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For five centuries artisans have been cutting faceted gemstones, creating jewels that sparkle with internally reflected light, showing off the
“fire” of the stones. Working with stones that are transparent or translucent, a cutter makes the most of the color of a stone through careful choice
of the angles between facets, depending on the refractive index of the material. At the same time, gem producers have their own goal: to use as
much of the volume of the rough stones as possible. By applying modern methods of semi-infinite optimization to this problem, we were able
to improve the volume yield significantly while guaranteeing optimal optical properties of the faceted gemstones.

Experienced cutters of such stones—rubies, sapphires, tourmalines, and others—have always done their work manually, de-ciding on shape
and facet design without technical support. In the recent work, researchers at the Fraunhofer Institute for Industrial Mathematics in
Kaiserslautern, to-gether with a consortium of mechanical engineering companies and a gem producer, developed a fully automatic process for
industrial gem production based on an optimal balance of volume yield and ideal proportions of the resulting gemstones. The machine first maps
the surface of the rough stone by projecting narrow bands of light onto it. Using the scan data, the optimization software chooses one of many
basic shapes (e.g., emerald, trillion, or pear; see Figure 1) and a suitable arrangement of facets (e.g., brilliant, Ceylon, or Portuguese cut; see
Figure 2), and finds an embedding of the faceted gemstone in the rough stone such that the volume yield is maximized. Once the optimal solu-
tion has been found, a grinding and polishing plan is
automatically generated and transferred to a CNC
machine. Finally, with no manual intervention, the
faceted gemstone is ground and polished to a preci-
sion of 10 micrometers.

Parameterization of a faceted gemstone begins
with the position and orientation of the cut stone within the rough stone; other parameters describe the shape of the faceted gemstone, includ-
ing height, radius, and aspect ratio. The first person to investigate the influence of different shape parameters on the appearance of the brilliant
cut was Marcel Tolkowski, at the beginning of the 20th century [14]. The optimal proportions he calculated (called the Tolkowski Ideal Cut)
have long served as a reference for the quality of a brilliant cut. Recently, numerous groups have studied the optics of faceted gemstones (col-
lections of articles can be found, for example, in [9] and [10]).

The volume-optimization problem has been studied much less extensively. The methods
developed to date concentrate on diamond cutting and assume a fixed polyhedral geometry of
the faceted gem. Few references are available (see [8] and [15] or, for commercial publications
on problems of this type, [4, 5], [13]).

The available methods are appropriate for diamond-cutting problems (where one fixed facet
arrangement, the so-called round brilliant cut, predominates) and cannot be applied to the cut-
ting of colored gemstones because of subtle yet very important differences between these prob-
lem classes. On the one hand, the lapidary proportions are much less restrictive than the bril-
liant cut proportions. On the other hand, the assumption of a fixed facet arrangement is not
appropriate for the lapidary cutting problem because of the large number (several hundreds) of
possible geometries.

The requirement that several hundreds of parameterized cut variations be taken into account
precludes the use of fixed polyhedral geometries and leads to a crucial question, one that is left unanswered by the optimization methods devel-
oped so far but that needs to be answered before we can tackle the lapidary cutting problem:

If the polyhedral description of a faceted gemstone cannot be used during optimization, what, then, do we optimize?

Modeling and Complexity Reduction
Generations of gemstone cutters have answered this question, as elaborated in most gemstone-cutting textbooks (e.g., [1, 2]). In fact, each

stone is roughly pre-formed before the planar facets are cut. Figure 3 shows a typical pre-formed shape, the so-called calibration body.
Pre-forming achieves two main goals: It removes major impurities and inclusions from the rough stone, and fixes

the basic shape, approximate proportions, and orientation axis of the eventual gemstone so as to yield maximal vol-
ume. This led us to the idea of replacing the polyhedral description of a gemstone by smooth nonlinear, flexibly
parameterized calibration bodies. Another question arose immediately: What mathematical method can be used to
find the optimal embedding of a parameterized calibration body in the rough stone? Such problems of optimal
embedding, which are called “design centering” problems, are known to be very hard in the general case. However,
a numerical method proposed for solving general semi-infinite programs (GSIPs) [11] includes design centering as
a special case (see [12]).

In fact, in semi-infinite programming the decision variable of an optimization problem is subject to infinitely
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Figure 1. From left, emer-
ald, trillion, and pear cuts.

Figure 2. Even for a fixed shape like the round
cut, a large number of facet variations need to
be taken into account.

Figure 3. A typical calibra-
tion body.



many inequality constraints. In the context of design centering, these inequalities stem from the
inclusion constraint (in gemstone cutting: each of the infinitely many points of the calibration body
has to lie within the rough stone).

In general, as opposed to standard, semi-infinite programming, the index set of these inequality
constraints is also allowed to depend on the decision variable. For any semi-infinite program, a fun-
damental problem is to guarantee feasibility of the decision variable, which obviously involves the
verification of infinitely many constraints. This crucial feasibility problem is equivalent to a global
optimization problem called the “lower-level problem.” In particular, the index set of inequality
constraints serves as the feasible set for the lower-level problem. The main numerical challenge is
to solve this lower-level problem to global optimality, as merely local solutions will not guarantee
feasibility. Unfortunately, in applications of standard semi-infinite programming the lower-level
problems are typically nonconvex.

A straightforward solution approach is to discretize the index set (that is, the feasible set of the
lower-level problem), and refine the discretization adaptively. A broad survey of standard semi-infi-
nite programming, such discretization approaches, and other solution methods can be found in the review paper [3].

The discretization approach is hard to implement for general semi-infinite programs, however, as the discretization points would depend on
the decision variable. Fortunately, in many applications of general semi-infinite programming, including certain design centering problems, the
lower-level problems do turn out to be convex. The algorithm presented in [11] takes advantage of this situation by reformulating the feasibili-
ty constraint: The restriction that a global solution of the lower-level problem has to be found is replaced by the (equivalent) first-order optimal-
ity conditions of the lower-level problem. To verify feasibility, it is now enough to evaluate the infinite constraint at only one point—namely,
the point implicitly defined by the lower-level optimality conditions. Figure 4 shows an optimal design and the solutions of the lower-level prob-
lems.

But there’s a catch: We have introduced complementarity conditions to the problem, transforming the original semi-infinite program into a
mathematical program with complementarity constraints (for background, see [6]). Several numerical solution techniques have been developed
since the 1990s for this latter problem class, including a regularization approach, as described in [11]. This approach makes it possible to solve
general semi-infinite programs with convex lower-level problems at least to (upper-level) local optimality.

It has been verified [16] that the smoothness and convexity assumptions of the method can be satisfied by appropriate modeling, and initial
numerical results for oval calibration bodies have been reported [16, 17]. For a functional description of the rough stone, linear and concave
quadratic functions are used. It turns out that the number of these container constraints is, in general, far too large for numerical treatment. To
obtain practically solvable problems, we use only a small fraction of the original constraints in the initial semi-infinite model.

Clearly, the relaxation results in a perturbed problem, and a solution of the reduced GSIP cannot be expected to fit into the original contain-
er; see Figure 5. The violated original constraints can be identified by means of the set-containment characterization (see [7]), i.e., by solving
all lower-level problems. Our GSIP solver, how-
ever, allows much faster identification of violated
constraints. In fact, the optimal solutions of some
original lower-level problems are available at no
cost after the optimization step, as they are part of
the finite reformulation of the GSIP. By evaluat-
ing all original constraints at these “corner
points,” we can eventually see violations. The
drawback of this procedure is that violated con-
straints can be overlooked, and it thus needs to be
combined with the first approach.

If violated constraints are found, they need to
be added to the model and the problem needs to
be re-solved. We emphasize that the description
of the rough stone becomes more accurate only in
a few critical regions. Because these regions
depend on the values of the decision variables
and thus are not known a priori, we refer to the
procedure as adaptive refinement. As an example,
we apply the refinement procedure to the solution
shown in Figure 5. In the first iteration, when g1,
g2, and g3 are evaluated for the available solutions
of the lower-level problems, the constraint g2 is
found to be violated. Figure 6 shows the optimal
solution after the problem has been refined.

Now, the container constraint g3 is satisfied in
all lower-level solutions in the current model,
although it cuts the optimal design. Thus, all
lower-level problems not yet in the model have to

Figure 4. Maximal disk in a two-dimen-
sional container. The optimal solutions of
the lower-level problems are indicated by
black dots.

Figure 7. The violated constraint g3 is found by
solving the corresponding lower-level problem.

Figure 5. Dropping some container constraints results in a reduced general semi-infinite pro-
gram (left), although the solution is not necessarily feasible for the original problem (right).

Figure 6. Optimal solution after the first re-
finement step.



be solved in order to identify this violated con-
straint (see Figure 7). Finally, adding g3 to the
model and re-solving the reduced problem lead to
the solution of the original problem, as shown in
Figure 4. Notice that the constraint g1 never enters
the reduced model.

Computational Results
We implemented the adaptive refinement meth-

od with a GSIP solver in C++ and tested the
implementation on a data set consisting of 50 irregularly shaped rough gemstones. Different cali-
bration bodies were used to represent nine different cut shapes. Figures 8–10 show some of the opti-
mal solutions. Interested readers can find information about the test settings, as well as detailed sta-
tistics, in [18]. We conclude here with a few comments on the test results:

� A typical lapidary cutting problem can be solved in minutes on a standard desktop computer.
� On average, the adaptive refinement requires less than 1% of the original container constraints to find a solution
for a typical lapidary cutting GSIP.
� The volume yield—the ratio between the volume of the faceted gem and that of the rough stone—is well above
40% for the test set. This is a substantial improvement over the volume yields achieved by experienced human cutters (33%–36%).
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Figure 8. Round cut;
volume yield, 44.8%.

Figure 9. Navette cut; volume yield, 50.3%.

Figure 10. Trillion cut;
volume yield, 48.0%.


