delivery. Alternatively, they will need to invest in 

developing and deploying technology to alleviate the 

security concerns. Finally, we find that declining 

bandwidth costs will negatively impact CDN revenues 

and profits. 

1 Introduction 
A Content Delivery Network (CDN) is a network of 

servers that cache or store web content (i.e., web pages) 
and intelligently deliver it to users based on their 
geographic location. When users request content, the 
request is redirected to the nearest CDN server. These 
CDN servers are typically collocated with ISPs with 
which the CDN has alliances. By delivering content from 
the edge of the Internet, CDNs serve to speed content 
delivery, circumvent bottlenecks and provide protection 
from sudden traffic surges that bring down servers and 
render web sites unreachable.  

CDNs are an important element of the digital supply 
chain for delivery of information goods. The supply chain 
consists of Content Providers (CPs) that create the 

content; backbone and access networks that help transport 
the content; and CDNs that store and deliver the content 
to the end users. CDNs thus function as content storage 
and distribution centers performing similar functions as 
distributor/retailer warehouses in traditional supply 
chains. CDNs have become crucial to the content delivery 
strategy of web sites with high traffic. The key players in 
the CDN market include Akamai, Cable & Wireless, 
Speedera and Mirror Image.  IDC projects that the CDN 
market will be worth over $2 billion in US alone by 2006.  

In the recent years, CDNs have rolled out new 
services (for e.g., Akamai’s Edgesuite1) that enable 
delivery of entire websites from the edge servers of 
CDNs. Conversations with executives from CDN firms 
(Maggs 2002) suggest that marketing managers find it 
challenging to determine the optimal pricing of these 
services. In this paper, we study optimal pricing of CDN 
services in a monopoly setting. We then analyze how 
recent trends such as declining bandwidth costs impact 
CDN pricing policies. 

2 Value Proposition of CDNs 
CDNs are a network of servers that store and deliver 

content on behalf of origin servers (and are thus also 
known as surrogate servers). CDN servers are 
geographically distributed at various locations at the edge 
of the network (typically collocated at partner ISP 
locations). Content of subscribing Content Providers 
(CPs) is stored in a number of these surrogate servers. 
When a request for content is received, the CDN delivers 
the content from the “nearest” server where nearness is 
based on expected latency, which is in turn determined by 
geographical proximity, server load and network 
conditions. 

Client requests are redirected to CDN servers using 
either URL rewriting or DNS-based redirection 
(Krishnamurthy et al. 2001). With URL rewriting, the 
origin server rewrites URL links with CDN server 
addresses so that any click-throughs are directed to the 
CDN server. With DNS redirection, the CDN controls the 

1
http://www.akamai.com/en/html/services/edgesuite.html
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DNS server of the CP and resolves the name to the IP 
address of a CDN server. The Time-To-Live (TTL) of 
these DNS mappings are typically kept small so that the 
CDN can map any given URL to different servers based 
on network conditions. CPs can selectively deliver some 
content from their servers and other content from CDN 
servers.  

Krishnamurthy et al. (2001) found that 31% of a list 
of 127 popular websites used CDNs in 2000. This figure 
was up from 1-2% in 1999. Akamai, the largest CDN, is 
reported to have 80% of the CDN market share. 

The primary benefit that a CDN provides a Content 
Provider (CP) is in scaling content delivery. The volume 
of traffic on the Internet is constantly increasing. Because 
of this, CPs must periodically resize and upgrade their 
server farms and bandwidth capacities to meet the traffic 
growth. This is exacerbated by the shift towards rich 
content such as multimedia. In addition, requests on the 
Internet have high variability. This creates challenging 
problems for CPs with regard to capacity allocation. If 
they allocate capacity based on peak traffic, their capacity 
will lie idle most of the time. Server farms and bandwidth 
are expensive enough to warrant optimizing on these 
parameters. If they under-provision, then the performance 
and uptimes of their web sites decrease significantly 
resulting in significant decrease in revenue. Because of 
these trade-offs, CPs have had to choose intermediate 
capacity levels and accept occasional down times and 
poor performance as a necessary evil. For example, flash 
crowds on Sep 11 overwhelmed media sites such as CNN 
and MSNBC and reduced site availability to close to 0% 
and increased response times to nearly 40 seconds when 
the sites were available2. Similarly, a flash crowd during 
Victoria’s Secret Internet fashion show also resulted in 
their web server crashing.  

CDNs provide CPs with a viable alternative to scale 
content delivery. CDNs maintain a network of servers 
around the world. Because of a CDN’s ability to 
aggregate traffic across various sites, there are economies 
of scale in terms of infrastructure costs. Furthermore, the 
aggregation serves to reduce the impact of variability in 
demand for content3. This aggregation serves to provide 
sufficient buffers in capacities to handle flash crowd 
effects. Furthermore, since there are several nodes or 
servers from which the content can be served, no single 
point will be a bottleneck. Replication of content also 
helps to improve the availability of content, especially 
during Denial of Service (DoS) attacks. 

Recently, CDNs have rolled out services that enable 
CPs to deliver entire websites from the edge servers. A 

2 See http://news.com.com/2100-1023-272873.html. Retrieved March 
2003. 
3 The law of large numbers and principles of statistical multiplexing 
imply that that capacity will be better utilized and overall impact of 
variability will reduce.

well known example of such a service is Akamai’s 
Edgesuite. The pricing of CDN services face different 
considerations than those faced by intermediaries in 
traditional supply chains. Another noticeable development 
in the industry has been a sharp decline in bandwidth 
costs, facilitated by improvements in technology and 
increased competition. This affects the cost structures of 
both CPs and CDNs and thus impacts pricing strategies. 
These questions – how should CDN services such as 
Edgesuite be priced and how do external factors such as 

bandwidth costs and security considerations impact these 

pricing strategies – are the focus of this paper. 

3 Literature Review 
CDNs have been widely studied in the computer 

science literature. Nottingham (2000) discusses the 
development of a framework to formally define the role 
of surrogate origin servers such as CDNs. Dilley et al. 
(2002) provide an overview of Akamai’s network 
infrastructure and the technical challenges involved in 
operating a CDN. Gadde et al. (2000) explore the 
effectiveness of CDNs in the presence of conventional 
web proxy caching. Krishnamurthy et al. (2001) verify 
that CDNs reduce average download times but find that 
DNS redirection adds additional overheads. Johnson et al. 
(2000) also find that CDNs provide improvements in 
latency but find that they do not always choose the 
optimal server from which to serve the content. Chen et 
al. (2002) propose a protocol for dynamic placement of 
replicas in a CDN. 

While the focus has generally been on the design of 
efficient CDN architectures, we feel that Information 
Systems (IS) research can make significant contributions 
to the study of CDNs. For example, Datta et al. (2002) 
motivate the importance of research on pricing of CDNs. 
Furthermore, managers in CDN firms face challenges in 
determining pricing schemes for the new services and 
need to take technological factors and Internet traffic 
patterns into account as they are a major determinant of 
these pricing strategies.  

While pricing of traditional Telecommunications 
services has been studied in the past (for e.g., Mendelson 
and Whang (1990), Cocchi et al. (1993)), pricing of 
content delivery services is a relatively new and 
unexplored area. Hosanagar et al. (2002) have studied the 
optimal pricing of priority-based web proxy caching 
services. CDN pricing faces unique considerations such as 
bandwidth costs, traffic variability, security implications 
of outsourcing content delivery, etc. Our paper attempts to 
fill this void in the study of pricing strategies of CDNs. 

4 Model  
The model we present in this section assumes a 

monopoly CDN. Akamai, the leading CDN, has 
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approximately 80% of the CDN market share and thus 
may be treated as a near monopoly. Consider a CP 
indexed by i delivering content to users. Let X  be the 
random variable that denotes the number of requests to a 
CP in a period4. The CP does not know X a priori but 
knows the distribution f(X). If the publisher sets up 
infrastructure to be able to process I requests per unit time 
on average (web server vendors typically specify the 
average request/minute their servers can process), then the 
CP’s surplus from delivering content is 

),()()()( XILcICXVXU self ⋅−−= . The net 

expected surplus from delivering content is 

)()(][ ILcICVUEU selfself ⋅−−== .

V(X) is the CP’s benefit from responding to X

requests. This could include revenues from selling 
products on the Internet, surplus from disseminating 
information, etc. In other words, V(X) is the reason why 
the CP maintains a website. The CP does not know X in 
any time period but knows the expected value denoted by 
V. The CP incurs a cost for maintaining the infrastructure 
(servers, bandwidth, software, etc) which increases with 

the infrastructure level I. This cost is denoted by )(IC .

This cost typically increases with infrastructure level in a 
concave fashion because of economies of scale associated 
with content delivery. Finally, when the CP faces very 
high demand requests may be lost. The last term, c.L(I,X)

denotes the cost of lost requests to the CP when its 
infrastructure level is I and it faces X requests in the given 
time period. c denotes the cost of a lost request5 and 

)(IL  is the expected number of lost requests. That is, 

)],([)( XILEIL = . The CP can choose low capacity 

(infrastructure) but will incur a high cost of lost requests 
or can choose a very high capacity level and incur fewer 
lost requests (but incur high infrastructure costs). The 

CP’s decision problem is )({max IU self
I

}. Let us denote 

the optimal infrastructure level as I* and associated 

expected surplus as )( *IU self .

The CP’s surplus from delivering content through a 
CDN is given by - 

)()()()( XPCXNXVXU OCDN −−⋅+= τ .

Because a CDN delivers content intelligently to users 
based on their geographic location and network traffic, 
the CP derives a benefit from faster delivery of content. 
This may be in the form of improved customer retention 
rates or direct revenues. We assume that this benefit is 

                                                
4 Note that X is different for each CP. We will not use the index i for 
simplicity but it will be implicit that X is indexed by content provider. 
5 This implicitly assumes that all requests are similar, which is a 
simplifying assumption. Given the granularity of the analysis, it suffices 
to assume an average cost per lost request.

linear in X, the number of requests served faster, with τ
being the scaling factor. Further, larger the network of 
servers that the CDN maintains, the more likely that 

content is served faster to end users. Thus, τ  increases 

with the CDN network size N. That is, a CDN with N

servers provides a benefit of )(Nτ  to the CP from faster 

response for a single request. CO denotes the transaction 
cost of outsourcing content delivery. For example, a CP 
with secure content may incur a cost in sharing the 
content with a third party (the CDN). This cost is assumed 
to vary across CPs. Finally, CDNs use usage based 
pricing model (price based on data delivered) and this is 

denoted as )(XP , the price for transmitting traffic of 

volume X in any given period6. Note that the CDN 
delivers entire websites from the edge with services such 
as Edgesuite and thus the CP does not need to maintain a 
large infrastructure for content delivery. Thus, the CP 

does not incur )(IC . Since the CDN has enough capacity 

to considerably minimize the lost requests, we 

approximate 0)( =IL . Once again, since a CP cannot 

precisely predict X in any period, it can compute the 

expected surplus )]([ XUEU CDNCDN =  and evaluate 

the CDN service accordingly. The CP will choose the 

CDN if )( *IUU selfCDN ≥ . Based on these subscription 

decisions, one can evaluate the optimal price function 
P(X) for the CDN. 

Let us start by analyzing how )( *IU self  may be 

determined and we will then proceed to determine the 
optimal price function. 

4.1 Optimal Infrastructure Sizing 
In the HTTP protocol, exchange of data between a 

server and client occurs after a TCP connection has been 
established. When a client attempts to establish a TCP 
connection, it begins by sending a SYN message to the 
server. The server acknowledges the SYN message by 
sending a SYN-ACK message to the client. In addition, 
the server creates a socket for the incoming connection 
and places it in the SYN-RCVD queue. Subsequently, the 
client responds with an ACK message. Upon receiving 
the ACK message, the server moves the corresponding 
socket to the accept queue. The connection between the 
client and the server is then open. Whenever a web server 
process is ready to respond to a connection request, it 
executes an accept() system call and receives a socket 
number from the accept queue in return. In other words, 

                                                
6 Some CDNs charge for usage by taking periodic samples of content 
delivered and then billing for the 95th percentile of usage. Our study uses 
the pure usage based pricing, wherein the CDN meters total content 
delivered (as opposed to sampling) and charges for the content delivered 
in that period. 
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requests are queued (the maximum size of the queue is 
determined by the kernel variable somaxconn) and wait 
for their turn to be processed. For further information on 
HTTP connection establishment, the reader is referred to 
Banga and Druschel (1997). 

We model a web server as an M/M/1/K queuing 
system. That is, we assume that requests follow a poisson 

process with λ  being the mean arrival rate (i.e., inter-

arrival times for requests follows an exponential 

distribution with mean λ/1 ). We also assume that the 

service time of a request follows an exponential 
distribution. We model the service center as a single 
server system. Note that even a single web server entails 
several requests being simultaneously processed by 
different child processes. Furthermore, the architecture of 
most high end content delivery systems involves the use 
of server farms. Thus, a single server system is not an 
accurate representation of the system. However, we will 
show in supplemental tests that the general nature of the 
results remains the same with a multiple server model. 
Note also that our model of a service center, servicing 
requests at I requests/minute on average, folds the 
processor and bandwidth into a single service center. 
Thus we interpret infrastructure needed to handle I

requests/minute as processors to handle I requests/minute 
and bandwidth to handle the corresponding amount of 
data outflow. Finally, we model a finite queue size of K
requests, which is consistent with the observation that 
most commercial systems have similar settings for 
somaxconn and vendors recommend setting the queue 
size to somaxconn. Thus, we treat the queue length as an 
exogenous parameter that is determined by the vendor. 

With the aforementioned abstraction of content 
delivery infrastructure, we now return to the CP’s 
infrastructure sizing problem. The CP’s net expected 
surplus from choosing infrastructure that can process I

requests/minute on average is given by 

)()( ILcICVU self ⋅−−=   (1) 

We assume a quadratic cost function 
2)( IbIaIC ⋅−⋅= , which captures the concavity of 

infrastructure costs. A large value for a indicates high 
infrastructure costs and a large value for b indicates 
significant economies of scale. The cost function is 

defined in the region baI 2/≤ , where costs are 

increasing in infrastructure level I. For an M/M/1/K

queuing system, the expected number of lost requests is 

given by 
1

1

1

)( +

−

−
=

K

K

I

II
IL

λ

λλλ
. A well known 

result in queuing theory indicates that I should be greater 

than λ , else the system “blows up”7. It can be verified 

that 0
)( <

∂
∂

I

IL
 and thus the CP faces an optimization 

problem in trading off the benefits and costs of added 
infrastructure. Thus, the CP’s decision problem is 

−

−
⋅−⋅−⋅− +1

2

1

1

)(max
K

K

I

I

II
cIbIaV

λ

λλλ
 (2) 

The associated first-order necessary condition is 
given by: 

0
)(

)()1(

c
-I2ba-

21K1K

1K

1K1K

1K

=
−

−⋅+⋅+

−
⋅⋅+

++

+

++

+

λ
λλ

λ
λ

I

IIKc

I
K

           (3) 

While it is difficult to evaluate the polynomial to compute 
closed form expressions for I*, we can however deduce 
important properties of the solution by applying the 
conjugate pairs theorem from calculus (Currier 2000). 
The theorem states that for the maximization problem 

),(max axF
x

, the derivative 
a

x

∂
∂ *

 and the cross partial 

xaF have the same sign. The following results follow: 

i) If the cost of infrastructure increases, I* decreases. 

UIa = -1. This implies that .0
*

<
∂
∂

a

I
 As expected, if the 

infrastructure costs (cost of processing and bandwidth) 
decrease, one expects content delivery infrastructure to be 
upgraded. 
ii) If there are significant economies in scale in content 

delivery, I* increases. 

UIb = 2I > 0. Thus .0
*

>
∂
∂

b

I
 That is, if server vendors or 

bandwidth sellers provide higher volume discounts, 
infrastructure levels of content providers will increase. 
iii) If a content providers cost of losing requests is high, I*

is correspondingly higher. 

                                                
7 The intuition is that if λ≤I , the mean arrival rate is greater than 

the mean service rate and the server keeps lagging further and further 

behind. Thus, our region of interest is λ>I . Further, since we have 

used a quadratic cost function, the region of interest is ]
2

,(
b

a
I λ∈ .
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Proof:

.
)(

)()1(
1K1K

1K

21K1K

1K

++

+

++

+

−
−

−
−⋅+=

λ
λ

λ
λλ

II

IIK
U

K

Ic  We 

know from the first order condition that 

0
)(

)()1(c
-2bI}-{a-

21K1K

1K

1K1K

1K

=
−

−++
− ++

+

++

+

λ
λλ

λ
λ

I

IIKc

I

K

. Since 0I}2b-{a- <⋅  (rate it which infrastructure 

costs increase with infrastructure level I), it follows that 

0
)(

)()1(c
-

21K1K

1K

1K1K

1K

>=
−

−⋅+⋅+
−

⋅
++

+

++

+

Ic

K

cU
I

IIKc

I λ
λλ

λ
λ .

Since c > 0, it follows immediately that 0>IcU . From 

the conjugate pairs theorem, .0
*

>
∂
∂

c

I
 In other words, if 

the cost (c) of losing a request increases, the optimal 
infrastructure level also increases. 

iv) If the arrival rate of requests λ  increases, I*

increases. 

Proof: The above statement follows from conjugate pairs 

theorem if 0>λIU  is true. Upon computing the cross 

partial with respect to I and λ , it can be shown that 

0>λIU  iff  

0)(2))(( KK1K1K >−−+− ++ λλλλ IIIIK . This 

can be restated as: 0>λIU  iff 

0)2()2( 12 >−+++− ++ KpKpKKp KK
     ( A ) 

where λ/Ip = . For λ>>I , it follows that 1p >> .

Thus  

KpK >+ )2(   ( B ) 

Also, for large K (queue size), we know the following is 

true: 
K

p
2

1+> . This may be restated: 

12 )2( ++ +> KK pKKp   ( C ) 

Adding (B) and (C), we 

get: KpKpKKp KK ++>++ ++ 12 )2()2( .

Combining this result with (A), it follows that 0>λIU .

That is, .0
*

>
∂
∂

λ
I

 QED. 

All the above results conform to intuition. It is 
interesting to see how exactly the optimal infrastructure 

level changes with request arrival rate λ . To determine 

the nature of this relationship, we use numerical 
techniques due to the limitation of the analytical model in 
deriving a closed form solution.  

For the infrastructure cost function, 
2)( IbIaIC ⋅−⋅= , we assume that a=3.46 and 

b=0.000043. This implies that the cost of serving 233 
requests/min is $804 per month. If we assume that the 
average size of the response to a request is 50 Kbytes, this 
implies that the cost of serving data at 1.55 Mbps is $804 
p.m. This is reasonable given the cost of a T1 connection 
(approx. $400 p.m) and maintaining a workstation. The 
cost of serving 6975 requests/min is $22042. This 
corresponds to a T3 connection and maintaining a server. 
The cost of serving 23,255 requests/min (equivalent to an 
OC3 connection) is $57208. These costs are also 
comparable to managed hosting costs today. We assume 
that the cost of a lost request, c, is $10. This is based on 
an assumption that 10% of visitors purchase 
products/services, the average purchase is $100 and a 
customer leaves a website if a request does not go 
through. Finally, we assume that the queue size, K, (for 
requests waiting to be processed) is 8 requests. Note that 
we have set the cost of lost requests high and queue size 
low in order to eliminate boundary solutions where 

λ=*I . This is because we are interested in the nature 

of the relationship for interior solutions. Figure 1 shows 
the optimal infrastructure level (in requests/min) for 
different arrival rates ranging from 5000-20,000 
requests/min. The relationship is approximately linear. 
 To test for robustness, we repeated the numerical 
analysis for a wide variety of settings and found that the 
relationship is near linear in all cases. Figure 2 shows the 
relationship for the case where 

}20;4;000043.0;46.3{ ==== cKba . The 

relationship is again approximately linear. Note that the 

boundary solution cases of λ=*I  are also linear.  
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Figure 1. Optimal Infrastructure Level versus Arrival Rate 
(Case 1) 
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Figure 2. Optimal Infrastructure Level versus Arrival Rate 
(Case 2) 

Multiple Servers 

The analysis thus far has been based on an 
abstraction of request servicing as a single server system. 
In this subsection, we relax that assumption and 
numerically evaluate the characteristics of a multiple 
server system. We analyze a case with three servers 
instead of one. The queue size is assumed to be 5, cost of 
a lost request is $10 and the remaining settings are as 

before,i.e., }10;5;000043.0;46.3{ ==== cKba .

The optimal infrastructure level (in requests/min) for 
different arrival rates is shown in figure 3 below. The 
relationship continues to be linear. As is intuitive, the 
optimal infrastructure level for each server (I*) can now 

be lesser than the mean arrival rate, λ , as three servers 

are sharing the load. We shall now proceed to determine 
the optimal price that the CDN must charge. 

Infrastructure Sizing (3 servers)
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Figure 3. Optimal Infrastructure Level Vs. Arrival Rate 
(multiple servers) 

4.2 CDN Pricing Problem 
As stated earlier, the CP’s surplus from choosing a 

CDN is given by  

)()()()( XPCXNXVXU OCDN −−⋅+= τ  (4) 

The CP does not know exactly how many requests 
(X) will be made for its content in any period. The CP’s 
expected surplus from choosing the CDN is  

)]([)( XPECNVU OCDN −−⋅+= λτ            (5) 

Given any price function P(X), the CP can compute its 
expected surplus. The CP chooses the CDN if 

)( *IUU selfCDN ≥ . Substituting equations 1 and 5, a 

CP with arrival rate λ  subscribes to the CDN if  

)]([)()()( ** XPEILcICNCO −⋅++⋅≤ λτ    (6) 

Note that the outsourcing cost oC  varies across CPs. 

H() denotes the cdf of oC  and h() denotes the pdf. Thus, 

the probability that a CP with mean arrival rate λ
subscribes to a CDN is given by 

( ))]([)()()( ** XPEILcICNH −⋅++⋅ λτ . If 

)(λg  denotes the number of CPs with mean arrival rate 

λ , then the expected number of these CPs subscribing to 

the CDN is given by 

( ))]([)()()()( ** XPEILcICNHg −⋅++⋅ λτλ .

The CDN’s expected profit, with the standard assumption 
of zero marginal cost, is given by  

λλ

λτλπ

λ

λ

ddX
X

e
XPXPE

ILcICNHg

X

X

⋅−⋅⋅⋅

⋅⋅⋅⋅++⋅⋅=

−

!
)()])([

)()()(()( **

 (7) 

The CDN chooses the price function P(X) in order to 

maximizeπ . Note that the CP does not know the value of 

X that will be realized in any period and thus makes the 
subscription decision based on E[P(X)] (as can be verified 
from equation 6). Similarly, the CDN computes its 
expected profit by evaluating E[P(X)] for each 
subscribing CP. Thus, the CDN can achieve the same 
subscription levels and expected profits by charging a 
fixed amount E[P(X)] per period to each CP. This is also 
illustrated in figure 4. Consider the optimal price function, 
denoted by P*(X). Consider a CP with mean arrival rate 

1λ . In each period, the CP receives a random X number 

of requests and pays P(X) in that period. Over a long 

period of time, the CP expects to receive a mean of 1λ
requests per period and pays E[P(X)]. In fact, if the CDN 
offers an alternative pricing scheme, wherein it charged 
the CP a fixed amount E[P(X)] per period, the CP would 
still make the same subscription decision. Similarly, the 

CDN could charge all CPs with arrival rate 2λ  the 

corresponding expected price of E[P(X)] per period as 
shown in the figure (E[P(X)] is different for CPs with 

mean 1λ  and  2λ ). Thus, for any optimal price function 

P*(X), there exists a corresponding “mean-usage-based” 

price function λP , obtained by following the trajectory of 

E[P(X)] for different values of λ , that achieves the same 

results. We can use this observation to simplify the 

problem to that of determining the optimal λP  and then 

determining a corresponding P(X). 
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Figure 4. Pure usage based price and mean price 

Consider CPs with mean arrival rate 1λ . The CDN 

charges all such CPs a fixed price 1λP . The CDN’s 

expected profit from these CPs is given by =π
( )( )11

** )()()()1( λλλτλ PPILcICNHg −⋅++⋅
   (8) 

The optimal price 1λP  obtained directly by applying the 

necessary first order condition is given by the solution to 
the following equality: 
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The optimal “mean-usage-based” price function, λP , is 

thus given by 
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   (9) 
A special case with uniform distributions: To illustrate a 
few properties of the optimal price function, we make the 
following two assumptions – (1) the outsourcing cost, 

oC , is uniformly distributed in [0,1]. That is, H(x) =x and 

h(x) = 1. (2) The optimal infrastructure level I* for a CP 

with mean arrival rate λ is given by λoiI =*
, where oi

is a constant. We shall soon relax assumption 1 to test the 
impact on our results. Assumption 2 can be justified by 
the numerical results in section 4.1 (see figures 1 and 2). 
With these assumptions, the optimal price function 
obtained by simplifying equation (9) is as follows: 
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A usage-based price function, P*(X) for which the 
E[P(X)] trajectory is given by equation 10 is:  
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  (11) 
To verify that equation 11 represents the optimal usage-
based price function, let’s assume that there is a different 
price function, PA(X) that performs better than P(X), i.e., 
yields higher expected profit. In that case, the 
corresponding “mean-usage-based” price function 
represented by E[PA(X)] should also provide higher 
expected profit than E[P(X)]. This cannot be true since 
equation 10 represents the optimal “mean-usage-based” 
price. Thus, our assumption is wrong implying that 
equation 11 represents the optimal usage-based price 
function. 

The following observations can be made regarding 
the optimal pricing policy: 

a) Volume discounts: It can be verified that 0
)( >

∂
∂

X

XP

and 0
)(

2

2

<
∂

∂
X

XP
 for the relevant range of X. Thus, the 

optimal pricing policy entails volume discounts to CPs. 
This is, in fact, consistent with Akamai’s pricing 
statement: 
“…Customers commit to pay for a minimum usage level 

over a fixed contract term and pay additional fees when 
usage exceeds this commitment. Monthly prices currently 

begin at $1,995 per megabit per second, with discounts 

available for volume usage." 

Equation (11) indicates that the volume discounts 
essentially follow from the economies of scale in content 
delivery costs (b>0). Higher the volume discounts that 
bandwidth sellers offer, greater is the discount that CDNs 
will have to offer. 
b) Larger CDN networks are able to charge higher prices 

in equilibrium. It can be verified 0>
∂
∂
N

P
. This is an 

intuitive result. 

c) 0
2

>
∂∂

∂
XN

P
. That is, a larger CDN can extract a 

higher increase in price than a smaller CDN, for the same 
increase in volume of traffic. That is, given that the 
amount of traffic handled by CPs is on the rise, a larger 
CDN can leverage this trend better by having a higher 
increase in price than a smaller CDN. 

d) A CP with mean arrival rate λ  subscribes to the CDN 

if 
2

2

1 21
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This is obtained by substituting the optimal price function 
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into the subscription condition in equation (6). This 
subscription decision is shown in the figure below. As can 

be seen, for any given oC , CPs with high λ  will 

subscribe to the CDN. Similarly, for any given λ , CPs 

with low oC will subscribe. In other words, CPs expected 

to subscribe to a CDN are those with high volume of 
traffic and low content delivery outsourcing cost (for 
example, content with minimal security requirements).  

Figure 5. CP subscription decision 

e) To test for the impact of distributional assumptions, we 
solved the same model but introduced a skew in the 
distribution of outsourcing cost across CPs by setting the 

distribution as follows: oooo CCfCCH 2)(;)(
2 == .

Relative to the uniform distribution, this distribution 
assumes that there are relatively more CPs with high 
outsourcing cost i.e., content requiring high security (see 
figure 6). The new solution is given by 
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This price is lower than the optimal price in the case of 
the uniform distribution. Thus, the price charged 
decreases as the number of CPs with high outsourcing 
costs increases. The converse is true when there are 
relatively fewer CPs with high outsourcing costs. In the 
light of increasing security concerns in content delivery, 
CDN prices will have to decline unless improvements in 
technology can address the security costs. Other forms of 
outsourcing costs may include cost of interfacing with a 
third party, gathering business intelligence or modifying 
content in order to enable delivery from a third party. As 
an example, switching to Akamai would require a CP to 
make its content ESI (Edge Side Includes – a technology 
developed by Akamai to enable edge delivery) 
compatible. Thus, the technology choice for redirection 
(URL rewriting or DNS redirection) is a critical one 
because URL rewriting may impose higher outsourcing 

costs on CPs. The CDN thus needs to consider the 
imposed outsourcing costs in addition to efficiency-based 
technical evaluation of redirection schemes. 

f) As bandwidth, memory and processor costs decline, the 
price that the CDN can charge will also decrease. Thus, 
the declining infrastructure costs will result in lower 
revenues for CDNs. Note that these declining costs also 
reduce the infrastructure costs for the CDN. Numerical 
results suggest that the net impact will be a decline in 
CDN profits. 

Figure 6: Negative skew in distribution of outsourcing 
cost 

4.3 Relaxing the Assumptions 
The model presented in sections 4.1 and 4.2 assume 

that requests for content at a web server follows a Poisson 
arrival process. Recent traffic engineering studies (for 
e.g., Barford and Crovella 1998) have demonstrated that a 
self similar process is more accurate in describing the 
characteristics of requests.  
Definition: For any timeseries, X(t), the m-aggregated 
series X(m) is obtained by summing the original series 
over nonoverlapping blocks of size m. Then X is self 
similar if for all m, X(m) has the same distribution as X 
rescaled by mH, where H is a constant known as the Hurst 
parameter of the distribution. X has the same 

autocorrelation function r(k) = E[(Xt- µ )(Xt+k - µ )]/
2σ

as X(m). 
For the purposes of our model, there are two 

important properties of self similar processes to note. 
First, the autocorrelation function of a self similar process 
decays hyperbolically as opposed to an exponential decay 

for Poisson processes, i.e., 
β−kkr ~)( . This property is 

also known as long-range dependence. Second, self 
similar traffic demonstrates significantly higher burstiness 
than Poisson traffic.  

Two other important parameters in our model are 
the distribution of mean arrival rates across CPs 

(functional form of )(λg ) and the distribution of 

outsourcing costs across CPs ( )( oCh ). While it is 

difficult to estimate the latter (can be done by conducting 
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surveys), the functional form of )(λg  can be obtained 

by analyzing appropriate traces. In this paper, we use the 
IRCache trace, obtained from NLANR’s IRCache project 
(NLANR 2002). NLANR maintains a network of ten 
medium/large caches at various locations in the US. 
Caches at other organizations as well as individual 
browsers of end users are reconfigured to redirect requests 
to one of the NLANR caches. Traces in this analysis were 
recorded at the cache in Boulder, CO on September 19 
and September 23, 2002. Since IRCache traces have been 
extensively studied and benchmarked in the web caching 
literature, we treat the sample of requests in our trace as 
representative of the generic Internet traffic.  

Figure 7 plots the histogram of the mean arrival rate 
for different websites on a log-log scale. Tests suggest 

that the distribution of λ  across CPs is well 

approximated by a Pareto distribution. Thus, we can 

model 
2/1)( ccg λλ = , where c1 and c2 are constants.  

Figure 7. Histogram of mean number of requests to a 
server 

The optimal infrastructure level with pareto 
distribution of mean arrival rates across servers and self 
similar traffic at individual servers is shown in figure 8 
(the plot for Poisson traffic is also shown for reference). 
The remaining settings for this numerical example are the 
same as used in figure 1. As expected, the optimal 
infrastructure level is higher for self similar traffic than 
Poisson because of higher burstiness. Furthermore, the 
infrastructure level increases with the mean arrival rate at 
a faster rate than for Poisson arrivals. That is, the error 
from using a Poisson process increases with intensity of 
traffic. This is because the burstiness of Poisson traffic 
decreases with intensity and thus it underestimates the 
true traffic burstiness even more with higher intensity 
traffic. The CDN is able to charge higher prices than in 
the case of Poisson traffic. Further, the extent of the 
volume discount is lower (but it continues to exist) than in 
the case of Poisson distribution because the Poisson 
model underestimates the burstiness of high volume 
traffic. Increased burstiness will likely increase the fixed 

infrastructure costs of the CDN as well (not considered in 
our model). 
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Figure 8. Infrastructure Sizing (Self Similar Traffic and 
Poisson Traffic) 

5   Conclusions
Content Delivery Networks are an important element 

of the Internet supply chain. These services bring content 
closer to consumers and allow content providers to hedge 
against highly variable traffic. Pricing of these services is 
a challenging problem faced by managers in CDN firms. 
Deployment of new services such as Edgesuite that enable 
delivery of entire websites from the edge are accompanied 
with open questions regarding pricing and service 
adoption. 

We develop an analytic model to analyze optimal 
pricing policies for CDN operators. Our model shows 
that, consistent with industry practices, CDN pricing 
functions should provide volume discounts to content 
providers. They also show that the most likely subscribers 
to CDN services are those content providers with high 
volume of traffic and low security requirements. 
Significantly, our model also shows that larger CDN 
networks can charge higher prices in equilibrium, which 
should strengthen any technology-based economies of 
scale and make it more difficult for entrants to complete 
against incumbent firms. Given that Akamai enjoys 80% 
of the market share, it will be difficult for entrants to 
challenge the dominance of Akamai. We also find that the 
price charged by CDNs will decline if security concerns 
associated with content delivery on the Internet increases. 
Various studies and surveys show that security is the 
prime content delivery related concern of CPs supporting 
the notion that CDNs will need to invest in developing 
solutions that allay such concerns. Finally, we find that 
declining bandwidth costs will negatively impact the 
revenues and likely the CDN profit as well. 
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