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Accelerating the Nonequispaced Fast Fourier
Transform on Commodity Graphics Hardware

Thomas Sangild Sgrensen*, Tobias Schaeffter, Karsten @stergaard Noe, and Michael Schacht Hansen

Abstract—We present a fast parallel algorithm to compute the
nonequispaced fast Fourier transform on commodity graphics
hardware (the GPU). We focus particularly on a novel implemen-
tation of the convolution step in the transform as it was previously
its most time consuming part. We describe the performance for
two common sample distributions in medical imaging (radial
and spiral trajectories), and for different convolution kernels
as these parameters all influence the speed of the algorithm.
The GPU-accelerated convolution is up to 85 times faster as our
reference, the open source NFFT library on a state-of-the-art
64 bit CPU. The accuracy of the proposed GPU implementation
was quantitatively evaluated at the various settings. To illustrate
the applicability of the transform in medical imaging, in which it
is also known as gridding, we look specifically at non-Cartesian
magnetic resonance imaging and reconstruct both a numerical
phantom and an in vivo cardiac image.

Index Terms—Discrete Fourier transforms, magnetic resonance
imaging (MRI), parallel algorithms, parallel architectures.

1. INTRODUCTION

HIS PAPER describes a parallel implementation of the
T nonequispaced fast Fourier transform (NFFT) that utilizes
modern graphics cards (GPUs) for general purpose computation
to achieve a significant speedup compared to even the fastest
CPU implementations available. The NFFT is an important
transform used in a number of application areas. In medical
imaging the adjoint transform NFFTM is often referred to
as “gridding” and used particularly in magnetic resonance
imaging and computed tomography when the sampled data
do not conform to a Cartesian grid [1]-[4]. For non-Cartesian
magnetic resonance imaging (MRI) in particular, the speed of
the most commonly used reconstruction algorithms is defined
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primarily by the speed of the gridding and inverse gridding
implementations [1], [5]-[7]. Gridding alone can be used to
reconstruct non-Cartesian MRI and optimized CPU imple-
mentations exist [1]-[3], [8]. For real-time applications using
a high number of receiver coils they are however not always
sufficiently fast. Both gridding and inverse gridding are applied
repeatedly in many iterative reconstruction schemes for fast
imaging, e.g., parallel imaging [5] and schemes exploiting
temporal and spatial correlations [6]. Unfortunately, many
potential applications of these imaging protocols are currently
not clinically feasible due to unacceptably long reconstruction
times. Thus by reducing reconstruction times significantly, a
whole new range of imaging sequences could potentially make
their way to clinical practice.

The name “nonequispaced fast Fourier transform” stems
from our CPU reference implementation, the open source
NFFT library [8], [9]. This name was also chosen in [10], but
otherwise it varies between publications and application areas.
As described in the NFFT tutorial [8], [9] it is known also as
the nonuniform fast Fourier transform [11], the generalized
fast Fourier transform [12], the unequallyspaced fast Fourier
transform [13], the fast approximate Fourier transforms for
irregularly spaced data [14], and gridding [1], [3], [4].

II. THEORY

This section is comprised of several subsections. First, we
briefly describe the NDFT. This is followed by an introduction
to the NFFT. We then briefly review and discuss some overall
concepts of general purpose computation on GPUs before ana-
lyzing and describing our parallel GPU implementation of the
NFFT in the subsequent section.

A. NDFT

Using the notation from [8], [9] let M denote the number of
nonequidistant samples x in a given sampling set. Let f; denote
the complex Fourier coefficient corresponding to the sample po-
sitioned at x ;. Let Iy denote the set of equidistant Cartesian grid
cells of dimension d and let |I | denote the number of cells in
this set. For a finite number of complex Fourier coefficients fk
corresponding to grid cells k we are interested in computing

M-1
fj _ Z fke—Zﬂika and fk _ Z fjeZ'/rika-. 1)
keln 7j=0

The complexity of this computation is O(M|Iy|) arithmetic
operations. If the sampling set is equispaced however and M =
|Iv| this special case can be computed in O(]Ix]|log [In]|) op-
erations using the well known fast Fourier transform (FFT) [15].

0278-0062/$25.00 © 2008 IEEE

Authorized licensed use limited to: Aarhus University. Downloaded on July 3, 2009 at 07:54 from IEEE Xplore. Restrictions apply.



SORENSEN et al.: ACCELERATING THE NONEQUISPACED FAST FOURIER TRANSFORM ON COMMODITY GRAPHICS HARDWARE 539

B. NFFT

The generalization of the FFT to nonequidistant samples is
an approximate algorithm consisting of three steps; rolloff cor-
rection, an FFT, and a convolution. The FFT is used to trans-
form the input grid to a grid in frequency space. This is fol-
lowed by a convolution of the computed grid onto the points in
the sampling set. The convolution kernel is of fixed size inde-
pendent of the grid resolution. For convolution rolloff correction
(or deapodization) [4] the input grid is initially divided by the
Fourier transformed convolution kernel. A formal derivation of
the algorithm can be found in [8] and [9]. Outlines of the NFFT
and NFFTH algorithms are shown in Fig. 1. Their complexity is
O(|In]|log|In| + M) arithmetic operations. An oversampling
factor 0 > 1 (which is multiplied both to the input grid size
and the convolution kernel size W) is used to reduce aliasing
artifacts. In [4], an oversampling factor of two is suggested and
kernel parameters minimizing the average aliasing errors are de-
termined for a range of convolution kernels. It has since been
shown that the maximum aliasing error in an image can be main-
tained at reduced oversampling factors by increasing the convo-
lution kernel size only slightly [3].

Of the three steps in the two algorithms, the FFT and the
convolution steps constitute the significant part of the execution
time as rolloff correction is merely a division. The NFFT refer-
ence library [8], [9] comes with a benchmark application from
which we can deduce the relationship between the cost of the
FFT and the convolution for a range of image sizes. For images
and sample sets sized 1282, 2562, and 5122 (¢ = 2, W = 4)
the convolution step constitutes between 83% and 95% of the
overall execution time. By reducing ¢ and increasing W as sug-
gested in [3] the balance is shifted even further towards the con-
volution step, making it the single most important part to speed
up. The aim of this work is exactly this; to significantly improve
the convolution (and hereby the entire NFFT and NFFTH) ex-
ecution times by an efficient parallel GPU implementation.

C. General Purpose Computation on the GPU

General purpose computation on the GPU (GPGPU) is still
an emerging research area, but many algorithms have been ac-
celerated significantly compared to their CPU counterparts al-
ready at present. We refer to the introductory papers [16]-[18]
for a thorough overview. Until very recently GPGPU was imple-
mented by exploiting an established application programming
interface (API), i.e., OpenGL or DirectX, for computation rather
than graphics. One would create an off-screen memory buffer
and “render” geometry to invoke computation herein. So-called
fragment shaders were programmed to calculate a quadruple
(i.e., color) for each pixel in the memory buffer in parallel. One
of the most recent GPUs, the Geforce 8800 GTX (Nvidia, Santa
Clara, CA), has 128 “stream processors” for these computations.
Hence, a significant acceleration can potentially be obtained if
a computational problem can be solved in parallel. It has been
a limiting factor though to be restricted by graphics APIs de-
signed for rendering rather than computation. Fortunately, this
is now changing as both major hardware manufacturers (ATI
Technologies, Marham, ON, Canada and Nvidia) have both re-
leased new APIs dedicated for GPGPU—namely CTM [19] and

NFFT algorithm

Input: Complex time domain coefficients fk
corresponding to the equispaced grid cells k.
Output: Approximate complex frequency domain

coefficients f; corresponding to the non-
equispaced samples X;.

1. Kernel rolloff correction. Compute g, .

Divide ./}k with the coefficients of the Fourier

transformed convolution kernel.

2. FFT. Compute g; .

Compute the fast Fourier transform of g, .

3. Convolution. Compute f; .

Compute the convolution of the complex
values g, at the equispaced grid cells k onto the

non-equispaced samples x;.

NFFT" algorithm

Input: Complex frequency domain coefficients f;

corresponding to the non-equispaced samples
X;.

Output: Approximate complex time domain coefficients

fx corresponding to the equispaced grid cells
k.

1. Convolution. Compute g; .

Compute the convolution of the complex
coefficients f; at the non-equispaced samples x;
onto the equispaced grid cells k.

2. FFT. Compute g, .
Compute the inverse fast Fourier transform of g; .

3. Kernel rolloff correction. Compute J}k .
Divide g, with the coefficients of the Fourier
transformed convolution kernel.

Fig. 1. Algorithm outlines for computing the NFFT and the NFFT* respec-
tively [8], [9].

CUDA [20]. The GPU can now be used for computation through
high-level C-like programming languages without knowledge
of graphics programming in general. Although different restric-
tions do apply in the two APIs, one can consider the GPU as a
multiprocessor where each individual processor can read from
and write to a shared memory pool.

An important concept when analyzing the performance of
a GPU-based algorithm is its arithmetic intensity. This is de-
fined as the “amount of computational work”™ that is performed
per off-chip (global) memory access (e.g., [21]). Applications
with high arithmetic intensity are most likely compute bound
while a low arithmetic intensity is an indication of a memory
bound algorithm. To see why this concept is important, Fig. 2
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Fig. 2. Memory access costs as a function of the number of shader instructions
(solid lines). Number of memory fetches is varied from 1 to 6. Data was obtained
using GPUBench [22] on an ATI Radeon X1800 XT.

shows the execution time of six programs with different arith-
metic intensities as a function of the number of instructions. The
data making up the figure was obtained using the GPU bench-
mark suite GPUBench [22]. The figure is comprised of six sub-
tests that perform one to six memory cache accesses each (solid
lines). Notice the horizontal line segments. They show that for
each memory access, a number of “free” computations can be
made without influencing the overall execution time if they are
independent of the result of the prior memory fetches. Only as
the diagonal part of the graph is reached, there is a cost associ-
ated to issuing additional instructions. From the figure, we can
predict the execution time of an application consisting entirely
of memory reads by following the stippled line. Notice that the
slope of this line is much steeper than the slope of the diag-
onal solid line, which constitutes the border between a memory
bound and a truly compute bound application. An application
with an arithmetic intensity that places it between the stippled
line and the solid diagonal line is memory bound, while an ap-
plication with an arithmetic intensity that places it on (or close
to) the diagonal would be compute bound. The performance of
a compute bound application will grow with the rapid increase
in arithmetic performance from each new generation of GPUs,
whereas a memory bound application will increase speed as a
function of memory bandwidth, which unfortunately is much
slower growing. Whenever possible, one should use on-chip
memory (e.g., registers or dedicated fast memory) to avoid the
cost of expensive global memory fetches. As it is often impos-
sible to interleave all memory fetches with computations inde-
pendent of their results, the GPU APIs handle several concur-
rent threads on each processor. When a thread requires memory
access on which the subsequent instruction relies on, the pro-
cessor will switch to a different thread to avoid being idle. Once
the data arrives it can again switch back to the original thread.
The number of concurrent threads is determined by the amount
of on-chip storage for each processor. We refer to [21] for fur-
ther discussion of this topic.

To summarize the discussion above, it is crucial to minimize
the overall number of memory accesses for a given algorithm in
order to obtain maximum performance. Ideally, each memory
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access should be interleaved with computations independent of
its result to hide its cost completely. When at all possible, one
should use on-chip memory such as registers for computations
as there is no penalizing cost associated to accessing these.

III. NFFT oN THE GPU

As described in the previous section, the NFFT and the
NFFTH consist of three steps each: rolloff correction, the FFT,
and a convolution. Prior to this work the convolution step was
the far most time consuming and consequently the step we
have focused on improving. Its implementation is described
shortly. Several GPU accelerated implementations of the FFT
have been published previously, e.g., [23]-[26]. In this work,
we used the approach described in [24]. As rolloff correction
is simply a division at each grid cell, it is straightforward to
parallelize.

To analyze and discuss potential parallel convolution algo-
rithms we focus on the convolution step in the NFFTH algo-
rithm as this makes graphical illustration simpler. With minor
modifications only, the algorithms that we deduce are however
valid for the NFFT also. Hence, we describe a parallel convo-
lution of a randomly distributed sampling set onto a Cartesian
grid. From our previous discussion, it was clear that the arith-
metic intensity, i.e., the amount of computation per memory ac-
cess, is an important factor for the overall performance. We thus
analyze the amount of memory access required for each algo-
rithm we describe. Two algorithms will be optimal with respect
to either the number of sample reads or the number of grid cell
writes—but not both. We consequently introduce instead a novel
third algorithm which overcomes this limitation.

The first method to be discussed is a naive parallelization of
the conventional CPU approach in which the points from the
sampling set are processed one by one and sequentially con-
volved onto the Cartesian grid. Given p processors we split the
sampling set into p subsets and let each processor be respon-
sible for the convolution of exactly one subset. Compared to a
machine with just one processor, this approach could potentially
provide a speedup factor of p. One needs to ensure however that
no two processors will attempt to write to the same memory
address concurrently as this would produce undefined results.
This approach is illustrated in Fig. 3 (left). The overall number
of memory accesses required for the p processors is proportional
to M + 2W<M. As previously described, W denotes the con-
volution kernel width and M and d are the number of samples
and data dimension, respectively. The leftmost part of the sum
constitutes the number of memory reads used to process the M
samples. The rightmost part of the sum describes the number of
memory accesses required to store the result of the convolution.
For each sample, the kernel size determines the number of grid
cells to write to. The additional factor of 2 follows from the fact
that we must accumulate the contribution of the samples. For
each grid cell, we thus require both a read and a write to account
for each sample. Please note however that support for hardware
accelerated additive blending would eliminate this factor 2. The
leftmost part of the sum is optimal since each sample is only read
once. For the rightmost part of the sum, unfortunately the cost
is (close to) optimal for very sparse sampling sets only. As M
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Fig. 3. Two parallel algorithms for the convolution of a sampling set (stars)
onto a Cartesian grid in two dimensions. On the left, the samples are gathered
in four groups to be processed by four processors concurrently. Each group is
illustrated by a unique shading pattern highlighting a convolution kernel of size
of 4% around each sample. On the right, one processor is assigned to the compu-
tation of each grid cell. Convolution kernels of size of 42 are highlighted around
four selected grid cells marked in solid black.

approaches the number of grid cells, we will be updating each
cell repeatedly.

The excessive amount of accumulative memory writes in the
previous approach leads us to an alternative algorithm in which
we only write to each grid cell once. This approach has previ-
ously been used for reconstruction of MRI images [26]. Each
processor is now responsible for the computing the convolution
onto a given grid cell. If the number of cells exceeds the number
of processors, each processor computes the convolution onto
several cells sequentially. This is illustrated in Fig. 3 (right). A
utility input data structure is used to identify the list of sampling
points that influence a given grid cell. Alternatively, for certain
sampling trajectories this list can be computed online as part of
the algorithm. The accumulated value of the convolution of the
list entries is written to the associated grid cell. This algorithm
requires only the optimal || memory writes—one for each
Cartesian grid cell. The number of times each sample is read
however is determined by the convolution kernel size and data
dimension. The total number of sample reads is proportional to
WIM. This is far from optimal even for modest convolution
kernel sizes.

The two parallel algorithms presented above have been op-
timal with respect to either the number of sample reads or the
number of grid cell writes. The final algorithm we present can
be considered a hybrid of the two previous algorithms that per-
forms well with respect to both the number of memory reads
and writes. It is in fact a generalization of the latter of the two
previous algorithms to which it reduces in a worst case sce-
nario. In the previous algorithm each processor was responsible
for computing the convolution onto a given grid cell. In our
generalization, each processor is instead responsible for com-
puting the convolution onto a set of neighboring points, i.e.,
a rectangular area of the grid. The input data structure which
in the previous algorithm mapped each processor to a list of
samples from the sampling set is extended to cover all samples
that convolve into in the associated rectangle. Each processor
now iterates through this list, accessing each sample only once.
Each sample is convolved onto the cells in the associated rec-
tangle when it is processed. The key here being that the cells are
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Fig. 4. Our hybrid algorithm for the convolution of a sampling set (spiral dots)
onto a Cartesian grid in two dimensions. In this example, the grid cells are di-
vided into four groups (thick solid black lines) to be processed by four pro-
cessors concurrently. With a convolution kernel size of 42 all sampling nodes
within the stippled square are read by the processor associated to the top left
quadrant. Nodes in the rectangles filled with light grey shading are read by two
processors, while nodes in the darkly shaded square are read by four processors.

stored in local on-chip memory, e.g., registers. When the input
list has been processed, the registers holding the convolution re-
sult are written to global memory. The algorithm is illustrated in
Fig. 4. As in the previous algorithm it requires only the optimal
|Iv| global memory writes. We have, however, significantly im-
proved the overall number of sample reads. All samples that are
interior to a single rectangular grid area, i.e., samples that do not
convolve into other areas, are only read once which is optimal.
Some “boundary samples,” i.e., those inside the areas with light
or dark grey shading in Fig. 4, convolve into several regions
and are consequently read multiple, say n times. However, as
n < W, only if the rectangular area is chosen as unit size will
the hybrid algorithm perform an overall of W<M sample reads
as in the previous algorithm. Section III-B below contains a de-
scription of the necessary utility data structure, which has only
a small additional cost.

A. Implementation Details

We implemented the hybrid convolution algorithm on an ATI
FireStream 2U graphics card with 1 GB of memory through
CTM [19] on a PC with 2 GB of memory and an 2.13 GHz
dual core processor running Windows XP. The GPU code was
written in HLSL, a high-level C-like language, and compiled
with the Microsoft FXC compiler shipped with the DirectX 9
SDK [27]. The algorithm requires each processor to write mul-
tiple outputs, i.e., scatter. As scatter is currently not supported
in HLSL, it was necessary to add the scatter statements man-
ually in the compiled Pixel Shader 3 assembly code [27]. To
make this easy, we compute the scatter values and addresses
in the HLSL code. To avoid compiler optimizations changing
these computations, we insert a multiplication of these with
a dummy variable whose value is unknown at compile time.
This allows us to quickly insert some “global” code snippets to
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handle the scatter requirements after each compilation. Another
limitation induced by the FXC compiler is the number of reg-
isters it will allow in the resulting assembler code (currently 32
quadruple floating point values). With our present implemen-
tation this limits each processor to handle rectangles of eight
complex valued cells. The GPU based convolution using a pre-
computed kernel for the NFFT is an exception from this state-
ment. Due to lack of registers, we have omitted realizing this
specific scenario.

Our GPU implementation of the FFT was obtained by directly
translating the source code accompanying [24] to CTM-no at-
tempts were made to reduce the memory bandwidth require-
ments for the FFT.

Our CPU reference implementation, the open source NFFT
library [8], [9], was compiled on a 64 bit Linux machine running
Fedora Core 6 on an Intel Xeon 2.33 GHz dual core processor
with 4 GB of memory. All optimization flags were turned on.

B. Preprocessing

The GPU-based NFFT! algorithm described above requires
a preprocessing step to build an essential data structure: the
mapping from each processor id to the set of sample points
that convolve onto any grid cell the processor is responsible
for updating. As the driving force for this work was non-Carte-
sian magnetic resonance image reconstruction we have chosen
a data representation that performs best with sample trajecto-
ries common in this scenario (spiral and radial trajectories). A
different representation should be developed for optimal per-
formance if sample points were randomly distributed. We no-
tice that series of successive sampling points convolve into a
given rectangle on the Cartesian grid. We thus store each of
these series by the sample index to the first sample followed
by the number of successive samples. This representation is a
compressed data format that reduces memory bandwidth by re-
trieving a set of sample indices by a single memory access. For
the convolution step in the NFFT algorithm (as opposed to the
NFFTH) the mapping is between processor ids and sets of grid
cells. We then store rows or columns of grid cells in a similar
encoding. In either case the data structure can be computed in
time O(M + |In|), i.e., it is linearly dependant on the number
of samples and the image size.

Density compensation was performed prior to initiating
NFFTH computations by multiplication of the sample values
and density weights. This could be done on either the CPU or
GPU.

The CPU reference benchmark application also utilizes an
optimization that is linear in the number of samples with re-
spect to time: The convolution kernel is precomputed and ac-
cessed through a lookup table. A precomputed kernel can also
be selected in our GPU algorithm depending on the desired
configuration.

C. Optimizations

In most previous work on the non-Cartesian Fourier trans-
form, it has been customary to precompute the convolution
kernel and store it in a lookup table. This has been the preferred
approach on the GPU also. A precomputed kernel provides
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freedom to use any kernel shape without changing the speed
of the convolution. However, it also constitutes an additional
memory bandwidth load, which we are trying to reduce. As
an alternative, we also implemented the hybrid convolution
algorithm to use a Gaussian kernel or a Kaiser—Bessel kernel
computed online. When computing the kernel online on a
GPU operating on quadruple data, it is important to express
computations to utilize such vector operations whenever pos-
sible. Unfortunately, the ATI FireStream 2U GPU allows the
exponential in the Gaussian kernel to be computed only on
scalar values. It thus has to be repeated for each component of
the vector. The Kaiser—Bessel kernel on the other hand, consists
mostly of multiplications and additions, which can easily be
implemented using the quadruple vector operations.

Just as we have a choice of either pre- or online computation
of the kernel, the same can be said about the samples’ positions
when the sampling trajectory is known (as for e.g., spiral or ra-
dial MRI). By computing the sample positions online we effec-
tively halve the memory bandwidth required to access the sam-
ples. Moreover, when fetching a quadruple of data from memory
containing a sample’s position and complex value, the sample
position is required immediately afterwards to compute the con-
volution, which is dependant on the distance between the sample
point and the grid cell positions. A lot of thread switching could
potentially be avoided if we instead computed the sample posi-
tion while independently looking up its associated sample value
(for free). This optimization is only relevant for the convolution
in the NFFTH computation. In this case, each processor is iter-
ating over a potentially large number of sample points. For the
convolution in the NFFT algorithm, the position of the grid cells
are known from our data structure encoding.

D. Experiments

We implemented the proposed hybrid GPU implementation
of the NFFT and the NFFTH algorithms and compared its speed
to the CPU reference implementation. Consistently with this
reference we chose an oversampling factor 0 = 2 and kernel
width W = 4 for these tests. Performance is reported for both
spiral and radial trajectories with several convolution kernels at
image and sample resolutions of 1282, 2562, and 5122 keeping
the number of samples and the number of grid cells equal. We
also evaluated the performance implications for the varying op-
timizations suggested above.

E. MRI Application

We applied the proposed algorithm to non-Cartesian MRI of
a numerical phantom and an in vivo acquisition.

The phantom was sampled using two non-Cartesian MRI
trajectories; radial and spiral. The trajectories were designed
to conform to the specifications of typical gradient hardware.
Specifically for the spirals, a maximum gradient strength of
40 mT/m and a slew rate of 140 T/m/s were used. The spiral
trajectories had approximately constant angular velocity at
the center of k-space and close to constant linear velocity at
the edges of k-space. A smooth transition between constant
angular and constant linear velocities was used [28]. The
radial acquisitions were sampled equidistant along each radial
k-space profile.
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TABLE I
SPEED MEASUREMENTS FOR THE NFFT ALGORITHM ON THE CPU AND THE GPU FOR DIFFERENT MATRIX SIZES AND SAMPLING TRAJECTORIES. OVERSAMPLING
FACTOR ¢ = 2 AND KERNEL SIZE W = 4 WAS USED FOR ALL MEASUREMENTS. REPORTED TIMES ARE MEASURED IN SECONDS

NFFT - trajectories computed offline

Convolution Deapo- Total
G L KB FFT dization G L KB
Spiral trajectory
128x128 CPU - 3.3¢ - 1.7¢3 7.6 ¢ - 3.7¢? -
samples/matrix GPU 1.oe? - 13¢?  36¢° 1.9¢* 54¢7 - 5.6¢7
Factor 33 - 25 0.5 4.0 7 - 7
CPU - 1.7¢"! - 1.6 ¢ 3.0 ¢ - 1.9¢"! -
56x25
samzplg/zm:trix GPU 3.5¢7 - 40¢? lle? 52¢* 1.6¢? - 1.7¢?
Factor 49 - 43 1.5 5.8 12 - 11
CPU - 1.0¢° - 7.2 ¢ 1.2¢2 - 1.2¢° -
512x5
samp'é:h;jtrix GPU 1.3 ¢? - 1.5¢% 45¢7 22¢3 6.3 ¢ - 6.5 ¢
Factor 77 - 67 1.6 5.5 19 - 18
Radial trajectory
128x128 CPU - 3.3¢” - 1.7¢3 7.6 €4 - 3.7¢? -
Samples/matrix GPU 14¢3 - 18¢3  29¢3 1.7¢* 4.9¢? - 53¢
Factor 24 - 18 0.6 4.0 8 - 7
CPU - 1.7¢! - 1.6 3.0 ¢ - 1.9¢"! -
56x25
Samzpli’s‘/zmgtrix GPU _ 50¢° ; 58¢7  11e?  52¢7 17¢2 } 18¢2
Factor 34 - 29 1.5 5.8 11 - 11
CPU - 1.0¢° - 7.2¢* 12¢? - 1.2¢° -
Samspllze’s‘fnljtrix GPU  18¢? ; 21¢2  44¢2  22¢7  68¢2 ; 7.0 ¢2
Factor 56 - 48 1.6 55 18 - 17

The in vivo cardiac MRI dataset was acquired using a radial
acquisition. The sequence used was a steady state free preces-
sion acquisition with TR = 3.03 ms and TE = 1.51 ms. The
matrix size was 128 x 128 pixels, field-of-view was 320 mm
and 128 projections were acquired. Each projection was over-
sampled along the readout direction by a factor of two.

IV. RESULTS

CPU and GPU performance measurements of the NFFT and
NFFTH implementations can be seen in Tables I-IV. In Ta-
bles I-III, we used an oversampling factor ¢ = 2 and a kernel
width W = 4 for all measurements corresponding to the de-
fault settings of the CPU-based NFFT benchmark application.
In Tables I-II, all sample positions were fetched from memory.
In Table III, we report the impact of our proposed optimization
of the NFFTH convolution, i.e., computing the sample trajec-
tories online. The execution time of the different steps of the
algorithm can be found in columns and the performance for the
various image sizes and trajectories is shown in the different
rows. On the GPU the performance of the convolution step was
measured with three types of kernels; a Gaussian kernel com-
puted online (G), a Kaiser—Bessel kernel computed online (KB),
and using a lookup table (L). For the CPU implementation, we
always used a precomputed lookup table as we would other-
wise make an unfair comparison. Rows denoted “factor” pro-
vide the speedup factor between the CPU and the GPU. The
columns named “Total” provide the overall execution time for
the entire NFFT/NFFT" algorithms. This column includes
besides from the three main steps of the algorithm (convolu-
tion, FFT, and deapodization) also some “computational over-
head” to connect these steps—such as wrapping and unwrap-
ping image and frequency before and after the FFT, and zero

filling of image space initiating the NFFT. Consequently, the
total execution time in each row is possibly slightly higher as the
sum of the contributions from the three main steps. Fig. 5 sum-
marizes maximum speedup factors obtained at the various res-
olutions. Table IV shows the effect of varying the oversampling
factor and kernel width for a radial acquisition. The column
“Sum” denotes the execution time and acceleration factor for
performing both a convolution and an FFT.

Fig. 6 compares the reconstruction of a numerical MRI
phantom on the CPU and GPU using the NFFT algorithm,
i.e., gridding. We selected the best performing GPU config-
urations: spiral trajectories fetched from memory and radial
trajectories computed online both with a 4 x 4 Gaussian
kernel computed online. On the CPU, we used a precomputed
Kaiser—Bessel kernel of the same width. To the eye there are
no noticeable differences in the images. This is also true for the
in vivo cardiac MRI example provided in Fig. 7. A quantitative
evaluation of the reconstruction quality for various settings
is presented in Table V. The table evaluates the reconstruc-
tions of both the numerical phantom and the in vivo cardiac
acquisition shown in Figs. 6 and 7. The table lists the root
mean square (rms) errors of the reconstruction computed on
the CPU and the GPU, respectively, compared to reference
images obtained from a double precision CPU implementation
of the NDFTH. To challenge our GPU implementation the
most the numbers are based on a setting in which we computed
online both a Gaussian kernel and the sample trajectories. The
CPU reconstruction utilized a Gaussian kernel lookup table for
comparison. Kernel control parameters were chosen according
to [4]. Fig. 8 shows a difference image between a CPU and
GPU reconstruction of the numerical phantom. The images
differ only by random noise at a magnitude of 10~6.
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TABLE II
SPEED MEASUREMENTS FOR THE NFFTH ALGORITHM ON THE CPU AND THE GPU FOR DIFFERENT MATRIX SIZES AND SAMPLING TRAJECTORIES.
OVERSAMPLING FACTOR ¢ = 2 AND KERNEL SIZE W = 4 WAS USED FOR ALL MEASUREMENTS. REPORTED TIMES ARE MEASURED IN SECONDS

NFFTH - trajectories computed offline

Convolution FFT Deapo- Total
G L KB dization G L KB
Spiral trajectory
128x128 CPU - 3.8 C’Z - 1.8 C-3 7.5 6_4 - 4.0 e'z -
samples/matrix GPU Lled 18¢3  16¢  39¢” 22¢" 52¢°  6.6e°  62¢7
Factor 35 21 24 0.5 34 8 6 6
CPU - 19¢’! - 1.8¢7 3.0 7 - 2.1¢"! -
256x25 -
samplg:/mgtrix GPU 353 52e3  51e?  1.0¢? 5.0¢* 14¢?  19e¢?  1.6¢e?
Factor 54 37 35 1.8 6.0 15 11 13
CPU - 1.1¢° - 7.4¢” 1.2 ¢? - 1.3¢° -
512x512 1
sample:/matrix GPU 13e¢?  18e¢? 1.8¢? 45¢* 23¢7 64¢>  69e¢>  69¢?
Factor 85 61 61 1.6 5.2 20 19 19
Radial trajectory
128x128 CPU - 3.8¢? - 1.8 ¢ 7.5 ¢ - 4.0¢> -
samples/matrix GPU 15¢3  20¢?  19¢3  39¢7° 22¢* 59¢3  64e’ 6767
Factor 25 19 20 0.5 3.4 7 6 6
CPU - 19¢’ - 1.8 ¢? 3.0 ¢’ - 2.1¢! -
56x25 -
s amzpliz/zm:trix GPU 43¢’ 56e?  54¢7 12¢? 5.7 ¢* 1.8 e 1.9¢? 1.9 ¢
Factor 44 34 35 1.5 5.2 12 11 11
CPU - 1.1¢° - 7.4¢? 1.2 ¢ - 1.3¢° -
512x5 -
Samsplli:/l;itrix GPU 15¢2  18¢? 1.7¢2  45¢? 22¢3 65¢2 69¢% 68¢”
Factor 73 61 65 1.6 5.5 20 19 19
TABLE III TABLE IV

SPEED MEASUREMENTS FOR THE NFFTH ALGORITHM
WITH ONLINE COMPUTATION OF THE SAMPLING TRAJECTORIES.
REPORTED TIMES ARE MEASURED IN SECONDS

NFFTH - trajectories computed online

Convolution

INFLUENCE OF THE OVERSAMPLING FACTOR (v) AND KERNEL WIDTH (W)
ON THE ACCELERATION FACTOR FOR THE NFFTH ALGORITHM ON A RADIAL
ACQUISITION OF 2562 SAMPLES ON A 2562 MATRIX. THIS TABLE RELATES TO
THE LOWER PART OF TABLE II. REPORTED TIMES ARE MEASURED IN SECONDS

NFFTH - trajectories computed offline

Gaussian
Convolution FFT Sum

0=2 CPU l4¢’ 18¢?  16¢”
W =3 GPU 3.7¢7 12¢2  16¢?

Factor 38 1.5 10
a=1 CPU 6.3¢? 18e°  65¢”
W=4 GPU 2.9¢” 39¢7  68¢7°

Factor 20 0.5 10

G KB
Spiral trajectory
128x128 CPU 3.8¢”
=3 =
samples/matrix GPU l4e 1.8¢
Factor 27 21
CPU 1.9¢7
256x256 GPU 775 I
samples/matrix : :
Factor 40 31
CPU 1.1¢"
512x512 - -
samples/matrix GPU 19¢ 24¢
Factor 58 46
Radial trajectory
128x128 CrPU 3.8¢2
3 3
samples/matrix GPU l4e 22¢
Factor 27 17
CPU 1.9¢"
256x256 _3 -
samples/matrix GPU 40¢ 59¢
Factor 48 32
CPU 1.1¢°
512x512 — -
samples/matrix GPU 1.3¢ 19¢
Factor 85 58

V. DISCUSSION

The main contribution of this paper is a GPU-accelerated im-
plementation of the convolution step in the NFFT and NFFTH
algorithms. Significant improvements in speed of up to a factor

of 85 were achieved compared to our CPU reference imple-
mentation. As the convolution step was previously the predom-
inant component in the NFFT and NFFT* algorithms with re-
spect to reconstruction times, up to twenty-fold reductions in the
overall reconstructions times were achieved. For spiral imaging,
we achieved convolution speedup factors of 85 and 77 using
Gaussian kernels on image and sample sizes of 5122, At res-
olution 2562 these speedup factors were 54 and 49, and for a
resolution of 1282 they were 35 and 33. For radial imaging, the
best performance was obtained when computing the trajecto-
ries online for the NFFTH algorithm. At resolution 5122 the
speedup factors were 85 and 56, at resolution 2562 they were
48 and 34, and at a resolution of 1282 they were 27 and 24. Per-
formance was thus comparable for radial and spiral imaging at
their respective optimal configurations. Generally speaking, the
more samples to convolve, the larger an acceleration factor was
obtained. From Table IV, it can be observed that the accelera-
tion factor is also influenced by the effective kernel size (o).
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Speedup
factor

%0 NFFT spiral

80 NFFTHrad}aI

NFFT" spiral

70 NFFT" radial
60
50
40
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10
0

128 x 128 samples 256 x 256 samples 512 x 512 samples

Fig. 5. Speedup factors obtained for our GPU based convolution algorithm at
optimal configurations according to Tables I-III. Different shades refer to spiral
and radial acquisitions for the NFFT and NFFTH, respectively. Number of
samples is varied between 1282, 2562, and 5122,

O Q

CPU GPU
: Radial :

Fig. 6. Reconstruction of a numerical MRI phantom on the CPU (left) and
GPU (right). 2562 points were sampled on spiral trajectories (top) and radial
trajectories (bottom). A 4 X 4 Kaiser—Bessel convolution kernel was used on
the CPU and a 4 X 4 Gaussian kernel on the GPU. An oversampling factor of
two was applied.

Again, the larger oWV, the larger the acceleration factor. Another
general observation is that it pays off computing the convolution
kernel online, particularly when using a Gaussian kernel. Even
though the difference is marginal only for the Kaiser—Bessel
kernel it is still advantageous as it increases the arithmetic in-
tensity of the algorithm. It did not pay off computing the spiral
trajectories online however. From this we can conclude that it is
advantageous to compute online only the simplest trajectories,
e.g., equidistant radial sampling.

The FFT and deapodization steps generally experienced a
modest speedup of 1.5-6.0 at image sizes 2562 and 5122. The
FFT however did halve its performance at resolution 1282, This
is the result of a severely memory bound implementation of the
FFT adopted directly from [24] without much optimization. It

Fig.7. Reconstruction of an in vivo cardiac MRI acquisition. Top left: reference
NDFT! reconstruction. The remaining three images were reconstructed with
the NFFTH algorithm (gridding) on the GPU using a Gaussian kernel with
different oversampling factors (o) and kernel widths (W). Top right: o = 2,
W = 4. Bottom left: & = 2, W = 2. Bottom right: « = 1, W = 4.

TABLE V
ROOT MEAN SQUARE RECONSTRUCTION ERRORS FOR THE NUMERICAL MRI
PHANTOM AND IN VIvo CARDIAC MRI RADIAL ACQUISITIONS PRESENTED IN
Fig. 6 and 7. IMAGES WERE RECONSTRUCTED BY THE NFEFTH ALGORITHM
(GRIDDING) WITH VARYING OVERSAMPLING FACTORS () AND KERNEL
WIDTHS (W) USING A GAUSSIAN KERNEL ON THE CPU AND GPU,
RESPECTIVELY

NFFTH - RMS reconstruction error

Npl‘:::l‘:)i;' In vivo MRI
a=1  CPU 2.441e-01 5.581¢-02
W=2  gpu 2.198¢-01 5.544¢-02
a=1  CPU 2.071e-01 4.944¢-02
W=4  Gpy 2.073e-01 4.993¢-02
a=2 CPU 3.045¢-02 1.562¢-02
W=2  gpu 2.990e-02 1.555¢-02
a=2 CPU 9.349¢-03 5.353¢-03
W=3  gpu 8.863¢-03 5.351e-03
a=2 CPU 2.881e-03 1.561¢-03
W=4  Gpy 2.914e-03 1.559¢-03

would be worth investigating a more efficient GPU implementa-
tion of the FFT as it is now the limiting factor in the reconstruc-
tion. Furthermore, since the FFT implementation is memory
bound it will likely be even more dominant on future genera-
tions of hardware. As previously stated this work was imple-
mented using the programming API CTM [19]. Recently, an al-
ternative has appeared, namely CUDA [20]. CUDA ships with a
highly optimized GPU implementation of the FFT that outper-
forms our implementation with at least a factor of 5. This shows
that it is indeed possible to implement a faster FFT on a com-
modity GPU.
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Fig. 8. Reconstruction differences between the CPU and the GPU. Left:
CPU reconstruction (top), GPU reconstruction (middle), and difference image
(bottom). Right: Image profiles along the grey horizontal line in the leftmost
images (top) and corresponding image differences (bottom).

On the CPU the convolution operation constitute 80%—-95%
of the NFFT and NFF T execution times (a = 2, W = 4). On
the GPU on the other hand, our proposed convolution algorithm
is between two and four times as fast as our FFT. Hence, the
FFT is now the limiting component of the algorithms. For the
best overall performance it is important to balance the cost of
the convolution and the FFT. This can be achieved by reducing
the oversampling factor while increasing the kernel size. In [3],
was shown that this can be done while maintaining the max-
imum aliasing amplitude for a given kernel. Table IV shows a
rather exaggerated example setting « = 2/W = 3 and a =
1/W = 4, respectively. The convolution acceleration factor is
lower for the latter case as oW takes the lowest value. However,
the overall acceleration factor is maintained due to the shift in
balance between the convolution and the FFT. The overall ac-
celeration factor would even have increased had the kernel size
been chosen such that W >4 in the latter case.

GPUs currently operate with single precision floating point
values (support for double precision has been announced for fu-
ture generations of hardware). We must emphasize that the CPU
reference library operates on double precision numbers only.
Unfortunately, it is not straightforward to modify the code to
use single precision floating point values instead. Since all CPU
speed measurements were performed on a 64-bit machine how-
ever, the execution time differences between single and double
precision is limited.

A quantitative evaluation of the accuracy of our GPU NFFTH
implementation was included in Table V showing no significant
differences between the CPU and GPU reconstruction errors
for any tested combination of oversampling factors and kernel
widths. The marginally better GPU reconstructions are likely
due to the fact that kernel weights are computed based on actual
distances and not read from a discrete lookup table. From Fig. 8,
it can be concluded that the error increases with the distance
from the center. This is due to the division by the deapodiza-
tion filter that has smaller values the further the distance from
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the center. When choosing a sufficient oversampling factor and
kernel size the rms error is very low and shows that single pre-
cision reconstruction is adequate in the examples chosen here.
It is perceivable however that if the MRI data was acquired with
more meaningful bits (e.g., in a 3-D acquisition) that single pre-
cision would prove inadequate. Consequently, care should be
taken to test that single precision reconstruction is sufficient for
any new type of input data. From the in vivo rms errors, it is
also evident that the reconstruction error is well below the gen-
eral noise level for most of the selected reconstruction settings.

To utilize the GPU convolution algorithm, a small initial cost
to setup our data structures prior to the reconstruction is neces-
sary. For non-real-time scans, this raises no concern as the data
structures can simply be computed prior to or during the acqui-
sition. For real-time applications, we must assume that the data
structure remains constant during acquisition and reconstruction
to be reused over and over. Fortunately, the imaging plane po-
sition and orientation can be chosen freely without changing
the data structure as the trajectories of the sample points are
(or can be) expressed in coordinates relative to the imaging
plane axes. However, changing certain acquisition paramters
(e.g., the field-of-view) or reconstruction parameters (e.g.,
and W) requires recomputation of the data structure. If a spe-
cific application cannot tolerate a brief stall in the reconstruc-
tion due to changing one such parameter, we suggest precom-
puting the data structure for a number of predefined settings,
which can then to be stored on the host computer and uploaded
to the GPU when required. This compares somewhat to previous
CPU strategies for precomputing convolution kernel values per
sample for a given set of trajectories [29]. We have not attempted
any optimization of our preprocessing step but report a few ob-
served running times nonetheless. For data containing 1282,
2562, or 5122 samples the preprocessing costs are 0.1s/0.04s,
0.4s/0.2s, and 1.4s/0.9s for the NFFT and NFFTH algorithms,
respectively.

Previous implementations of the NFFTH on the GPU have
been restricted to the approach sketched to the right in Fig. 3
due to restrictions in OpenGL and DirectX [26]. Consequently
only a four-fold increase in performance compared to the CPU
could be obtained. The dedicated programming APIs for general
purpose computation on GPUs that have recently emerged have
fortunately removed most of the restrictions that have previously
been hindering effective, compute bound algorithms in being
implemented [19], [20]. The work presented in this paper thus
constitutes one of the first algorithms to take advantage of these
new opportunities. To verify that we are indeed compute bound
in the proposed convolution algorithm we repeated some of our
measurements at GPU memory and clock settings running at
half speed. This confirmed our hypothesis since the speed of
the convolution was reduced by up to 90% when decreasing
the clock speed 100%, whereas reducing memory speed to half
resulted in down to a 5% reduction in performance only.

In our convolution implementation, we were somewhat re-
stricted by the DirectX 9 FXC compiler in that it only allows
compilations of programs that will result in assembly code con-
sisting of no more than 32 temporary registers. The GPU used
in this work supported many more registers however. It will be
interesting to get around this limitation in the future, as we most
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likely could not choose the optimal number of grid cells to asso-
ciate each processor due to this restriction. A related discussion
is the impact of nonuniformity of the sampling density to con-
volution speeds. Areas of high sampling density (for MRI typi-
cally the center of k-space) take longer to process than areas of
low sampling density. This could reduce performance if some
processors were partly stalled due to the lock stepping SIMD
nature of the GPU. Although beyond the control of the GPU
programmer, the GPU does minimize this problem by enforcing
the SIMD model only subsets of its computational domain. This
property suggests that it might be advantageous to limit each
processors domain size somewhat.

Modern GPUs now offer affordable “parallel computers” pro-
viding a much higher “computational power per $” ratios as
CPU clusters or multicore CPUs. At the same time, the intro-
duction of dedicated programming “interfaces” for general pur-
pose computation on GPUs from both major hardware vendors
has removed the necessity of knowing about computer graphics
before migrating to this new platform. GPGPU is thus expected
to obtain an important role in many “time conscious” scientific
computing applications in the future.

We conclude this paper with a brief discussion of the po-
tential clinical impact of our results. When using gridding for
real-time reconstruction of radial or spiral MRI we can now re-
construct acquisitions of 2562 and 5122 samples with an over-
sampling factor 0 = 2 and kernel width W = 4. Acquisi-
tions containing 5122 samples went from reconstruction rates
of 1 frame per second (fps) to 15 fps, i.e., a transition from
non real-time to real-time reconstruction. For 2562 samples we
moved from 5 to 70 fps, i.e., from near real-time reconstruction
to real-time reconstruction from multiple receiver coils. Finally,
the GPU based gridding and inverse gridding algorithms hold
a huge potential for many iterative reconstruction algorithms in
non-Cartesian imaging, e.g., SENSE [5], k —t BLAST and k —¢
SENSE [6], and [7]. Most applications of these algorithms are
not currently being used routinely in clinical settings due to con-
siderable reconstruction times. As each iteration contains both a
gridding and an inverse gridding step, which together constitute
the main reconstruction time, the presented work can signifi-
cantly speed up these reconstructions and hopefully make them
clinically feasible.
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