
Short Communication

Oxidative stress and hippocampus in a low-grade hepatic
encephalopathy model: protective effects of curcumin
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Aim: The present study was performed on prehepatic portal
hypertensive rats, a model of low-grade hepatic encephalopa-
thy, designed to evaluate whether oxidative stress was a pos-
sible pathway implicated in hippocampal damage and if so,
the effect of an anti-oxidant to prevent it.

Methods: Prehepatic portal hypertension was induced by a
regulated portal vein stricture. Oxidative stress was investi-
gated by assessing related biochemical parameters in rat
hippocampus. The effect of the anti-oxidant curcumin, admin-
istered in a single i.p. dose of 100 mg/kg on the seventh, ninth
and eleventh days after surgery, was evaluated.

Results: Oxidative stress in the rat hippocampal area
was documented. Curcumin significantly decreased tissue

malondialdehyde levels and significantly increased glu-
tathione peroxidase, catalase and superoxide dismutase
activities in the hippocampal tissue of portal hypertensive
rats.

Conclusion: Oxidative stress was found to be implicated in
the hippocampal damage and curcumin protected against
this oxidative stress in low-grade hepatic encephalopathic
rats. These protective effects may be attributed to its anti-
oxidant properties.
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INTRODUCTION

ACUTE AND CHRONIC liver diseases are among the
most challenging tasks in gastroenterology. One of

the reasons for this is the complication of the primary
disease process in the liver by numerous metabolic dis-
turbances and the accumulation of toxic products,
among them ammonia.1,2

Hepatic encephalopathy (HE) constitutes one of the
most intriguing complications in acute and chronic liver
pathology. In addition to clinically manifest HE, a sub-
clinical stage has also been described.3 A working party
report has classified HE into groups (A, B and C).4

Experimental prehepatic portal hypertension (PPH)
induced by portal vein stricture can be regarded as a

valid model for the study of a subclinical or low grade
HE (lgHE).5,6

Hyperammonemia is recognized in humans and
animal models of liver disease, and has been associated
with mitochondrial damage, energy impairment and
increased free radical (FR) formation.7–10

The brain is absolutely dependent upon oxidative
metabolism for cell survival and is particularly sensitive
to oxidative damage because of its high content of iron,
polyunsaturated fatty acids, catecholamines and excita-
tory amino acids, all of which may mediate oxidative
stress (OS) and reactive oxygen species (ROS)
production.11–13

Oxidative stress has emerged as a potentially impor-
tant factor in the pathogenesis of HE.14 Ammonia has
been shown to generate FR in vivo and in cultured astro-
cytes. Additionally, decreased activities of anti-oxidant
enzymes – glutathione peroxidase (GSH-Px), superox-
ide dismutase (SOD) and catalase (CAT) – and
increased superoxide production (O2-) have been
described.15 Besides this, OS has been strongly associ-
ated with astrocyte swelling in acute liver failure (ALF),
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as well as the induction of mitochondrial transition
pore in chronic liver failure.16

These data encouraged us to discover whether OS was
implicated in the morpho-functional alterations found
in the rat hippocampal area, previously reported by our
laboratory,7 in lgHE.

If lgHE is associated with an imbalance of OS and the
anti-oxidant defense system then, theoretically, it would
be possible to limit oxidative damage and ameliorate
disease progression by supplementing anti-oxidants.13,17

Curcumin (CUR) from Curcuma longa Linn (turmeric)
– Zingiberaceae has proved to be, in terms of modern
medicine, a neuroprotective, anti-inflammatory, antitu-
mor, renoprotective, cardioprotective, lipid-lowering
agent which exhibits anti-oxidant properties.18–26 CUR is
a potent scavenger of ROS and inhibitor of lipid peroxi-
dation and xanthine–xanthine oxidase-induced super-
oxide (O2-) production.26,27 The highly lipophilic
character of CUR greatly enhances its brain disposition.
On these basis, the present study was designed to inves-
tigate whether OS was implicated in the alterations in
the hippocampal tissue of lgHE rats when assessing ROS
and related biochemical parameters.

METHODS

Animals and surgical procedures

WISTAR MALE RATS (200–250 g) were housed
separately and acclimatized before use under

temperature-controlled (25 1 2°C) and light-controlled
(12 h light/dark cycle) conditions. Rats were fed with
standard rat chow and water ad libitum. After 1 week of
acclimatization, rats were randomized and separated
into three groups: (I) sham operated (n = 8); (II) PPH
rats (n = 8); and (III) PPH rats plus CUR (n = 8).

Portal hypertension was induced by a calibrated stric-
ture of the portal vein (PPVL). Rats were anaesthetized
with ether, a midline abdominal incision was made and
a 3–0 silk ligature was placed around the vein and
snugly tied to a 20-gauge blunt-end needle placed
alongside the portal vein. The needle was subsequently
removed to yield a calibrated stenosis of the portal vein
(groups II and III). Sham-operated rats (group I), under-
went an identical procedure except that the portal vein
was not stenosed.28

On the seventh, ninth and eleventh days after surgery,
group III received a single dose of CUR (100 mg/kg i.p.)

All animal experiments were carried out in accordance
with the guidelines of the National Institute of Health
(USA) for the care and use of laboratory animals.29

Enzyme preparations and assays
Rats were anaesthetized with ether and killed 14 days
after surgery by decapitation; the brain was removed
and the hippocampal area dissected, excised and
homogenized in a Potter–Elvehejm homogenizer using
different solutions.

CAT, SOD and GSH–Px activities were determined
spectrophotometrically in brain homogenates prepared
in a medium consisting of 140 mmol/L KCl and
25 mmol/L potassium phosphate buffer (pH 7.4), and
centrifuged at 600 g for 10 min. The supernatant, a sus-
pension of preserved organelles, was used as homoge-
nate. CAT activity was determined by measuring the
decrease in absorbance at 240 nm, GSH–Px activity fol-
lowing NADPH oxidation at 340 nm and SOD activity
by inhibition of adrenochrome formation rate at
480 nm.30–32 One unit in the SOD assay is defined as the
amount of enzymatic protein required to inhibit 50% of
epinephrine auto-oxidation.

Lipid peroxidation
Lipid peroxidation in the liver was determined by mea-
suring the rate of production of thiobarbituric acid reac-
tive substances (TBARS), expressed as malondialdehyde
equivalents (MDA).33 One volume of homogenate was
mixed with 0.5 volume TCA (15% w/v) and centrifuged
at 2000 g for 10 min. The supernatant (1 ml) was mixed
with 0.5 ml thiobarbituric acid (0.7% w/v) and boiled
for 10 min. After cooling, sample absorbance was read
spectrophotometrically at 535 nm. MDA concentration
was calculated using an e value of 1.56 ¥ 105/M/cm.

Protein determination
Protein concentration was measured following Lowry
et al.34 using bovine serum albumin as standard.

Statistical analysis
Results are expressed as mean 1 SD. The data were
analyzed statistically by factorial analysis of variance
(ANOVA) followed by the Neuman–Keuls’ test for com-
parison of means. Differences were considered signifi-
cant at P < 0.05.

RESULTS

THE HIPPOCAMPAL ANTI-OXIDANT enzyme
activities showed a statistically significant decrease

in PPH rats (CAT 0.018 1 0.003; SOD 15.3 1 2.6;
GSH–Px 0.12 1 0.02; P < 0.01), when compared with
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the sham group (CAT 0.039 1 0.006; SOD 34.2 1 5.7;
GSH-Px 0.21 1 0.03; P < 0.01) (Figs 1–3).

The hippocampal tissue levels of MDA showed a sta-
tistically significant increase (Fig. 4) when compared to
PPH (0.55 1 0.09) versus the sham group (0.40 1 0.06)
(P < 0.05).

The administration of CUR showed a significantly
increase in CAT hippocampal activity in the PPH + CUR
(0.026 1 0.004) group when compared to the PPH
(0,018 1 0,003, P < 0.01) and sham groups (0.039 1
0.006, P < 0.05) (Fig. 1).

PPH + CUR SOD activity (24.8 1 4.1) showed signifi-
cantly increased values when compared to PPH
(15.3 1 2.6, P < 0.01) and similar values to the sham
group (34.2 1 5.7, not significant), see Figure 2.

PPH + CUR GSH–Px activity (0.24 1 0.04), again
showed increased significant values when compared
to the PPH (0.12 1 0.02, P < 0.01) group and a rise in
normal values, as in the sham group (Fig. 3).

The hippocampal levels of MDA in the PPH + CUR
group (0.21 1 0.03) showed a statistically significant
decrease when compared to both the sham (0.40 1 0.06,
P < 0.01) and PPH groups (0.55 1 0.09, P < 0.001):
see Figure 4.

DISCUSSION

THE PRESENT STUDY showed for the first time OS in
the hippocampal area induced by PPH in lgHE rats.

This was prevented by the administration of CUR. This
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Figure 1 Catalase (CAT) activity in rat hippocampal tissue.
*P < 0.05 versus sham group; †P < 0.01 versus prehepatic
portal hypertension (PPH) group.
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Figure 2 Superoxide dismutase (SOD) activity in rat hippoc-
ampal tissue. *P < 0.01 versus prehepatic portal hypertension
(PPH) group.
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Figure 3 GSH–Px activity in rat hippocampal tissue. *P < 0.01
versus prehepatic portal hypertension (PPH) group.

SHAM PPH PPH+CUR
0.0

0.1

0.2

0.3

0.4

0.5

0.6 *

†

‡

nm
ol

/m
g 

pr
ot

ei
n

Figure 4 Malondialdehyde equivalents (MDA) levels in rat
hippocampal tissue. *P < 0.05 and †P < 0.01 versus sham
group; ‡P < 0.001 versus prehepatic portal hypertension
(PPH) group.
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study also suggest that hippocampal damage is directly
associated with the induction of OS. In previous reports
we demonstrated morphofunctional hippocampal
damage in lgHE.35 The possible role of OS in HE was
originally suggested by O’Connor and Costell, who
found that hyperammonemic mice displayed evidence
of lipid peroxidation. Lipid peroxidation has been iden-
tified in non-synaptic mitochondria in the thioaceta-
mide model of ALF, and cultured astrocytes treated
with ammonia have also shown evidence of lipid
peroxidation.36–38 MDA, one of the major products of
lipid peroxidation, has been extensively studied and
measured as an index of lipid peroxidation.39 In the
present study there was an increase in hippocampal
MDA level accompanied by a depletion of hippocampal
GSH–Px activity (Figs 3, 4). This suggested that PPH
induced overproduction of ROS, which caused hippoc-
ampal OS. Also, a significant decrease in the activities of
the anti-oxidant enzymes (SOD, CAT and GSH–Px) was
registered in rat hippocampal tissue (Figs 1–3).

The decrease in anti-oxidant enzyme activities may be
explained as a result of an attack of ROS to the active site
of the enzyme or the consumption of anti-oxidant
enzymes by ROS. In fact, O2

- inhibits CAT activity, and
H2O2 may also inhibit SOD activity through a modifi-
cation in histidine residue located in the active site of
the enzyme.40,41 Inactive or decreased SOD and CAT
activities due to ROS after PPVL may lead to extensive
later neuronal damage occurring in the hippocampal
tissue, and may explain some of the alterations.42–44

Furthermore, the OS-related biochemical parameters
evaluated in this study were not sufficient to indicate or
to exclude the damage or protection of neurons in the
absence of histological assessment, which is a reliable
way to confirm neuronal damage.45

The administration of CUR showed preventative
action against OS induced by PH. CUR has been found
to prevent or reduce the oxidative stress-induced pro-
gression of Alzheimer’s disease.46,47 The activity of CUR
against cytotoxicity in vitro and in vivo has also been
demonstrated.48,49

In this study, when PPH rats were treated with CUR,
the depletion of hippocampal GSH–Px activity and the
increase of MDA level were prevented. This is supported
by the in vitro experiment, which indicated that CUR
protected the rat’s hippocampal tissue against iron-
induced lipid peroxidation at very low concentration.
This anti-oxidant activity was similar to BHT (standard
anti-oxidant).13 This result indicated that CUR is a pow-
erful anti-oxidant against lipid peroxidation induced by
iron in hippocampal tissue.45

In biological systems, O2
- is inactivated mainly by

SOD, while H2O2 is decomposed to water by CAT.
GSH–Px also participates in the reductive detoxification
of H2O2. In group II, ROS could not be readily scavenged
because of the low activities of SOD, CAT and GSH–Px
in the brain. In the present study, the treatment mark-
edly suppressed the declined SOD, CAT and GSH–Px
activities in the hippocampal tissue.

The results of the present study indicate that OS was
present and can act as a pathogenic factor in histopatho-
logical damage in the hippocampal rat area, and CUR
confers protection against OS by attenuating hippocam-
pal ROS oxidative damage in experimental lgHE.
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