Karol Makuch

Karol Makuch
Polish Academy of Sciences | PAN · Institute of Physical Chemistry

PhD

About

26
Publications
4,491
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
172
Citations
Citations since 2016
20 Research Items
157 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
Additional affiliations
October 2011 - July 2015
University of Warsaw
Position
  • PostDoc Position

Publications

Publications (26)
Article
Full-text available
In 1983 Felderhof, Ford and Cohen gave microscopic explanation of the famous Clausius-Mossotti formula for the dielectric constant of nonpolar dielectric. They based their considerations on the cluster expansion of the dielectric constant, which relates this macroscopic property with the microscopic characteristics of the system. In this article, w...
Article
Full-text available
To the present day, the Beenakker-Mazur (BM) method is the most comprehensive statistical physics approach to the calculation of short-time transport properties of colloidal suspensions. A revised version of the BM method with an improved treatment of hydrodynamic interactions is pre-sented and evaluated regarding the rotational short-time self-dif...
Article
Full-text available
Motivated by the rapidly growing possibilities for experiments with ultracold atoms in optical lattices we investigate the thermodynamic properties of correlated lattice fermions in the presence of an external spin-dependent random potential. The corresponding model, a Hubbard model with spin-dependent local random potentials, is solved within dyna...
Article
Full-text available
The Beenakker-Mazur method of calculation of transport coefficients for suspensions has been analyzed. The analysis relies on calculation of the hydrodynamic function and the effective viscosity with higher accuracy and comparison of these characteristics to the original Beennakker-Mazur results. Comparison to numerical simulations is also given. O...
Article
Full-text available
The mobility problem for suspension of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering op...
Article
There is a long-standing question as to whether and to what extent it is possible to describe nonequilibrium systems in stationary states in terms of global thermodynamic functions. The positive answers have been obtained only for isothermal systems or systems with small temperature differences. We formulate thermodynamics of the stationary states...
Article
Full-text available
Severe non-healing infections are often caused by multiple pathogens or by genetic variants of the same pathogen exhibiting different levels of antibiotic resistance. For example, polymicrobial diabetic foot infections double the risk of amputation compared to monomicrobial infections. Although these infections lead to increased morbidity and morta...
Article
Full-text available
We investigate the thermal relaxation of an ideal gas from a nonequilibrium stationary state. The gas is enclosed between two walls, which initially have different temperatures. After making one of the walls adiabatic, the system returns to equilibrium. We notice two distinct modes of heat transport and associated timescales: one connected with a t...
Preprint
Full-text available
Severe non-healing infections are often caused by multiple pathogens or by genetic variants of the same pathogen exhibiting different levels of antibiotic resistance. For example, polymicrobial diabetic foot infections double the risk of amputation compared to monomicrobial infections. Although these infections lead to increased morbidity and morta...
Preprint
Full-text available
Droplet-based experimental platforms allow researchers to perform massive parallelization and high-throughput studies, such as single-cell experiments. Even though there are various options of image analysis software to evaluate the experiment, selecting the right tools require experience and is time consuming. Experts and sophisticated workflow ar...
Article
We analyze a compressible Poiseuille flow of ideal gas in a plane channel. We provide the form of internal energy U for a nonequilibrium stationary state that includes viscous dissipation and pressure work. We demonstrate that U depends strongly on the ratio Δp/p0, where Δp is the pressure difference between inlet and outlet and p0 is the outlet's...
Preprint
Full-text available
There is a long-standing question, to whether and to what extent it is possible to describe nonequilibrium systems in stationary states in terms of global thermodynamic functions. The positive answers have been obtained only for isothermal systems or systems with small temperature differences. We formulate the first and second laws of thermodynamic...
Preprint
Full-text available
We analyse a compressible Poiseuille flow of ideal gas in a plane channel. We provide the form of internal energy U for a non-equilibrium stationary state (NESS) that includes viscous dissipation and pressure work. We demonstrate that U depends strongly on the ratio {\Delta}p/p_0, where {\Delta}p is the pressure difference between inlet and outlet...
Article
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux we have found a continuous transition to the state with a low-density, hot gas on one side of the mova...
Preprint
Full-text available
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the fluid. At critical heat flux, we have found a continuous transition to the state with a low-density, hot gas on one side of the m...
Article
Full-text available
Droplet microfluidics disrupted analytical biology with the introduction of digital polymerase chain reaction and single-cell sequencing. The same technology may also bring important innovation in the analysis of bacteria, including antibiotic susceptibility testing at the single-cell level. Still, despite promising demonstrations, the lack of a hi...
Article
Full-text available
We investigate the role of viscosities on the formation of double emulsion in a microfluidic step emulsification system. Aqueous droplets of various viscosities and sizes were engulfed in fluorocarbon oil and subsequently transformed into double droplets in the microfluidic step emulsifying device. We identify two distinct regimes of double droplet...
Article
Full-text available
Since antibiotic resistance is a major threat to global health, recent observations that the traditional test of minimum inhibitory concentration (MIC) is not informative enough to guide effective antibiotic treatment are alarming. Bacterial heteroresistance, in which seemingly susceptible isogenic bacterial populations contain resistant sub-popula...
Article
Full-text available
The alarming dynamics of antibiotic-resistant infections calls for the development of rapid and point-of-care (POC) antibiotic susceptibility testing (AST) methods. Here, we demonstrated the first completely stand-alone microfluidic system that allowed the execution of digital enumeration of bacteria and digital antibiograms without any specialized...
Article
Full-text available
Thermal motion of particles and molecules in liquids underlies many chemical and biological processes. Liquids, especially in biology, are complex due to structure at multiple relevant length scales. While diffusion in homogeneous simple liquids is well understood through the Stokes-Einstein relation, this equation fails completely in describing di...
Article
We study Friedel oscillations and screening effects of the impurity potential in the Hubbard model. Electronic correlations are accounted for by solving the real-space dynamical mean-field theory equations using the continuous-time quantum Monte Carlo simulations at finite temperatures and using a homogeneous self-energy approximation with the nume...
Article
We present a passive microfluidic system for easy and rapid generation of Droplet Interface Bilayer pairs, each formed with two aqueous nanoliter droplets comprising controlled chemical composition. The system allows for rapid screening to quantify leakage of small molecules through artificial phospholipid bilayers. The droplets are generated, dilu...
Article
Full-text available
Steady motion of long, non-wetting droplets carried by a surrounding liquid in a circular capillary has been the subject of many experimental, theoretical, and numerical simulation studies. Theoretical approaches, even after the application of lubrication approximation in hydrodynamic equations and after neglecting inertia and gravity effects, stil...
Article
Full-text available
Microfluidic step emulsification passively produces highly monodisperse droplets and can be easily parallelized for high throughput emulsion production. The two main techniques used for step emulsification are i) the Edge-based Droplet Generation (EDGE), where droplets are formed in a single, very wide and shallow nozzle, and ii) the microchannel e...
Preprint
Full-text available
We study Friedel oscillations and screening effects of the impurity potential in the Hubbard model. Electronic correlations are accounted for by solving the real-space dynamical mean-field theory equations using the continuous time quantum Monte-Carlo simulations at finite temperatures and using a homogeneous self-energy approximation with the nume...
Article
Full-text available
Multipole matrix elements of Green function of Laplace equation are calculated. The multipole matrix elements of Green function in electrostatics describe potential on a sphere which is produced by a charge distributed on the surface of a different (possibly overlapping) sphere of the same radius. The matrix elements are defined by double convoluti...

Network

Cited By