About
96
Publications
12,079
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,584
Citations
Introduction
Skills and Expertise
Current institution
Additional affiliations
April 2021 - April 2021
November 2019 - April 2021
October 2018 - September 2019
Publications
Publications (96)
Coronal dimmings are regions of transiently reduced brightness in extreme ultraviolet (EUV) and soft X-ray (SXR) emissions associated with coronal mass ejections (CMEs), providing key insights into CME initiation and early evolution. During May 2024, AR 13664 was among the most flare-productive regions in recent decades, generating 55 M-class and 1...
Coronal dimmings associated with coronal mass ejections (CME) from the Sun have gained much attention since the late 1990s when they were first observed in high-cadence imagery of the SOHO/EIT and Yohkoh/SXT instruments. They appear as localized sudden decreases of the coronal emission at extreme ultraviolet (EUV) and soft X-ray (SXR) wavelengths,...
Coronal dimmings are regions of transiently reduced brightness in extreme ultraviolet (EUV) and soft X-ray (SXR) emissions associated with coronal mass ejections (CMEs), providing key insights into CME initiation and early evolution. During May 2024, AR 13664 was among the most flare-productive regions in recent decades, generating 55 M-class and 1...
The physical role played by small-scale activity that occurs before the sudden onset of solar energetic events (SEEs, i.e., solar flares and coronal mass ejections) remains in question, in particular as related to SEE initiation and early evolution. It is still unclear whether such precursor activity, often interpreted as plasma heating, particle a...
The physical role played by small-scale activity that occurs before the sudden onset of solar energetic events (SEEs, i.e., solar flares and coronal mass ejections) remains in question, in particular as related to SEE initiation and early evolution. It is still unclear whether such precursor activity, often interpreted as plasma heating, particle a...
Context. On May 8, 2024, the solar active region 13664 produced an X-class flare, several M-class flares, and multiple coronal mass ejections (CMEs) directed towards Earth. The initial CME resulted in coronal dimmings, which are characterized by localized reductions in extreme-ultraviolet (EUV) emissions and are indicative of mass loss and expansio...
Context. Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field from the Sun propagating through the heliosphere. Observations of the March 28, 2022, event provide unique images of a three-part solar CME in the low corona in active region 12975: a bright core or filament, a dark cavity, and a bright front edge.
Aims. W...
This study examines the relationship between early solar coronal mass ejection (CME) propagation, the associated filament eruption, and coronal dimming in the rare event observed on March 28, 2022, which featured a three-part CME in the low corona of active region AR 12975, including a bright core/filament, dark cavity, and bright front edge. We em...
On May 8, 2024, solar active region 13664 produced an X-class flare, several M-class flares, and multiple Earth-directed Coronal Mass Ejections (CMEs). The initial CME caused coronal dimmings, characterized by localized reductions in extreme-ultraviolet (EUV) emissions, indicating mass loss and expansion during the eruption. After one solar rotatio...
Context. Coronal dimmings are regions of reduced emission in the lower corona observed in the wake of coronal mass ejections (CMEs), representing their footprints. Studying the lifetime evolution of coronal dimmings helps us to better understand the recovery and replenishment of the corona after large-scale eruptions.
Aims. We study the recovery of...
Coronal dimmings are regions of reduced emission in the lower corona, observed after coronal mass ejections (CMEs) and representing their footprints. In order to investigate the long-term evolution of coronal dimming and its recovery, we propose two approaches that focus on both the global and the local evolution of dimming regions: the fixed mask...
Filament eruptions often lead to coronal mass ejections (CMEs) on the Sun and are one of the most energetic eruptive phenomena in the atmospheres of other late-type stars. However, the detection of filament eruptions and CMEs on stars beyond the solar system is challenging. Here, we present six filament eruption cases on the Sun and show that filam...
Aims. This study focuses on the rapid evolution of the solar filament in active region 12975 during a confined C2 flare on 28 March 2022, which finally led to an eruptive M4 flare 1.5 h later. The event is characterized by the apparent breakup of the filament, the disappearance of its southern half, and the flow of the remaining filament plasma int...
Filament eruptions often lead to coronal mass ejections (CMEs) on the Sun and are one of the most energetic eruptive phenomena in the atmospheres of other late-type stars. However, the detection of filament eruptions and CMEs on stars beyond the solar system is challenging. Here we present six filament eruption cases on the Sun and show that filame...
Context. Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field from the Sun that can cause severe disturbances in space weather. Earth-directed CMEs are responsible for the disruption of technological systems and damaging power grids. However, the early evolution of CMEs, especially Earth-directed ones, is poorly trac...
Coronal mass ejections (CMEs) are solar eruptions of plasma and magnetic fields that significantly impact Space Weather, causing disruptions in technological systems and potential damage to power grids when directed towards Earth. Traditional coronagraphs along the Sun-Earth line struggle to precisely track the early evolution of Earth-directed CME...
Context. The Spectrometer Telescope for Imaging X-rays (STIX) on board Solar Orbiter enables exciting multipoint studies of energy release and transport in solar flares by observing the Sun from many different distances and vantage points out of the Sun-Earth line.
Aims. We present a case study of an M4-class flare that occurred on 28 March 2022, n...
Context. Coronal dimmings are localized regions of reduced emission in the extreme-ultraviolet (EUV) and soft X-rays formed as a result of the expansion and mass loss by coronal mass ejections (CMEs) low in the corona. Distinct relations have been established between coronal dimmings (intensity, area, magnetic flux) and key characteristics of the a...
We investigate the relation between the spatiotemporal evolution of the dimming region and the dominant direction of the filament eruption and CME propagation for the 28 October 2021 X1.0 flare/CME event observed from multiple viewpoints by Solar Orbiter, STEREO-A, SDO, and SOHO. We propose a method to estimate the dominant dimming direction by tra...
In the next decade, there is an opportunity for very high return on investment of relatively small budgets by elevating the priority of smallsat funding in heliophysics. We've learned in the past decade that these missions perform exceptionally well by traditional metrics, e.g., papers/year/\$M (Spence et al. 2022). It is also well established that...
In the next decade, there is an opportunity for very high return on investment of relatively small budgets by elevating the priority of smallsat funding in heliophysics. We've learned in the past decade that these missions perform exceptionally well by traditional metrics, e.g., papers/year/\$M (Spence et al. 2022 -- arXiv:2206.02968). It is also w...
We investigated the interaction of a coronal mass ejection (CME) and a coronal hole (CH) in its vicinity using remote-sensing and 1 AU in situ data. We used extreme-ultraviolet images and magnetograms to identify coronal structures and coronagraph images to analyze the early CME propagation. The Wind spacecraft and the Advanced Composition Explorer...
We begin here a series of papers examining the chromospheric and coronal properties of solar active regions. This first paper describes an extensive data set of images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory curated for large-sample analysis of this topic. Based on (and constructed to coordinate with) the “Active Reg...
A large sample of active-region-targeted time-series images from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), the AIA Active Region Patch database (Paper I) is used to investigate whether parameters describing the coronal, transition region, and chromospheric emission can differentiate a region that will imminently produce a s...
A large sample of active-region-targeted time-series images from the Solar Dynamics Observatory / Atmospheric Imaging Assembly, the AIA Active Region Patch database ("AARPs", Paper I: Dissauer et al 2022) is used to investigate whether parameters describing the coronal, transition region, and chromospheric emission can differentiate a region that w...
We begin here a series of papers examining the chromospheric and coronal properties of solar active regions. This first paper describes an extensive dataset of images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory curated for large-sample analysis of this topic. Based on (and constructed to coordinate with) the ``Active Reg...
Aims. We analyze the complete chain of effects – from the Sun to Earth – caused by a solar eruptive event in order to better understand the dynamic evolution of magnetic-field-related quantities in interplanetary space, in particular that of magnetic flux and helicity.
Methods. We study a series of connected events – a confined C4.5 flare, a flare-...
We analyze the complete chain of effects caused by a solar eruptive event in order to better understand the dynamic evolution of magnetic-field related quantities in interplanetary space, in particular that of magnetic flux and helicity. We study a series of connected events (a confined C4.5 flare, a flare-less filament eruption and a double-peak M...
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014–2018). The Sun-Earth is an integrated...
Coronal mass ejections (CMEs) are huge expulsions of magnetized matter from the Sun and stars, traversing space with speeds of millions of kilometers per hour. Solar CMEs can cause severe space weather disturbances and consumer power outages on Earth, whereas stellar CMEs may even pose a hazard to the habitability of exoplanets. While CMEs ejected...
Context. We present a detailed analysis of an eruptive event that occurred on 2019 March 8 in the active region AR 12734, which we refer as the International Women’s Day event. The event under study is intriguing based on several aspects: (1) low-coronal eruptive signatures come in ‘pairs’, namely, there is a double-peaked flare, two coronal dimmin...
Coronal mass ejections (CMEs) are huge expulsions of magnetized matter from the Sun and stars, traversing space with speeds of millions of kilometres per hour. Solar CMEs can cause severe space weather disturbances and consumer power outages on Earth, whereas stellar CMEs may even pose a hazard to the habitability of exoplanets. Although CMEs eject...
We present a detailed analysis of an eruptive event that occurred on early 2019 March 8 in active region AR 12734, to which we refer as the International Women's day event. The event under study is intriguing in several aspects: 1) low-coronal eruptive signatures come in ''pairs'' (a double-peak flare, two coronal dimmings, and two EUV waves); 2) a...
Context. A precise detection of the coronal hole boundary is of primary interest for a better understanding of the physics of coronal holes, their role in the solar cycle evolution, and space weather forecasting.
Aims. We develop a reliable, fully automatic method for the detection of coronal holes that provides consistent full-disk segmentation ma...
We develop a reliable, fully automatic method for the detection of coronal holes, that provides consistent full-disk segmentation maps over the full solar cycle and can perform in real-time. We use a convolutional neural network to identify the boundaries of coronal holes from the seven EUV channels of the Atmospheric Imaging Assembly (AIA) as well...
The Sun Coronal Ejection Tracker (SunCET) is an extreme ultraviolet imager and spectrograph instrument concept for tracking coronal mass ejections through the region where they experience the majority of their acceleration: the difficult-to-observe middle corona. It contains a wide field of view (0-4~\Rs) imager and a 1~\AA\ spectral-resolution-irr...
The Sun Coronal Ejection Tracker (SunCET) is an extreme ultraviolet imager and spectrograph instrument concept for tracking coronal mass ejections through the region where they experience the majority of their acceration: the difficult-to-observe middle corona. It contains a wide field of view (0--4~\Rs) imager and a 1~\AA\ spectral-resolution-irra...
We determine the three‐dimensional geometry and deprojected mass of 29 well‐observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined Solar Terrestrial Relations Observatory ‐ Solar and Heliospheric Observatory white‐light data. From the geometry parameters, we calculate the volume of the CME for the magnet...
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. The Sun Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field and radiation energy output of the Sun in var...
The authors have requested that this preprint be removed from Research Square.
We determine the 3D geometry and deprojected mass of 29 well-observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined STEREO-SOHO white-light data. From the geometry parameters we calculate the volume of the CME for the magnetic ejecta (flux-rope type geometry) and sheath structure (shell-like geometry res...
The magnetohydrodynamics of active region NOAA 11283 is simulated using an initial non-force-free magnetic field extrapolated from its photospheric vector magnetogram. We focus on the magnetic reconnections at a magnetic null point that participated in the X2.1 flare on 2011 September 6 around 22:21 UT (SOL2011-09-06T22:21X2.1) followed by the appe...
The magnetohydrodynamics of active region NOAA 11283 is simulated using an initial non-force-free magnetic field extrapolated from its photospheric vector magnetogram. We focus on the magnetic reconnections at a magnetic null point that participated in the X2.1 flare on 2011 September 6 around 22:21 UT (SOL2011-09-06T22:21X2.1) followed by the appe...
By 2050, we expect that CME models will accurately describe, and ideally predict, observed solar eruptions and the propagation of the CMEs through the corona. We describe some of the present known unknowns in observations and models that would need to be addressed in order to reach this goal. We also describe how we might prepare for some of the un...
We present a multiwavelength analysis of two homologous, short-lived, impulsive flares of GOES class M1.4 and M7.3 that occurred from a very localized minisigmoid region within the active region NOAA 12673 on 2017 September 7. Both flares were associated with initial jetlike plasma ejection that for a brief amount of time moved toward the east in a...
One of the very common in situ signatures of interplanetary coronal mass ejections (ICMEs), as well as other interplanetary transients, are Forbush decreases (FDs), i.e. short-term reductions in the galactic cosmic ray (GCR) flux. A two-step FD is often regarded as a textbook example, which presumably owes its specific morphology to the fact that t...
We present a multiwavelength analysis of two homologous, short lived, impulsive flares of GOES class M1.4 and M7.3, that occurred from a very localized mini-sigmoid region within the active region NOAA 12673 on 2017 September 7. Both flares were associated with initial jet-like plasma ejection which for a brief amount of time moved toward east in a...
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic evolution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences t...
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic evolution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences t...
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by STEREO/EUVI and compared their properties with the mass and speed of the associated CMEs. The uniqu...
Context. Eruptive events such as coronal mass ejections (CMEs) and flares accelerate particles and generate shock waves which can arrive at Earth and can disturb the magnetosphere. Understanding the association between CMEs and CME-driven shocks is therefore highly important for space weather studies.
Aims. We present a study of the CME/flare event...
Context: Eruptive events such as coronal mass ejections (CMEs) and flares accelerate particles and generate shock waves which can arrive at Earth and can disturb the magnetosphere. Understanding the association between CMEs and CME-driven shocks is therefore highly important for space weather studies. Aims: We present a study of the CME/flare event...
One of the very common in situ signatures of interplanetary coronal mass ejections (ICMEs), as well as other interplanetary transients, are Forbush decreases (FDs), i.e. short-term reductions in the galactic cosmic ray (GCR) flux. A two-step FD is often regarded as a textbook example, which presumably owes its specific morphology to the fact that t...
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by STEREO/EUVI and compared their properties with the mass and speed of the associated CMEs. The uniqu...
We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifetime of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant com...
We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifetime of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant com...
We analyze a confined flare that developed a hot cusp-like structure high in the corona ( H ∼ 66 Mm). A growing cusp-shaped flare arcade is a typical feature in the standard model of eruptive flares, caused by magnetic reconnection at progressively larger coronal heights. In contrast, we observe a static hot cusp during a confined flare. Despite an...
We analyze a confined flare that developed a hot cusp-like structure high in the corona (H ~ 66 Mm). A growing cusp-shaped flare arcade is a typical feature in the standard model of eruptive flares, caused by magnetic reconnection at progressively larger coronal heights. In contrast, we observe a static hot cusp during a confined flare. Despite an...
Coronal mass ejections (CMEs) are the primary sources of intense disturbances at Earth, where their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic field, which can be significantly altered during interactions with other CMEs in interplanetary space. We analyse three successive CMEs that erupted from the Sun...
Coronal holes are usually defined as dark structures seen in the extreme ultraviolet and X-ray spectrum which are generally associated with open magnetic fields. Deriving reliably the coronal hole boundary is of high interest, as its area, underlying magnetic field, and other properties give important hints as regards high speed solar wind accelera...
In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011, near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated...
We present a comparative study between SDO/EVE flare intensity and the peak intensity of solar energetic electrons and protons over solar cycle 24 (2010-2017). For the analysis we selected flare emission in three EUV wavelengths: 94, 133 and 304 Å. Data from 103-175 and 175-315 keV ACE/EPAM energy channels are used to identify and analyze the flux...
In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011 near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated w...
On 2017 July 25 a multistep Forbush decrease (FD) with a remarkable total amplitude of more than 15% was observed by Mars Science Laboratory/Radiation Assessment Detector at Mars. We find that these particle signatures are related to very pronounced plasma and magnetic field signatures detected in situ by STEREO-A on 2017 July 24, with a higher-tha...
We study the coronal dimming caused by the fast halo CME (deprojected speed v = 1250 km s ⁻¹ ) associated with the C3.7 two-ribbon flare on 2012 September 27, using Hinode /EIS spectroscopy and Solar Dynamics Observatory ( SDO )/AIA Differential Emission Measure (DEM) analysis. The event reveals bipolar core dimmings encompassed by hook-shaped flar...
Coronal holes are regions of open magnetic field in the solar corona and can be observed as dark structures in the extreme ultraviolet and x-ray spectrum. Deriving reliably the coronal hole boundary is of high interest, as its area, underlying magnetic field, and other properties give important hints towards high speed solar wind acceleration proce...
On July 25 2017 a multi-step Forbush decrease (FD) with the remarkable total amplitude of more than 15\% was observed by MSL/RAD at Mars. We find that these particle signatures are related to very pronounced plasma and magnetic field signatures detected in situ by STEREO-A on July 24 2017, with a higher than average total magnetic field strength re...
We study the coronal dimming caused by the fast halo CME (deprojected speed v =1250 km s $^{-1})$ associated with the C3.7 two-ribbon flare on 2012 September 27, using Hinode/EIS spectroscopy and SDO/AIA Differential Emission Measure (DEM) analysis. The event reveals bipolar core dimmings encompassed by hook-shaped flare ribbons located at the ends...
EUV waves are large-scale disturbances in the solar corona initiated by coronal mass ejections. However, solar EUV images show only the wave fronts projections along the line-of-sight of the spacecraft. We perform 3D reconstructions of EUV wave front heights using multi-point observations from STEREO-A and STEREO-B, and study their evolution to pro...
EUV waves are large-scale disturbances in the solar corona initiated by coronal mass ejections. However, solar EUV images show only the wave fronts projections along the line-of-sight of the spacecraft. We perform 3D reconstructions of EUV wave front heights using multi-point observations from STEREO-A and STEREO-B, and study their evolution to pro...
EUV waves are large-scale disturbances in the solar corona initiated by coronal mass ejections. However, solar EUV images show only the wave fronts projections along the line-of-sight of the spacecraft. We perform 3D reconstructions of EUV wave front heights using multi-point observations from STEREO-A and STEREO-B, and study their evolution to pro...
We present a statistical study of 62 coronal dimming events associated with Earth-directed CMEs during the quasi-quadrature period of STEREO and SDO. This unique setting allows us to study both phenomena in great detail and compare characteristic quantities statistically. Coronal dimmings are observed on-disk by SDO/AIA and HMI, while the CME kinem...
The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology, and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T ≈ 10–15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T ≈ 1–2...
We present results on the correlation analysis between the peak intensity of the in situ proton events from SOHO/ERNE instrument and the properties of their solar origin, solar flares and coronal mass ejections (CMEs). Starting at the RHESSI mission launch after 2002, 70 flares well-observed in hard X-rays (HXRs) that are also accompanied with in s...
The X8.2 event of 10 September 2017 provides unique observations to study the genesis, magnetic morphology and impulsive dynamics of a very fast CME. Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot ($T\approx 10-15$ MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell ($T\approx 1-2$ MK). The C...
We present a statistical study of 62 coronal dimming events associated with Earth-directed CMEs during the quasi-quadrature period of STEREO and SDO. This unique setting allows us to study both phenomena in great detail and compare characteristic quantities statistically. Coronal dimmings are observed on-disk by SDO/AIA and HMI, while the CME kinem...
Coronal dimmings, localized regions of reduced emission in the EUV and soft X-rays, are interpreted as density depletions due to mass loss during the CME expansion. They contain crucial information on the early evolution of CMEs low in the corona. For 62 dimming events, characteristic parameters are derived, statistically analyzed and compared with...
Coronal dimmings, localized regions of reduced emission in the EUV and soft X-rays, are interpreted as density depletions due to mass loss during the CME expansion. They contain crucial information on the early evolution of CMEs low in the corona. For 62 dimming events, characteristic parameters are derived, statistically analyzed and compared with...
In this paper, we analyzed a failed and a successful eruption that initiated from the same polarity inversion line within NOAA AR 11387 on December 25, 2011. They both started from a reconnection between sheared arcades, having distinct pre-eruption conditions and eruption details: before the failed one, the magnetic fields of the core region had a...
In this paper, we analyzed a failed and a successful eruption that initiated from the same polarity inversion line within NOAA AR 11387 on December 25, 2011. They both started from a reconnection between sheared arcades, having distinct pre-eruption conditions and eruption details: before the failed one, the magnetic fields of the core region had a...
Coronal mass ejections (CMEs) are often associated with coronal dimmings, i.e. transient dark regions that are most distinctly observed in Extreme Ultra-violet (EUV) wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure (DEM) diagnostics to study the plasma characteristics of six coronal dimming events....
Coronal mass ejections (CMEs) are often associated with coronal dimmings, i.e. transient dark regions that are most distinctly observed in Extreme Ultra-violet (EUV) wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure (DEM) diagnostics to study the plasma characteristics of six coronal dimming events....
Coronal dimmings are distinct phenomena associated to coronal mass ejections (CMEs). The study of coronal dimmings and the extraction of their characteristic parameters helps us to obtain additional information of CMEs, especially on the initiation and early evolution of Earth-directed CMEs. We present a new approach to detect coronal dimming regio...
Coronal dimmings are distinct phenomena associated to coronal mass ejections (CMEs). The study of coronal dimmings and the extraction of their characteristic parameters helps us to obtain additional information of CMEs, especially on the initiation and early evolution of Earth-directed CMEs. We present a new approach to detect coronal dimming regio...
Coronal mass ejections (CMEs), one of the most energetic manifestations of solar activity, are complex events, which combine multiple related phenomena occurring on the solar surface, in the extended solar atmosphere (corona), as well as in interplanetary space. We present here an outline of a new collaborative project between scientists from the B...
We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instrume...
We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instrume...
We investigate the high-speed ($v >$ 1000 km s$^{-1}$) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120...
We investigate the high-speed ($v >$ 1000 km s$^{-1}$) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120...
EUV (Extreme-Ultraviolet) waves are globally propagating disturbances that
have been observed since the era of the SoHO/EIT instrument. Although the
kinematics of the wave front and secondary wave components have been widely
studied, there is not much known about the generation and plasma properties of
the wave. In this paper we discuss the effect...
We introduce a perturbative extension of the standard model featuring a new dark matter sector together with a 125 GeV Higgs. The new sector consists of a vectorlike heavy electron (E), a complex scalar electron (S) and a standard model singlet Dirac fermion (χ). The interactions among the dark matter candidate χ and the standard model particles oc...