Karl Stephan

Karl Stephan
  • Doctor of Engineering
  • Professor at University of Stuttgart

About

464
Publications
10,423
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,318
Citations
Introduction
Skills and Expertise
Current institution
University of Stuttgart
Current position
  • Professor

Publications

Publications (464)
Chapter
Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.
Chapter
Einige der im Folgenden zu behandelnden Vorgänge des konvektiven Wärme- und Stoffübergangs mit Phasenumwandlung sind schon in den bisherigen Kapiteln erörtert worden, dazu gehören die Verdunstung einer Flüssigkeit an der Grenzfläche zwischen einem Gas und einer Flüssigkeit oder die Sublimation an einer Gas-Feststoff-Grenzfläche.
Chapter
In diesem Kapitel werden grundlegende Begriffe und physikalische Größen zur Beschreibung von Wärme- und Stoffübertragungsvorgängen eingeführt sowie Grundgesetze der Wärme- und Stoffübertragung behandelt. Mit ihrer Hilfe lassen sich bereits technisch wichtige Aufgaben lösen wie die Berechnung des Wärmedurchgangs zwischen zwei Fluiden, die durch eine...
Chapter
Einige der im Folgenden zu behandelnden Vorgänge des konvektiven Wärme- und Stoffübergangs mit Phasenumwandlung sind schon in den bisherigen Kapiteln erörtert worden, dazu gehören die Verdunstung einer Flüssigkeit an der Grenzfläche zwischen einem Gas und einer Flüssigkeit oder die Sublimation an einer Gas-Feststoff-Grenzfläche. Sie ließen sich mit...
Chapter
Wärmestrahlung unterscheidet sich von der Wärmeleitung und vom konvektiven Wärmeübergang durch andere Grundgesetze. So ist Wärmeübertragung durch Strahlung nicht an Materie gebunden; elektromagnetische Wellen übertragen Energie auch durch den leeren Raum. Nicht Temperaturgradienten oder Temperaturdifferenzen sind maßgebend für den übergehenden Wärm...
Chapter
In diesem Kapitel behandeln wir die stationäre und instationäre Wärmeleitung in ruhenden Medien, die vor allem in festen Körpern auftritt. Wir leiten zunächst die grundlegende Differentialgleichung für das Temperaturfeld her, indem wir den Energieerhaltungssatz mit dem Gesetz von Fourier verknüpfen. Die dann folgenden Abschnitte behandeln die stati...
Book
Ziel dieses Buches ist die umfassende Darstellung der Wärme- und Stoffübertragung als eine der wichtigsten Grundlagen der Energie- und der Verfahrenstechnik. Alle ihre Gebiete werden ausführlich behandelt: Wärmeleitung und Diffusion, konvektiver Wärme- und Stoffaustausch, Wärmetransport beim Kondensieren und Verdampfen, Wärmestrahlung sowie die Ber...
Chapter
Häufig sprechen wir von „heißen“ oder „kalten“ Körpern, ohne solche Zustände zunächst genau durch eine Zustandsgröße zu quantifizieren.
Chapter
Unter einem thermodynamischen System, kurz auch System genannt, versteht man dasjenige materielle Gebilde oder Gebiet, das Gegenstand der thermodynamischen Untersuchung sein soll. Beispiele für Systeme sind eine Gasmenge, eine Flüssigkeit und ihr Dampf, ein Gemisch mehrerer Flüssigkeiten, ein Kristall oder eine energietechnische Anlage. Das System...
Chapter
Die gesamte verrichtete Arbeit ist \(-W=-\sum W_{ik}=\sum Q_{ik}\). Maschinen, in denen ein Fluid einen Kreisprozess durchläuft, dienen der Umwandlung von Wärme in Arbeit oder umgekehrt der Umwandlung von Arbeit in Wärme. Nach dem zweiten Hauptsatz kann die zugeführte Wärme nicht vollständig in Arbeit verwandelt werden.
Chapter
Das geschlossene thermodynamische System habe die Masse \(\Updelta m\), die als Ganzes nicht bewegt wird. Man unterscheidet folgende Zustandsänderungen als idealisierte Grenzfälle der wirklichen Zustandsänderungen.
Chapter
Bringt man zwei Systeme A und B miteinander in Kontakt, so laufen Austauschvorgänge ab, und es stellt sich nach hinreichend langer Zeit ein neuer Gleichgewichtszustand ein. Als Beispiel sei ein System A mit einem System B verschiedener Temperatur in Kontakt gebracht. Im Endzustand besitzen die Systeme gleiche Temperatur. Es hat sich thermisches Gle...
Chapter
Der erste Hauptsatz ist ein Erfahrungssatz. Er kann nicht bewiesen werden und gilt nur deshalb, weil alle Schlussfolgerungen, die man aus ihm zieht, mit der Erfahrung in Einklang stehen. Er besagt allgemein, dass Energie nicht verloren geht und nicht aus dem Nichts entsteht. Energie ist also eine Erhaltungsgröße. Das bedeutet, dass die Energie eine...
Chapter
Wärme in technischen Prozessen wird heute noch größtenteils durch Verbrennung gewonnen. Verbrennung ist die chemische Reaktion eines Stoffs, i. Allg. Kohlenstoff, Wasserstoff und Kohlenwasserstoffe, mit Sauerstoff, die stark exotherm, also unter Wärmefreisetzung abläuft. Die Brennstoffe können fest, flüssig oder gasförmig sein, und als Sauerstofftr...
Chapter
Die Wärmeübertragung durch Leitung in festen oder in unbewegten flüssigen und gasförmigen Körpern. Dabei wird kinetische Energie von einem Molekül oder von Elementarteilchen auf seine Nachbarn übertragen.
Chapter
Nach dem ersten Hauptsatz bleibt die Energie in einem abgeschlossenen System konstant. Da man jedes nicht abgeschlossene System durch Hinzunahme der Umgebung in ein abgeschlossenes verwandeln kann, ist es stets möglich, ein System zu bilden, in dem während eines thermodynamischen Prozesses die Energie konstant bleibt. Ein Energieverlust ist daher n...
Chapter
Um mit den allgemeinen für beliebige Stoffe gültigen Hauptsätzen der Thermodynamik umgehen und um Exergien und Anergien berechnen zu können, muss man Zahlenwerte für die Zustandsgrößen U, H, S, p, V, T ermitteln. Hiervon bezeichnet man die Größen U, H, S als kalorische und p, V, T als thermische Zustandsgrößen. Die Zusammenhänge zwischen ihnen sind...
Chapter
Im ersten Kapitel waren der Wärmeübergangskoeffizient durch
Chapter
Einige der im Folgenden zu behandelnden Vorgänge des konvektiven Wärme- und Stoffübergangs mit Phasenumwandlung sind schon in den bisherigen Kapiteln erörtert worden, dazu gehören die Verdunstung einer Flüssigkeit an der Grenzfläche zwischen einem Gas und einer Flüssigkeit oder die Sublimation an einer Gas-Feststoff-Grenzfläche. Sie ließen sich mit...
Chapter
In diesem Kapitel behandeln wir die stationäre und instationäre Wärmeleitung in ruhenden Medien, die vor allem in festen Körpern auftritt. Wir leiten zunächst die grundlegende Differentialgleichung für das Temperaturfeld her, indem wir den Energieerhaltungssatz mit dem Gesetz von Fourier verknüpfen. Die dann folgenden Abschnitte behandeln die stati...
Chapter
In diesem Kapitel werden grundlegende Begriffe und physikalische Größen zur Beschreibung von Wärme- und Stoffübertragungsvorgängen eingeführt sowie Grundgesetze der Wärme- und Stoffübertragung behandelt.
Chapter
Wärmestrahlung unterscheidet sich von der Wärmeleitung und vom konvektiven Wärmeübergang durch andere Grundgesetze. So ist Wärmeübertragung durch Strahlung nicht an Materie gebunden; elektromagnetische Wellen übertragen Energie auch durch den leeren Raum. Nicht Temperaturgradienten oder Temperaturdifferenzen sind maßgebend für den übergehenden Wärm...
Article
Dieses bewährte Lehrbuch ist eine umfassende und gründliche Darstellung der Wärme- und Stoffübertragung. Ihre Theorie wird systematisch entwickelt, und die Lösungsmethoden aller wichtigen Probleme werden ausführlich behandelt. Alle Gebiete der Wärme- und Stoffübertragung werden dargestellt: Wärmeleitung und Diffusion, konvektiver Wärme- und Stoffau...
Article
Mass transfer controlled by gas evolution at electrodes has previously been widely studied. However, the resulting correlations deviate considerably from each other, mainly because they did not take into account the various interacting mechanisms. The present paper gives an overview of these models. A model is then presented taking into account all...
Chapter
Die Betrachtungen in diesem Kapitel gelten für ideale Gase und inkompressible Stoffe. Allgemeinere und ausführlichere Betrachtungen werden in Kap. 12 vorgestellt. Der Gleichgewichtszustand eines einfachen Systems wird, wie in Kap. 3 dargelegt worden war, durch zwei unabhängige Variablen beschrieben.
Chapter
In diesem Kapitel werden wir beispielhaft einige in der Technik relevante Energiewandlungsprozesse mit Hilfe des ersten Hauptsatzes und der thermischen und kalorischen Zustandsgleichungen beschreiben. Geschlossene und offene Systeme, stationäre und instationäre Prozesse werden betrachtet.
Chapter
Bei unseren bisherigen Betrachtungen wurde oft Wärme von einem Körper an eine anderen übertragen, ohne dass wir diesen Vorgang näher betrachteten. Wir haben häufig angenommen, dass die Wärme mit verschwindend kleinem Temperaturgefälle überging. Je kleiner aber das Termperaturgefälle ist, um so größer werden die dazu notwendigen Einrichtungen. Die K...
Chapter
Der erste Haupsatz der Thermodynamik ist der Satz von der Erhaltung der Energie. In diesem Kapitel werden wir den ersten Hauptsatz der Thermodynamik in verschiedenen Formen kennenlernen, verbal und mathematisch sowie allgemein gültig und für Sonderfälle. Die mathematischen Formen des ersten Hauptsatzes beruhen auf der Bilanzierung der Größe Energie...
Chapter
Gegenstand aller bisherigen Betrachtungen waren allgemein gültige Bilanzen und Zusammenhänge zwischen thermodynamischen Zustandsgrößen. Diese sind vollkommen unabhängig vom Verhalten konkreter Stoffe. Wir hatten lediglich als einfachste Modellsubstanzen das ideale Gas und die ideale inkompressible Flüssigkeit eingeführt, die nur Grenzfälle des real...
Chapter
In Kap. 1 wurde erläutert, dass die Aufgabe der Thermodynamik die Beschreibung der verschiedenen Erscheinungsformen der Energie sowie der Umwandlungen von Energien bei technischen Prozessen ist. Eng damit verknüpft sind die Beschreibung des Zustandes eines Stoffes durch Zustandsgrößen und des Verlaufs der Zustandsänderungen durch Prozessgrößen. Zie...
Chapter
Im Folgenden sollen die Eigenschaften der Entropie an ausgewählten typisch irreversiblen Prozessen untersucht und die dabei gewonnenen Erkenntnisse verallgemeinert werden. Als erstes Beispiel betrachten wir zwei Teilsysteme (1) und (2), die ein abgeschlossenes Gesamtsystem bilden, Abb. 9.1, und über eine feststehende diatherme Wand miteinander verb...
Chapter
In Abschn. 1.3 hatten wir die Begriffe Zustand, Zustandsgröße und Zustandsgleichung eingeführt.
Chapter
Die Thermodynamik ist eine allgemeine Energielehre. Sie befasst sich mit den verschiedenen Erscheinungsformen der Energie, mit den Umwandlungen von Energien und mit den Eigenschaften der Materie, da Energieumwandlungen eng mit Eigenschaften der Materie verknüpft sind. Da es kaum einen physikalischen Vorgang ohne Energieumwandlungen gibt, ist die Th...
Chapter
Thermodynamische Maschinen und Anlagen dienen allgemein der Energiewandlung, wobei die Bereitstellung einer ganz bestimmten Energieform das Ziel ist, z. B. die Bereitstellung von Wellenarbeit zum Antrieb eines Fahrzeugs, von elektrischer Arbeit für unser Stromnetz oder von Wärme zur Beheizung von Gebäuden. In den vorangegangenen Kapiteln wurden die...
Chapter
In Kap. 6 wurden bereits die kalorischen Zustandsgleichungen für die spezifische innere Energie und die spezifische Enthalpie eingeführt. Allerdings beschränkten sich diese Ausführungen auf ideale Gase und ideal inkompressible Stoffe. Bei idealen Gasen sind die innere Energie und die Enthalpie und somit auch die spezifischen Wärmkapazitäten nur Fun...
Chapter
In this chapter the basic definitions and physical quantities needed to describe heat and mass transfer will be introduced, along with the fundamental laws of these processes. They can already be used to solve technical problems, such as the transfer of heat between two fluids separated by a wall, or the sizing of appa- ratus used in heat and mass...
Chapter
Der erste Hauptsatz ist ein Erfahrungssatz. Er kann nicht bewiesen werden und gilt nur deshalb, weil alle Schlussfolgerungen, die man aus ihm zieht, mit der Erfahrung in Einklang stehen. Er besagt allgemein, dass Energie nicht verloren geht und nicht aus dem Nichts entsteht. Energie ist also eine Erhaltungsgröße. Das bedeutet, dass die Energie eine...
Chapter
Ein Prozess, der ein System wieder in seinen Ausgangszustand zurückbringt, heißt Kreisprozess.
Chapter
Um mit den allgemeinen für beliebige Stoffe gültigen Hauptsätzen der Thermodynamik umgehen und um Exergien und Anergien berechnen zu können, muss man Zahlenwerte für die Zustandsgrößen U, H, S, p, V, T ermitteln. Hiervon bezeichnet man die Größen U, H, S als kalorische und p, V, T als thermische Zustandsgrößen . Die Zusammenhänge zwischen ihnen sin...
Chapter
Ein Gemisch von idealen Gasen, die miteinander nicht chemisch reagieren, verhält sich ebenfalls wie ein ideales Gas.
Chapter
Die Thermodynamik ist als Teilgebiet der Physik eine allgemeine Energielehre. Sie befasst sich mit den verschiedenen Erscheinungsformen der Energie und deren Umwandlung ineinander. Sie stellt die allgemeinen Gesetze bereit, die jeder Energieumwandlung zugrunde liegen.
Chapter
Häufig sprechen wir von „heißen“ oder „kalten“ Körpern, ohne solche Zustände zunächst genau durch eine Zustandsgröße zu quantifizieren.
Chapter
Bestehen zwischen verschiedenen, nicht voneinander isolierten Körpern oder innerhalb verschiedener Bereiche eines Körpers Temperaturunterschiede, so fließt Wärme so lange von der höheren zur tieferen Temperatur, bis sich die verschiedenen Temperaturen angeglichen haben.
Chapter
Wärme in technischen Prozessen wird heute noch größtenteils durch Verbrennung gewonnen. Verbrennung ist die chemische Reaktion eines Stoffs, i. Allg. Kohlenstoff, Wasserstoff und Kohlenwasserstoffe, mit Sauerstoff, die stark exotherm, also unter Wärmefreisetzung abläuft. Die Brennstoffe können fest, flüssig oder gasförmig sein, und als Sauerstofftr...
Chapter
Bringt man zwei Systeme A und B miteinander in Kontakt, so laufen Austauschvorgänge ab, und es stellt sich nach hinreichend langer Zeit ein neuer Gleichgewichtszustand ein. Als Beispiel sei ein System A mit einem System B verschiedener Temperatur in Kontakt gebracht. Im Endzustand besitzen die Systeme gleiche Temperatur. Es hat sich thermisches Gle...
Chapter
Nach dem ersten Hauptsatz bleibt die Energie in einem abgeschlossenen System konstant. Da man jedes nicht abgeschlossene System durch Hinzunahme der Umgebung in ein abgeschlossenes verwandeln kann, ist es stets möglich, ein System zu bilden, in dem während eines thermodynamischen Prozesses die Energie konstant bleibt. Ein Energieverlust ist daher n...
Chapter
Das geschlossene thermodynamische System habe die Masse
Article
Laminar film condensation at a vertical flat plate is considered under the aspects of total and partial condensation. With the aid of a perturbation approach the heat and mass transfer correlations for total condensation are derived from the governing balance equations, thus avoiding the complex iterative procedure of numerically solving the balanc...
Article
Einige der im Folgenden zu behandelnden Vorgänge des konvektiven Wärmeund Stoffübergangs mit Phasenumwandlung sind schon in den bisherigen Kapiteln erörtert worden, dazu gehören die Verdunstung einer Flüssigkeit an der Grenzfläche zwischen einem Gas und einer Flüssigkeit oder die Sublimation an einer Gas-Feststoff-Grenzfläche. Sie ließen sich mit d...
Article
Im ersten Kapitel waren der Wärmeübergangskoeffizient durch $$\dot q=\alpha\Delta\vartheta$$ und der Stoffübergangskoeffizient für einen Stoff A durch $$\dot{n}_{\textrm A}=\beta\Delta c_{\textrm A}$$ definiert worden. Der so eingeführte Stoffübergangskoeffizient galt für verschwindenden Konvektionsstrom und musste für endlichen Konvektionsstrom no...
Article
In diesem Kapitel werden grundlegende Begriffe und physikalische Größen zur Beschreibung von Wärme- und Stoffübertragungsvorgängen.eingeführt sowie Grundgesetze der Wärme- und Stoffübertragung.behandelt. Mit ihrer Hilfe lassen sich bereits technisch wichtige.Aufgaben lösen wie die Berechnung des Wärmedurchgangs zwischen zwei.Fluiden, die durch eine...
Book
Dieses bewährte Lehrbuch stellt die Wärme- und Stoffübertragung umfassend und gründlich dar. Systematisch entwickelt es deren Theorie und behandelt ausführlich die Lösungsmethoden aller wichtigen Probleme. Es umfasst alle Gebiete der Wärme- und Stoffübertragung: Wärmeleitung und Diffusion, konvektiver Wärme- und Stoffaustausch, Wärmetransport beim...
Chapter
Moleküle im Innern einer flüssigen Phase sind allseitig von Nachbarmolekülen umgeben, sodass sich Anziehungskräfte gegenseitig aufheben. Im Gegensatz dazu sind die Moleküle in einer Grenzfläche von mehr Nachbarmolekülen im Flüssigkeitsinnern als von solchen außerhalb der Grenzfläche, z. B. in einer angrenzenden Gasphase, umgeben. Auf die Moleküle i...
Chapter
Gegenstand dieses Kapitels sind wässrige Elektrolytlösungen und Dampf- Flüssigkeits-Gleichgewichte von flüchtigen Stoffen, die in wässrigen Lösungen dissoziieren. Diese Art von Gleichgewichten spielen insbesondere bei Absorptions- oder Desorptionsprozessen eine wichtige Rolle. Als Beispiel seien die Desorption von Ammoniak aus wässrigen Lösungen od...
Chapter
In Band 1 wurde die allgemeine Struktur einer Bilanzgleichung bereits eingehend erläutert. Jede spezifische Form einer Bilanzgleichung ist untrennbar verknüpft mit der Definition des Bilanzraumes, der in der Sprache der Thermodynamik thermodynamisches System genannt wird. Der Bilanzraum bzw. das thermodynamische System wird durch die Festlegung der...
Chapter
Im Unterschied zu der bisher behandelten Thermodynamik der reinen Stoffe befasst sich die Thermodynamik der Gemische mit Systemen, die aus mehreren einheitlichen Stoffen bestehen. Jeden der einheitlichen Stoffe bezeichnet man als Komponente. Die zu untersuchenden Systeme bestehen also aus mehreren Komponenten.
Chapter
Wie die Erfahrung zeigt, können sich flüssige und feste binäre Systeme unterhalb oder oberhalb bestimmter Temperaturen in zwei koexistente Phasen aufspalten, die beide flüssig oder fest (binäre Mischkristalle) sind. Kennt man die freie Enthalpie, so kann man mit Hilfe der Bedingung für stabiles Gleichgewicht (Gl. (6.8d)) ΔG > 0 für T, p, Ni = const...
Chapter
Bei chemischen Reaktionen findet ein Energieumsatz statt; so sind z. B. Verbrennungsvorgänge mit einer erheblichen Wärmeentwicklung, der sogenannten Wärmetönung, verbunden, worunter man die zu- oder abzuführende Wärme versteht, wenn wir die Endprodukte wieder auf die Ausgangstemperatur der Stoffe vor der Reaktion abkühlen. Bei geeigneter Ausführung...
Chapter
Mischungen von Gasen mit leicht kondensierenden Dämpfen kommen in der Natur und der Technik häufig vor. Das größte und wichtigste Beispiel ist die Atmosphäre. Die meteorologischen Vorgänge – das Wetter – werden entscheidend bestimmt durch die Aufnahme und das Wiederausscheiden von Wasser aus der Luft. In der Technik sind alle Trocknungsvorgänge und...
Chapter
Wärme, die man z. B. in Kraftwerken, in Anlagen der thermischen Verfahrenstechnik oder zur Raumheizung nutzt, wird heute noch größtenteils durch Verbrennung gewonnen. Verbrennung ist die chemische Reaktion eines Stoffes – in der Regel Kohlenstoff, Wasserstoff, Kohlenwasserstoffverbindungen – mit Sauerstoff, die stark exotherm, also unter Wärmefreis...
Chapter
Bläst man Sauerstoff oder Luft durch glühende Kohle von genügender Schichthöhe, wie das im Gasgenerator geschieht, so bildet sich brennbares Gas nach der Gleichung (3) C + CO2 = 2CO , (13.1) indem das zuerst gebildete Kohlendioxid durch die glühende Kohle zu Kohlenmonoxid reduziert wird.
Chapter
Gegenstand der bisherigen Betrachtungen war die Thermodynamik nicht reagierender Gemische. Die verschiedenen Stoffe, also die Komponenten der Gemische, konnten zwar ihren Aggregatzustand ändern, erfuhren aber keine chemischen Umwandlungen. Die behandelten Grundbegriffe sind jedoch allgemein gültig, wie bei ihrer Ableitung betont wurde, und gelten d...
Chapter
In den vorangegangenen Kapiteln hatten wir allgemein gültige, stoffunabhängige Beziehungen für das Verhalten von Stoffgemischen bereit gestellt. In Kapitel 7 wurde gezeigt, dass sich die Schlüsselgröße der Mischphasenthermodynamik, das chemische Potential μi , auf Fugazitäten oder Fugazitätskoeffizienten bzw. Aktivitäten oder Aktivitätskoeffiziente...
Chapter
Da durch die Legendre-Transformation neue Fundamentalgleichungen von gleichem Informationsgehalt wie die ursprüngliche Fundamentalgleichung entstanden, muss es auch möglich sein, den Übergang eines Systems von einem Gleichgewichtszustand in einen anderen mit Hilfe der Legendre-Transformation zu beschreiben, vorausgesetzt, dass eine Beschreibung dur...
Chapter
Bevor in Kapitel 6 die Grundlagen der Berechnung thermodynamischer Gleichgewichte von mehrphasigen Systemen dargestellt werden, ist es sinnvoll, sich die Gleichgewichtszustände und die Phänomene beim Phasenwechsel zu veranschaulichen. Für binäre und ternäre Gemische eignen sich hierzu Phasendiagramme besonders gut. Solche Diagramme sind wegen ihrer...
Chapter
Für Einstoffsysteme, die mit Hilfe des Volumens V als einziger Arbeitskoordinate beschrieben werden können, hatte sich die Funktion U(S,V) als eine thermodynamische Potentialfunktion erwiesen. Sie enthält alle Informationen über den Gleichgewichtszustand von Einstoffsystemen, da man durch Differentiation aus der Fundamentalgleichung alle anderen th...
Chapter
Thermische Stofftrennprozesse setzen prinzipiell ein Nichtgleichgewicht zwischen zwei Phasen voraus, das als Triebkraft einen selektiven Stoffübergang bewirkt. Somit setzt die Beschreibung von Stofftrennprozessen im Allgemeinen die Kenntnis der Gesetze der Wärme- und Stoffübertragung voraus, die nicht Gegenstand des vorliegenden Lehrbuches sind. Al...
Chapter
Wie unsere vorigen Betrachtungen zeigten, ist das chemische Potential eine der wichtigsten Größen in der Thermodynamik der Gemische, da man mit ihm alle übrigen thermodynamischen Eigenschaften des Gemisches berechnen kann. In Kap. 5.1.1 hatten wir bereits das chemische Potential idealer Gase abgeleitet.
Chapter
Gemische idealer Gase sind in der Natur und in vielen technischen Anwendungen von großer Bedeutung. Beispielhaft seien Luft, die vereinfachend zu etwa 79 Vol.% aus reinem Stickstoff und zu etwa 21 Vol.% aus reinem Sauerstoff besteht, sowie Erdgas, das je nach Herkunft sehr unterschiedlich zusammengesetzt sein kann, genannt. Ein solches Gemisch idea...
Chapter
In diesem Kapitel werden grundlegende Begriffe und physikalische Größen zur Beschreibung von Wärme- und Stoffübertragungsvorgängen eingeführt sowie Grundgesetze der Wärme- und Stoffübertragung behandelt. Mit ihrer Hilfe lassen sich bereits technisch wichtige Aufgaben lösen wie die Berechnung des Wärmedurchgangs zwischen zwei Fluiden, die durch eine...
Chapter
In diesem Kapitel behandeln wir die stationäre und instationäre Wärmeleitung in ruhenden Medien, die vor allem in festen Körpern auftritt. Wir leiten zunächst die grundlegende Differentialgleichung für das Temperaturfeld her, indem wir den Energieerhaltungssatz mit dem Gesetz von Fourier verknüpfen. Die dann folgenden Abschnitte behandeln die stati...
Chapter
Thermodynamische Maschinen und Anlagen dienen allgemein der Energiewandlung, wobei die Bereitstellung einer ganz bestimmten Energieform das Ziel ist, z.B. die Bereitstellung von Wellenarbeit zum Antrieb eines Fahrzeugs, von elektrischer Arbeit für unser Stromnetz oder von Wärme zur Beheizung von Gebäuden. In den vorangegangenen Kapiteln wurden die...
Chapter
In Kapitel 1.3 hatten wir die Begriffe Zustand, Zustandsgröße und Zustandsgleichung eingeführt. Mit Hilfe einer Zustandsgleichung, die in ihrer allgemeinen Form nach Gl. (1.1) Y = f(X1,X2, . . . ,Xn ) lautet, ließ sich ein mathematischer Zusammenhang zwischen einer abhängigen Zustandsgröße Y und den unabhängingen Zustandsgrößen X1,X2, . . . ,Xn dar...

Network

Cited By