Karl K. Berggren

Karl K. Berggren
  • PhD
  • Professor (Full) at Massachusetts Institute of Technology

About

520
Publications
91,701
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,005
Citations
Current institution
Massachusetts Institute of Technology
Current position
  • Professor (Full)
Additional affiliations
August 2010 - July 2011
Delft University of Technology
Position
  • Researcher
January 2006 - present
September 1990 - December 1996
Harvard University

Publications

Publications (520)
Article
Full-text available
Quantum communications technologies require a network of quantum processors connected with low-loss and low-noise communication channels capable of distributing entangled states. Superconducting microwave qubits operating in cryogenic environments have emerged as promising candidates for quantum processor nodes. However, scaling these systems is ch...
Preprint
Full-text available
Developing ultra-low-energy superconducting computing and fault-tolerant quantum computing will require scalable superconducting memory. While conventional superconducting logic-based memory cells have facilitated early demonstrations, their large footprint poses a significant barrier to scaling. Nanowire-based superconducting memory cells offer a...
Preprint
Full-text available
In this work, we present a technique to determine the mid-infrared refractive indices of thin superconducting films using Fourier transform infrared spectroscopy (FTIR). In particular, we performed FTIR transmission and reflection measurements on 10-nm-thick NbN and 15-nm-thick MoSi films in the wavelength range of 2.5 to 25 $\mu$m, corresponding t...
Article
Full-text available
We analytically describe the noise properties of a heralded electron source made from a standard electron gun, a weak photonic coupler, a single photon counter, and an electron energy filter. We describe the sub-Poissonian statistics of the source, the engineering requirements for efficient heralding, and several potential applications. We use simp...
Preprint
Using a kinetic equation approach and Density Functional Theory, we model the nonequilibrium quasiparticle and phonon dynamics of a thin superconducting film under optical irradiation ab initio. We extend this model to develop a theory for the detection of single photons in superconducting nanowires. In doing so, we create a framework for exploring...
Article
Full-text available
Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electron...
Article
Presents corrections to the paper, Electron Emission Regimes of Planar Nano Vacuum Emitters.
Preprint
This work demonstrates electron energy loss spectroscopy of 2D materials in a 1-30 keV electron microscope, observing 100-times stronger electron-matter coupling relative to 125 keV microscopes. We observe that the universal curve relating beam energy to scattering holds for the transition from bulk graphite to graphene, albeit with a scale factor....
Article
Improving the scalability, reproducibility, and operating temperature of superconducting nanowire single photon detectors (SNSPDs) has been a major research goal since the devices were first proposed. The recent innovation of helium-ion irradiation as a post-processing technique for SNSPDs could enable high detection efficiencies to be more easily...
Preprint
The scaling of superconducting nanowire-based devices to larger arrays is often limited by the cabling required to interface with each device. Cryogenic integrated circuits constructed from nanowire cryotrons, or nanocryotrons, can address this limitation by performing signal processing on chip. In this study, we characterize key performance metric...
Article
Full-text available
Progress in superconducting device and detector technologies over the past decade has realized practical applications in quantum computers, detectors for far-infrared telescopes, and optical communications. Superconducting thin-film materials, however, have remained largely unchanged, with aluminum still being the material of choice for superconduc...
Article
Electronic frequency mixers are fundamental building blocks of electronic systems. Harmonic frequency mixing in particular enables broadband electromagnetic signal analysis across octaves of spectrum using a single local oscillator. However, conventional harmonic frequency mixers do not operate beyond hundreds of gigahertz to a few terahertz. If ex...
Article
Decreasing the number of cables that bring heat into the cryostat is a critical issue for all cryoelectronic devices. In particular, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 106 readout lines. Performing signal-processing operations at low temperatures could be a solution. Nanocryotrons, supercondu...
Preprint
Full-text available
We analytically describe the noise properties of a heralded electron source made from a standard electron gun, a weak photonic coupler, a single photon counter, and an electron energy filter. We argue the traditional heralding figure of merit, the Klyshko efficiency, is an insufficient statistic for characterizing performance in dose-control and do...
Preprint
Full-text available
Superconducting thin-film electronics are attractive for their low power consumption, fast operating speeds, and ease of interface with cryogenic systems such as single-photon detector arrays, and quantum computing devices. However, the lack of a reliable superconducting two-terminal asymmetric device, analogous to a semiconducting diode, limits th...
Article
Full-text available
Ultra-fast single-photon detectors with high current density and operating temperature can benefit space and ground applications, including quantum optical communication systems, lightweight cryogenics for space crafts, and medical use. Here we demonstrate magnesium diboride (MgB2) thin-film superconducting microwires capable of single-photon detec...
Article
Full-text available
A central challenge in quantum networking is transferring quantum states between different physical modalities, such as between flying photonic qubits and stationary quantum memories. One implementation entails using spin–photon interfaces that combine solid-state spin qubits, such as color centers in diamond, with photonic nanostructures. However,...
Article
Full-text available
Superconducting nanowire single-photon detectors (SNSPDs) in the mid-infrared (MIR) have the potential to open up numerous opportunities in fields such as exoplanet searches, direct dark matter detection, physical chemistry, and remote sensing. One challenge in pushing SNSPD sensitivity to the MIR is a decrease in the signal-to-noise ratio (SNR) of...
Article
The scaling of superconducting nanowire detectors to larger arrays is often limited by room-temperature-readout cabling. Cryogenic integrated circuits constructed from nanowire cryotrons, or nanocryotrons, can address this limitation by performing signal processing on chip. In this study, we characterize key performance metrics of the nanocryotron...
Article
Lateral field emission devices have been characterized before and after ultraviolet (UV) light exposure. Two types of planar device structures, diode and bowtie, were studied. These nanoscale devices have 9–15 nm tip-to-tip (bowtie) or tip-to-collector (diode) dimensions with the tips fabricated from Au/Ti. Typical currents of 2–5 nA per tip at 6 V...
Preprint
Full-text available
Ultra-fast single-photon detectors with high current density and operating temperature can benefit space and ground applications, including quantum optical communication systems, lightweight cryogenics for space crafts, and medical use. Here we demonstrate magnesium diboride MgB2 thin-film superconducting microwires capable of single-photon detecti...
Preprint
Full-text available
Frequency mixers are fundamental building blocks in many electronic systems. They enable frequency conversion for signal detection and processing. While conventional electronic frequency mixers operate in the GHz or at best in the THz frequency range, a compact and scalable petahertz-scale electronic frequency mixer would enable practical field-res...
Article
Full-text available
Superconducting nanowire single photon detectors (SNSPDs) are the highest-performing technology for time-resolved single-photon counting from the UV to the near-infrared. The recent discovery of single-photon sensitivity in micrometer-scale superconducting wires is a promising pathway to explore for large active area devices with application to dar...
Preprint
Full-text available
Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical wave, paving the way toward optical frequency electronics. Using controlled few-cycle optical waveforms, the study of sub-cycle electron emission has enabled the generation of attosecond ultraviolet pulses and the control of attosecond cur...
Article
Superconducting nanowire single-photon detectors (SNSPDs) are the highest-performing photon-counting technology in the near-infrared region. Because of delay-line effects, large-area SNSPDs typically trade off timing resolution and detection efficiency. This unavoidable fundamental constraint might limit their future deployment in demanding scienti...
Preprint
Full-text available
Decreasing the number of cables that bring heat into the cryocooler is a critical issue for all cryoelectronic devices. Especially, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than $10^6$ readout lines. Performing signal processing operations at low temperatures could be a solution. Nanocryotrons, supercon...
Article
Full-text available
Absorption of light in superconducting electronics is a major limitation on the quality of circuit architectures that integrate optical components with superconducting components. A 10 nm thick film of a typical superconducting material like niobium can absorb over half of any incident optical radiation. Instead, we propose using superconductors th...
Article
Full-text available
We present a design for a superconducting nanowire binary shift register, which stores digital states in the form of circulating supercurrents in high-kinetic-inductance loops. Adjacent superconducting loops are connected with nanocryotrons, three-terminal electrothermal switches, and fed with an alternating two-phase clock to synchronously transfe...
Article
Full-text available
The development of superconducting electronics based on nanocryotrons has been limited so far to few device circuits, in part due to the lack of standard and robust logic cells. Here, we introduce and experimentally demonstrate designs for a set of nanocryotron-based building blocks that can be configured and combined to implement memory and logic...
Article
Recent experiments have demonstrated a method for extracting the depairing current of nanowires fabricated from thin-film dirty superconductors using the AC response of DC-current biased resonators. While the existing theoretical model for understanding this response, developed by Clem and Kogan, provides agreement with Eilenberger-Usadel theory at...
Article
Full-text available
The detection of individual quanta of light is important for quantum communication, fluorescence lifetime imaging, remote sensing and more. Due to their high detection efficiency, exceptional signal-to-noise ratio and fast recovery times, superconducting-nanowire single-photon detectors (SNSPDs) have become a critical component in these application...
Preprint
Superconducting nanowire single photon detectors (SNSPDs) are the highest-performing technology for time-resolved single-photon counting from the UV to the near-infrared. The recent discovery of single-photon sensitivity in micrometer-scale superconducting wires is a promising pathway to explore for large active area devices with application to dar...
Article
When impinging on optical structures or passing in their vicinity, free electrons can spontaneously emit electromagnetic radiation, a phenomenon generally known as cathodoluminescence. Free-electron radiation comes in many guises: Cherenkov, transition, and Smith–Purcell radiation, but also electron scintillation, commonly referred to as incoherent...
Preprint
We present a design for a superconducting nanowire binary shift register, which stores digital states in the form of circulating supercurrents in high-kinetic-inductance loops. Adjacent superconducting loops are connected with nanocryotrons, three terminal electrothermal switches, and fed with an alternating two-phase clock to synchronously transfe...
Conference Paper
We demonstrate heterogeneous integration of solid-state nanophotonic cavities into a scalable photonic platform as an efficient optical interface for quantum memories based on diamond color centers.
Conference Paper
We present an efficient microwave and optical interface for quantum memories at 1.3 K based on tin-vacancy color centers in diamond and scalable integrated photonics.
Preprint
Absorption of light in superconducting electronics is a major limitation on the quality of circuit architectures that integrate optical components with superconducting components. A 10 nm thick film of a typical superconducting material like niobium can absorb over half of any incident optical radiation. We propose instead using superconductors whi...
Article
Full-text available
Superconducting nanowires, a mature technology originally developed for quantum sensing, can be used as a target and sensor with which to search for dark matter interactions with electrons. Here we report on a 180-hour measurement of a tungsten silicide superconducting nanowire device with a mass of 4.3 nanograms. We use this to place new constrain...
Article
Deterministic generation of single photons is essential for many quantum information technologies. A bulk optical nonlinearity emitting a photon pair, where the measurement of one of the photons heralds the presence of the other, is commonly used with the caveat that the single-photon emission rate is constrained due to a trade-off between multipho...
Article
Scanning electron microscopy (SEM) is a versatile technique used to image samples at the nanoscale. Conventional imaging by this technique relies on finding the average intensity of the signal generated on a detector by secondary electrons (SEs) emitted from the sample and is subject to noise due to variations in the voltage signal from the detecto...
Article
Full-text available
Ionic gating is a powerful technique for tuning the physical properties of a material via electric-field-induced charge doping, but is prone to introduce extrinsic disorder and undesired electrochemical modifications in the gated material beyond pure electrostatics. Conversely, reversible, volatile, and electrostatic modulation is pivotal in the re...
Article
Full-text available
Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal b...
Article
Full-text available
Neuromorphic computing would benefit from the utilization of improved customized hardware. However, the translation of neuromorphic algorithms to hardware is not easily accomplished. In particular, building superconducting neuromorphic systems requires expertise in both superconducting physics and theoretical neuroscience, which makes such design p...
Preprint
Full-text available
The detection of individual quanta of light is important for quantum computation, fluorescence lifetime imaging, single-molecule detection, remote sensing, correlation spectroscopy, and more. Thanks to their broadband operation, high detection efficiency, exceptional signal-to-noise ratio, and fast recovery times, superconducting nanowire single-ph...
Preprint
When impinging on optical structures or passing in their vicinity, free electrons can spontaneously emit electromagnetic radiation, a phenomenon generally known as cathodoluminescence. Free-electron radiation comes in many guises: Cherenkov, transition, and Smith-Purcell radiation, but also electron scintillation, commonly referred to as incoherent...
Article
Recent advancements in nanofabrication have enabled the creation of vacuum electronic devices with nanoscale free-space gaps. These nanoelectronic devices promise the benefits of cold-field emission and transport through free space, such as high nonlinearity and relative insensitivity to temperature and ionizing radiation, all while drastically red...
Article
Carrier-envelope phase (CEP) detection of ultrashort optical pulses and low-energy waveform field sampling have recently been demonstrated using direct time-domain methods that exploit optical-field photoemission from plasmonic nanoantennas. These devices are compact and integratable solid-state detectors operating at optical frequencies under ambi...
Article
Full-text available
Uncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly interacting, and naturally produced in the early universe. In this work, we report on Light A^{'} Multilayer Periodic Optical SNSPD Target...
Article
Full-text available
Acoustic waves at microwave frequencies are widely used in wireless communication and are potential information carriers in quantum applications. However, most acoustic devices are passive components, and the development of phononic integrated circuits is limited by the inability to control acoustic waves in a low-loss, scalable manner. Here we rep...
Preprint
Full-text available
Ionic gating is a powerful technique for tuning the physical properties of a material via electric field-induced charge doping, but is prone to introduce extrinsic disorder and undesired electrochemical modifications in the gated material beyond pure electrostatics. Conversely, reversible, volatile and electrostatic modulation is pivotal in the rel...
Article
We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10^{-3},1] eV ([0.24, 240] THz) mass range. BREAD proposes a cylindrical metal barrel to convert dark matter into photons, which a novel parabolic reflector design focu...
Preprint
Full-text available
Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to...
Preprint
Full-text available
In the last decade, several photon counting technologies have been developed opening a new window for experiments in the low photon number regime. Several ongoing and future projects in HEP benefit from these developments, which will also have a large impact outside HEP. During the next decade there is a clear technological opportunity to fully dev...
Preprint
Full-text available
Recent advancements in nanofabrication have enabled the creation of vacuum electronic devices with nanoscale free space gaps. These nanoelectronic devices promise the benefits of cold-field emission and transport through free-space, such as high nonlinearity and relative insensitivity to temperature and ionizing radiation, all the while drastically...
Conference Paper
Acoustic waves at microwave frequencies have been recently emerged as versatile information carriers in quantum applications. Here, we demonstrate electrical control of traveling acoustic waves on an integrated lithium niobate platform at millikelvin temperature.
Conference Paper
We experimentally demonstrate an improved heralded single photon source using a photon-number-resolving superconducting nanowire detector compared to that using a conventional bucket detector. This work delineates a path towards ideal single photon sources.
Conference Paper
We demonstrate large-area superconducting nanowire single-photon detectors (SNSPDs) for operation in the mid-IR band, up to 7.4 μm.
Conference Paper
We improve a single photon source based on spontaneous parametric down-conversion by heralding one of the output modes using a photon number resolving superconducting nanowire detector. We measure a reduced magnitude of the second order cross correlation of one of the output modes conditioned on detection of a single photon in the other mode.
Conference Paper
Unlike atomic and bulk solid-state systems, nanoantenna-based petahertz-electronic devices offer unprecedented control over electron emission response. We show how device symmetry, nonlinearity, and driving waveform control the frequency response of petahertz-electronic optical field samplers.
Conference Paper
The sensitivity of superconducting nanowire electronics in high radiation environments is not well known. We present numerical simulations of the radiation effects and errors caused by exposure to these conditions.
Conference Paper
We report the optical constants of thin-film NbN in the wavelength of 2.5 to 25 µm, which is determined by fitting Drude-Lorentz dielectric function to the reflectance and transmittance data obtained via FTIR.
Conference Paper
Nanoantenna-based petahertz-electronic devices allow tailoring of attosecond fast electron emission currents for optical-field sampling applications. We show how the devices’ symmetry properties can be engineered and electronically controlled to dramatically reconfigure the spectral sampling response.
Preprint
We demonstrate real-time single photon heralding from a bulk nonlinearity using an efficient and low-noise photon number-resolving superconducting nanowire detector. A maximum reduction of ${0.118\pm0.012}$ in the photon ${g^2(0)}$ cross-correlation is obtained, indicating a strong suppression of multi-photon emissions. We analytically model our ex...
Article
We demonstrate impedance-matched low-loss transmission lines with a signal wavelength more than 150 times smaller than the free space wavelength using superconducting nanowires on high permittivity substrates. A niobium nitride thin film is patterned in a coplanar waveguide (CPW) transmission line geometry on a bilayer substrate consisting of 100 n...
Preprint
Full-text available
Neuromorphic computing is poised to further the success of software-based neural networks by utilizing improved customized hardware. However, the translation of neuromorphic algorithms to hardware specifications is a problem that has been seldom explored. Building superconducting neuromorphic systems requires extensive expertise in both superconduc...
Preprint
Full-text available
We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10$^{-3}$, 1] eV ([0.24, 240] THz) mass range. BREAD proposes a cylindrical metal barrel to convert dark matter into photons, which a novel parabolic reflector design f...
Preprint
Full-text available
Scanning electron microscopy (SEM) is a versatile technique used to image samples at the nanoscale. Conventional imaging by this technique relies on finding the average intensity of the signal generated on a detector by secondary electrons (SEs) emitted from the sample and is subject to noise due to variations in the voltage signal from the detecto...
Preprint
We demonstrate impedance-matched low-loss transmission lines with a signal wavelength more than 150 times smaller than the free space wavelength using superconducting nanowires on high permittivity substrates. A niobium nitride thin film is patterned in a coplanar waveguide (CPW) transmission line geometry on a bilayer substrate consisting of 100 n...
Article
Full-text available
We show that the rate for dark-matter–electron scattering in an arbitrary material is determined by an experimentally measurable quantity, the complex dielectric function, for any dark matter interaction that couples to electron density. This formulation automatically includes many-body effects, eliminates all systematic theoretical uncertainties o...
Preprint
Full-text available
Uncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly-interacting, and naturally produced in the early universe. In this work, we report on LAMPOST (Light A Multilayer Periodic Optical SNSPD T...
Preprint
Full-text available
Superconducting nanowires, a mature technology originally developed for quantum sensing, can be used as a target and sensor with which to search for dark matter interactions with electrons. Here we report on a 180-hour measurement of a tungsten silicide superconducting nanowire device with a mass of 4.3 nanograms. We use this to place new constrain...
Preprint
Full-text available
Carrier-envelope phase (CEP) detection of ultrashort optical pulses and low-energy waveform field sampling have recently been demonstrated using direct time-domain methods that exploit optical-field photoemission from plasmonic nanoantennas. These devices make for compact and integratable solid-state detectors operating at optical frequency that wo...
Article
Lateral field emission devices have been characterized and degradation tested for >1000 h to study stability and reliability. Two types of planar device structures, diode and bowtie, were studied. These nanoscale devices have 10–20 nm tip to tip or tip to collector dimensions with the tips fabricated from Au/Ti. Typical currents of 2–6 nA at 6 V we...
Preprint
Superconducting nanowire single-photon detectors (SNSPDs) are the highest performing photon-counting technology in the near-infrared (NIR). Due to delay-line effects, large area SNSPDs typically trade-off timing resolution and detection efficiency. Here, we introduce a detector design based on transmission line engineering and differential readout...
Article
Full-text available
In this work, we report the use of commercial gallium nitride (GaN) power electronics to precisely switch complex distributed loads, such as electron lenses and deflectors. This was accomplished by taking advantage of the small form-factor, low-power dissipation, and high temperature compatibility of GaN field effect transistors (GaNFETs) to integr...
Article
Full-text available
Optical-field emission from nanostructured solids such as subwavelength nanoantennas can be leveraged to create sub-femtosecond, petahertz-scale electronics for optical-field detection. One application of particular interest is the detection of an incident optical pulse’s carrier–envelope phase (CEP). Such CEP detection requires few-cycle, broadban...
Article
Full-text available
We demonstrate an on-chip, optoelectronic device capable of sampling arbitrary, low-energy, near-infrared waveforms under ambient conditions with sub-optical-cycle resolution. Our detector uses field-driven photoemission from resonant nanoantennas to create attosecond electron bursts that probe the electric field of weak optical waveforms. Using th...
Article
Full-text available
Refractory materials exhibit high damage tolerance, which is attractive for the creation of nanoscale field-emission electronics and optoelectronics applications that require operation at high peak current densities and optical intensities. Recent results have demonstrated that the optical properties of titanium nitride, a refractory and CMOS-compa...
Article
Full-text available
We developed superconducting nanowire single-photon detectors based on tungsten silicide, which show saturated internal detection efficiency up to a wavelength of 10 μm. These detectors are promising for applications in the mid-infrared requiring sub-nanosecond timing, ultra-high gain stability, low dark counts, and high efficiency, such as chemica...
Article
The use of electron mirrors in aberration correction and surface-sensitive microscopy techniques such as low-energy electron microscopy has been established. However, in this work, by implementing an easy to construct, fully electrostatic electron mirror system under a sample in a conventional scanning electron microscope (SEM), we present a new im...
Preprint
Full-text available
We systematically investigated the physical properties of amorphous Mo$_{\rm x}$Si$_{1-x}$ films deposited by the magnetron co-sputtering technique. The critical temperature $T_C$ of Mo$_{\rm x}$ Si$_{1-x}$ films increases gradually with the stoichiometry x, and the highest $T_C$=7.9 K was found in Mo$_{\rm 0.83}$ Si$_{0.17}$. Beyond $x$=0.83, pref...
Preprint
Full-text available
Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal b...
Article
Superconducting Nanowire Single Photon Detectors (SNSPDs) have demonstrated timing and efficiency properties that have placed them at the frontier in single photon sensing applications (e.g. photon counting, deep space optical communications, quantum communication, and quantum encryption). Properties such as timing jitter as low as 3 ps, dark count...
Preprint
Full-text available
Optical-field emission from nanostructured solids such as subwavelength nanoantennas can be leveraged to create sub-femtosecond, PHz-scale electronics for optical-field detection. One application that is of particular interest is the detection of an incident optical pulse's carrier-envelope phase. Such carrier-envelope-phase detection requires few-...
Article
Superconducting qubits are widely used in quantum computing research and industry. We describe a superconducting kinetic inductance qubit (and introduce the term Kineticon to describe it) operating at W-band frequencies with a nonlinear nanowire section that provides the anharmonicity required for two distinct quantum energy states. Operating the q...
Article
Full-text available
In this work, we investigate multiphoton and optical field tunneling emission from metallic surfaces with nanoscale vacuum gaps. Using time-dependent Schrödinger equation (TDSE) simulations, we find that the properties of the emitted photocurrent in such systems can be greatly altered by the application of only a few-volt direct current (DC) bias....
Article
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultracompact microwave directional forward coupler based on high-impedance slow-wave superconducting-nanowire transmission lines. The coupling section of the fabricat...
Article
Full-text available
Just as “classical” information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the “interconnect,” a device or process that allows transfer of information between disparate physical media, for example, semiconduct...

Network

Cited By