Karolina Pierzynowska

Karolina Pierzynowska
University of Gdańsk | UG · Department of Molecular Biology

Professor

About

120
Publications
38,760
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,752
Citations
Introduction
Karolina Pierzynowska currently works at the Department of Molecular Biology at the University of Gdansk, developing new therapeutic approaches for genetic and neurodegenerative diseases on cell and animal models. Her research for the first time showed the high efficiency of genistein, one of flavonoids, in the treatment of Huntington's and Alzheimer's disease. She also deals with the issues of pathogenesis of lysosomal storage diseases, as well as the role of previously unknown factors, mainly changes in the expression of protein-coding genes and non-coding regulatory RNA in its pathogenesis. Karolina is a lover of distant travels for conferences and snowboarding.
Additional affiliations
February 2020 - present
University of Gdańsk
Position
  • Professor (Assistant)
August 2019 - September 2019
West Virginia University
Position
  • scholarship
February 2017 - February 2020
University of Gdańsk
Position
  • Research Assistant
Education
February 2015 - January 2020
University of Gdańsk
Field of study
  • Molecular Biology
February 2013 - July 2015
University of Gdańsk
Field of study
  • Molecular Biology
February 2010 - July 2013
University of Gdańsk
Field of study
  • Biology

Publications

Publications (120)
Article
Full-text available
Introduction Lagovirus europaeus/GI.1 and GI.2 cause severe Rabbit Haemorrhagic Disease, and immune processes are among the important pathomechanisms of the disease. Autophagy and apoptosis are two key mechanisms involved in the host antiviral response. Both of these processes have been characterized in infection with GI.1 strains, while data on in...
Article
This case study presents a comprehensive analysis of the neurocognitive, medical, and developmental functioning of a 9-year-old girl diagnosed with mucopolysaccharidosis type IIIC (MPS IIIC). Genetic testing revealed a homozygous pathogenic variant of the HGSNAT gene (c.1872C > A), typically associated with severe neurodegeneration. However, her cl...
Article
Full-text available
Background Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilipp...
Article
Full-text available
Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of...
Preprint
Full-text available
This case study presents a comprehensive analysis of the neurocognitive, medical, and developmental functioning of a 9-year-old girl diagnosed with mucopolysaccharidosis type IIIC (MPS IIIC). Genetic testing revealed a homozygous pathogenic variant of the HGSNAT gene (c.1872C>A), typically associated with severe neurodegeneration. However, her clin...
Conference Paper
Full-text available
Background Previous studies demonstrated that genistein (4’,5,7-trihydroxyisoflavone or 5,7-dihydroxy-3-(4-hydroxyphenyl)-4 H-1-benzopyran-4-one) could cause a significant decrease in number and size of aggregates of mutant huntingtin in cellular models of the Huntington disease (HD) due to stimulation of the autophagy process.1 2 Aims To test if...
Conference Paper
Full-text available
Background Although the primary cause of monogenic diseases are mutations in single genes, recent studies demonstrated that secondary changes in expression of other genes can significantly influence the pathophysiology and cause previously unattended challenges in developing therapeutic approaches.¹ Therefore, monogenic disease might be considered...
Article
Full-text available
Several years ago, dozens of cases were described in patients with symptoms very similar to mucopolysaccharidosis (MPS). This new disease entity was described as mucopolysaccharidosis-plus syndrome (MPSPS). The name of the disease indicates that in addition to the typical symptoms of conventional MPS, patients develop other features such as congeni...
Article
Full-text available
Natural ecosystems are a rich source of compounds that can be considered as drugs to combat viral and bacterial infections. Cyanobacteria play a key role in the search for these compounds. These microorganisms, besides their well-known cytotoxicity to humans, are also a rich reservoir of metabolites with antiviral and antibacterial activities. Thes...
Article
Full-text available
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described on...
Article
Full-text available
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number...
Article
Full-text available
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(...
Article
Full-text available
One of the hopes for overcoming the antibiotic resistance crisis is the use of bacteriophages to combat bacterial infections, the so-called phage therapy. This therapeutic approach is generally believed to be safe for humans and animals as phages should infect only prokaryotic cells. Nevertheless, recent studies suggested that bacteriophages might...
Article
Full-text available
The overuse of antibiotics in both humans and livestock has led to the antibiotic resistance phenomenon which is now considered one of the biggest problems in the modern world. Some antibiotics used to control or prevent infections in livestock poultry were registered a long time ago, and as a result, data on the possible side effects of their use,...
Article
Full-text available
Rabbit Haemorrhagic Disease (RHD) is a severe disease caused by Lagovirus europaeus/GI.1 and GI.2. Immunological processes such as apoptosis are important factors involved in the pathogenesis of Rabbit Haemorrhagic Disease (RHD). The process of programmed cell death has been quite well characterized in infection with GI.1 strains, but apoptosis in...
Article
Full-text available
Huntington disease (HD) is a neurodegenerative disorder caused by a mutation in the HTT gene. The expansion of CAG triplets leads to the appearance of misfolded HTT (huntingtin) forming aggregates and leading to impairment of neuronal functions. Here we demonstrate that stimulation of macroautophagy/autophagy by genistein (4',5,7-trihydroxyisoflavo...
Article
Full-text available
Morquio disease, also called mucopolysaccharidosis IV (MPS IV), belongs to the group of lysosomal storage diseases (LSD). Due to deficiencies in the activities of galactose-6-sulfate sulfatase (in type A) or β-galactosidase (in type B), arising from mutations in GALNS or GLB1, respectively, keratan sulfate (one of glycosaminoglycans, GAGs) cannot b...
Article
Full-text available
The main approach used in the current therapy of mucopolysaccharidosis (MPS) is to reduce the levels of glycosaminoglycans (GAGs) in cells, the deposits considered to be the main cause of the disease. Previous studies have revealed significant differences in the expression of genes encoding proteins involved in many processes, like those related to...
Article
Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17y)...
Article
Full-text available
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for...
Article
Full-text available
Introduction The problem of antibiotic resistance is a global one, involving many industries and entailing huge financial outlays. Therefore, the search for alternative methods to combat drug-resistant bacteria has a priority status. Great potential is seen in bacteriophages which have the natural ability to kill bacterial cells. Bacteriophages als...
Article
Full-text available
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSD) caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans (GAGs). Most types of these severe disorders are characterized by neuronopathic phenotypes. Although lysosomal accumulation of GAGs is the primary metabolic defect in MPS, seco...
Article
Full-text available
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a re...
Article
Although mucopolysaccharidoses (MPS) are monogenic diseases, caused by mutations in genes coding for enzymes involved in degradation of glycosaminoglycans (GAGs), recent studies suggested that changes in expressions of various genes might cause secondary and tertiary cellular dysfunctions modulating the course of these diseases. In this report, we...
Article
Full-text available
The methylotrophic yeast Komagataella phaffii is considered one of the most effective producers of recombinant proteins of industrial importance. Effective producers should be characterized by the maximal reduction of degradation of the cytosolic recombinant proteins. The mechanisms of degradation of cytosolic proteins in K. phaffii have not been e...
Article
Full-text available
Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the th...
Article
Full-text available
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the...
Article
Full-text available
In this report, changes in the levels of various long non-coding RNAs (lncRNAs) were demonstrated for the first time in fibroblasts derived from patients suffering from 11 types/subtypes of mucopolysaccharidosis (MPS). Some kinds of lncRNA (SNHG5, LINC01705, LINC00856, CYTOR, MEG3, and GAS5) were present at especially elevated levels (an over six-f...
Article
Development of molecular biology and understanding structures and functions of various biological molecules and entities allowed to construct various sophisticated tools for different biotechnological, medical, and veterinary applications. One of them is the phage display technology, based on the possibility to create specific bacteriophages bearin...
Article
Full-text available
Neurodegenerative diseases represent a large group of disorders characterized by gradual loss of neurons and functions of the central nervous systems. Their course is usually severe, leading to high morbidity and subsequent inability of patients to independent functioning. Vast majority of neurodegenerative diseases is currently untreatable, and on...
Article
Full-text available
Sanfilippo disease, caused by mutations in the genes encoding heparan sulfate (HS) (a glycosaminoglycan; GAG) degradation enzymes, is a mucopolysaccharidosis (MPS), which is also known as MPS type III, and is characterized by subtypes A, B, C, and D, depending on identity of the dysfunctional enzyme. The lack of activity or low residual activity of...
Article
Full-text available
Huntington’s disease (HD) is a rare neurodegenerative disease that is accompanied by skeletal muscle atrophy and cardiomyopathy. Tissues affected by HD (central nervous system [CNS], skeletal muscle, and heart) are known to suffer from deteriorated cellular energy metabolism that manifests already at presymptomatic stages. This work aimed to test t...
Article
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by defects in genes coding for proteins involved in degradation of glycosaminoglycans (GAGs). These complex carbohydrates accumulate in cells causing their serious dysfunctions. Apart from the physical GAG storage, secondary and tertiary changes may contribute significantl...
Article
Full-text available
Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enteri...
Conference Paper
Full-text available
The “antibiotic crisis”, defined as the appearance of microbial strains resistant to most, if not all, already known antibiotics, indicates that searching for previously unknown antimicrobial agents is crucial for further development of novel drugs that can be used to combat infections caused by bacteria and fungi. Bacteria living in untypical and...
Article
Full-text available
Background Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by a triad of cognitive, psychiatric and motor symptoms. One of the main mechanisms of the disease, besides the aggregation of mutant proteins, is the chronic inflammation that occurs in patients long before the onset of motor dysfunction. Currently, no effec...
Article
Full-text available
Mucopolysaccharidosis (MPS) is a group of 13 hereditary metabolic diseases identified in humans (or 14 diseases if considering one MPS type described to date only in mice) in which an enzymatic defect results in the accumulation of glycosaminoglycans (GAG) in the lysosomes of cells. First of all, as a result of GAG storage, the proper functioning o...
Article
Mucopolysaccharidoses (MPS) are inherited metabolic diseases caused by storage of glycosaminoglycans (GAGs), however, various modulations of the course of these diseases were identified recently due to impairment of different cellular processes. Here, using transcriptomic analyses in cells derived from patients suffering from eleven types of MPS, w...
Article
Full-text available
Mucopolysaccharidosis type IIIB (MPS IIIB or Sanfilippo syndrome type B) is an inherited metabolic disease caused by mutations in the NAGLU gene, encoding α-N-acetylglucosaminidase. Accumulation of undegraded heparan sulfate (one of glycosaminoglycans) arises from deficiency in this enzyme and leads to severe symptoms, especially related to dysfunc...
Article
Full-text available
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase...
Article
Full-text available
Monogenic diseases are primarily caused by mutations in a single gene; thus, they are commonly recognized as genetic disorders with the simplest mechanisms. However, recent studies have indicated that the molecular mechanisms of monogenic diseases can be unexpectedly complicated, and their understanding requires complex studies at the molecular lev...
Article
Rare disease datasets are typically structured such that a small number of patients (cases) are represented by multidimensional feature vectors. In this report, we considered a rare disease, mucopolysaccharidosis (MPS). This disease is divided into 11 types and subtypes, depending on the genetic defect, type of deficient enzyme, and nature of accum...
Chapter
Bacterial functional amyloids, apart from their many other functions, can influence the resistance of bacteria to antibiotics and other antibacterial agents. Mechanisms of modulation of susceptibility of bacterial cells to antimicrobials can be either indirect or direct. The former mechanisms are exemplified by the contribution of functional amyloi...
Article
Full-text available
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a disease grouping five genetic disorders, four of them occurring in humans and one known to date only in a mouse model. In every subtype of MPS III (designed A, B, C, D or E), a lack or drastically decreased activity of an enzyme involved in the degradation of heparan sulfate (HS...
Article
Full-text available
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations resulting in deficiencies of lysosomal enzymes which lead to the accumulation of partially undegraded glycosaminoglycans (GAG). This phenomenon causes severe and chronic disturbances in the functioning of the organism, and leads to premature death. The metabolic defects affect...
Article
Mucopolysaccharidoses (MPS) are genetic disorders that affect up to 1 in 25,000 births. They are caused by dysfunctions of lysosomal hydrolases that degrade glycosaminoglycans (GAGs) which accumulate in cells, damaging their proper functioning. There are 7 types of MPS, distinguished by the kind of accumulated GAG and the defective enzyme, which di...
Article
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel m...
Article
Full-text available
Resistance of bacteria, fungi and cancer cells to antibiotics and other drugs is recognized as one of the major problems in current medicine. Therefore, a search for new biologically active compounds able to either kill pathogenic cells or inhibit their growth is mandatory. Hard-to-reach habitats appear to be unexplored sources of microorganisms pr...
Article
Full-text available
Rapid development of antibiotic resistance of bacteria and fungi, as well as cancer drug resistance, has become a global medical problem. Therefore, alternative methods of treatment are considered. Studies of recent years have focused on finding new biologically active compounds that may be effective against drug-resistant cells. High biodiversity...
Article
Full-text available
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appear...
Article
Development of therapies for neurodegenerative diseases, disorders characterized by progressing loss of neurons, is a great challenge for current medicine. Searching for drugs for these diseases is being proceeded in many laboratories in the world. To date, several therapeutical strategies have been proposed which, however, are either of insufficie...
Article
Full-text available
Autophagy is a specific macromolecule and organelle degradation process. The target macromolecule or organelle is first enclosed in an autophagosome, and then delivered along acetylated microtubules to the lysosome. Autophagy is triggered by stress and largely contributes to cell survival. We have previously shown that S6K1 kinase is essential for...
Article
Full-text available
Mucopolysaccharidoses (MPS) are inherited metabolic diseases characterized by accumulation of incompletely degraded glycosaminoglycans (GAGs) in lysosomes. Although primary causes of these diseases are mutations in genes coding for enzymes involved in lysosomal GAG degradation, it was demonstrated that storage of these complex carbohydrates provoke...
Article
Full-text available
Ferroptosis is one of the recently described types of cell death which is dependent on many factors, including the accumulation of iron and lipid peroxidation. Its induction requires various signaling pathways. Recent discovery of ferroptosis induction pathways stimulated by autophagy, so called autophagy-dependent ferroptosis, put our attention on...