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In the peripheral vasculature, insulin induces time- and
dose-dependent vasodilation. We have recently demon-
strated that insulin potentiates adenosine-stimulated
myocardial blood flow. However, it is unknown whether
insulin’s effects on the coronary vasculature are dose
dependent. In this study, we quantitated myocardial
blood flow and adenosine-stimulated coronary flow (140
�g � kg–1 � min–1 for 5 min) in 10 healthy men (age, 32 �
6 years; BMI, 24.1 � 1.8 kg/m2) using positron emission
tomography and 15O-labeled water. Hyperemic myocar-
dial blood flow was measured in the basal state, during
euglycemic physiological hyperinsulinemia (serum insu-
lin �65 mU/l) and during supraphysiological hyperinsu-
linemia (serum insulin �460 mU/l). Basal myocardial
blood flow was 0.84 � 0.17 ml � g�1 � min�1. Physiological
hyperinsulinemia increased the adenosine-stimulated
flow by 20% (from 3.92 � 1.17 to 4.72 � 0.96 ml � g�1 �
min�1; P < 0.05). Supraphysiological hyperinsulinemia
further enhanced the adenosine-stimulated flow by 19%
(to 5.61 � 1.03 ml � g�1 � min�1; P < 0.05). These effects
were not explained by changes in systemic hemodynam-
ics, since coronary resistance decreased during each
insulin infusion (P < 0.05). In addition, hyperemic
myocardial blood flow responses during insulin stimula-
tion were positively correlated with whole-body glucose
uptake. The results demonstrate that insulin is able to
enhance hyperemic myocardial blood flow in a dose-
dependent manner in healthy subjects. These effects
might contribute to the known beneficial dose-depen-
dent effects of insulin on myocardial ischemia. Diabetes
51:1125–1130, 2002

I
nsulin is known to be vasoactive in the peripheral
vasculature, but its effects on myocardial perfusion
are poorly known. Glucose-insulin-potassium (GIK)
therapy has been found to be beneficial in the

treatment of acute myocardial ischemia (1,2). Several
metabolic mechanisms, such as changes in glucose (3,4)
and free fatty acid (5,6) metabolism, may explain the
beneficial effects of insulin. In addition to these actions on
myocardial substrate metabolism, we have recently shown

that insulin directly affects myocardial perfusion (7). In
addition, Marano et al. (8) demonstrated using SPECT
(single-photon emission computed tomography) that GIK
therapy improved regional myocardial perfusion and func-
tion mainly in segments adjacent to the recently infarcted
area.

Insulin induces a dose-dependent vasodilation in the
peripheral arteries (9–11) that is blunted in insulin-resis-
tant states (10,12,13). Insulin causes endothelium-depen-
dent vasodilation by the L-arginine–nitric oxide pathway
(14,15), and another important mediator of insulin-induced
vasodilation is the sympathetic nervous system (14). Un-
like studies of insulin’s action on skeletal muscle perfu-
sion, studies addressing insulin’s action on myocardial
perfusion are sparse. Because differences in the regulation
of vasodilation between coronary and peripherial arteries
have been observed (7), previous studies targeting insu-
lin’s effects on the skeletal muscle vasculature cannot be
directly applied to the coronary vasculature.

The present study was designed to examine whether
insulin-induced increases in hyperemic coronary blood
flow are dose dependent in healthy humans. Myocardial
blood flow, hyperemic adenosine-stimulated flow, and
coronary vascular resistance were determined after an
overnight fast and during euglycemic physiological and
supraphysiological hyperinsulinemia using positron emis-
sion tomography (PET) and 15O-labeled water ([15O]H2O).

RESEARCH DESIGN AND METHODS

Subjects. Ten nonsmoking asymptomatic men volunteered for the study. The
characteristics of the subjects are shown in Table 1. The subjects were healthy
as judged by history and physical examination and were not taking any
medication. All subjects were normotensive and had normal glucose toler-
ance, blood counts, and electrolytes. All of the electrocardiograms, stress
echocardiograms, and echocardiographically determined left ventricular
masses, dimensions, and functions were normal in studied subjects.
Study design. All PET studies were performed after an overnight fast. The
subjects were instructed to avoid all caffeine-containing drinks and foods for
12 h before the PET studies. Myocardial perfusion was measured four times
(Fig. 1): once at rest and three times during intravenous infusion of adenosine
(140 �g � kg–1 � min–1 for 5 min). The perfusion measurements during
adenosine infusion were performed during saline infusion, physiological
hyperinsulinemia (1 mU � kg�1 � min�1 insulin infusion), and supraphysiologi-
cal hyperinsulinemia (5 mU � kg�1 � min�1 insulin infusion). The duration of
each insulin infusion was 60 min. Each subject’s electrocardiogram and heart
rate were monitored continuously during the studies. Blood pressure was
measured at rest and during each adenosine infusion. Blood pressure was
monitored with an automatic oscillometric blood pressure monitor (OMRON
HEM-705C; Omron Healthcare, Hamburg, Germany) during all PET studies.
Each subject gave written informed consent. The study was conducted
according to the guidelines of the Declaration of Helsinki, and the study
protocol was accepted by the Ethics Committee of the Turku University
Central Hospital.
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Production of [15O]H2O. Using a low-energy deuteron accelerator Cyclone 3
(Ion Beam Application, Louvain-la-Neuve, Belgium), 15O-labeled water was
produced using dialysis techniques in a continuously working water module
(16). Sterility and pyrogenicity tests for water and chromatographic analysis
for gases were performed to verify the purity of the products.
Image acquisition, processing, and corrections. The subjects were posi-
tioned supine in a 15-slice ECAT 931/08–12 tomograph (Siemens/CTI, Knox-
ville, TN). After the transmission scan, myocardial perfusion was measured
with an intravenous injection of [15O]H2O (�1.5 GBq) at rest and 60 s after
each intravenous administration of adenosine (140 �g � kg–1 � min–1 for 5 min).
Each dynamic scan lasted for 6 min (6 � 5 s, 6 � 15 s, and 8 � 30 s). All data
were corrected for deadtime, decay, and photon attenuation and recon-
structed into a 128 � 128 matrix. The final in-plane resolution in the
reconstructed and Hann-filtered (0.3 cycles/s) images was 9.5 mm (full width,
half maximum).
Calculation of regional blood flow and coronary vascular resistance.

Regions of interest (ROIs) were drawn on the lateral, anterior, and septal wall
of the left ventricle in four representative transaxial slices in each study, as
previously described (17). The ROIs drawn on the baseline images were
copied to the images obtained after each adenosine administration. Values of
regional myocardial blood flow (expressed in ml � g tissue�1 � min–1) were
calculated according to the previously published method using the single-
compartment model (18,19). The arterial input function was obtained from the
left ventricular time-activity curve using a previously validated method (20), in
which corrections were made for the limited recovery of the left ventricular
ROI and spillover from the myocardial signals. The average blood flow of the
lateral and anterior part of the myocardium was calculated and used in further
analysis. Coronary vascular resistance values were calculated both at baseline
and after each adenosine infusion without or with simultaneous insulin
infusions by dividing the mean arterial blood pressure by the respective flow
value.
Insulin infusions. Insulin and glucose were infused in a catheter inserted in
the right antecubital vein. The left hand was kept in a heated pillow, and
arterialized venous blood was withdrawn from a heated left antecubital vein.
During each insulin infusion, insulin (Actrapid Human; Novo Nordisk, Copen-
hagen, Denmark) was administered in a primed continuous manner at a rate
of either 1 or 5 mU � kg–1 � min–1 for 60 min. Normoglycemia was maintained
using a variable rate of 20% glucose. The rate of the glucose infusion was
adjusted according to plasma glucose determinations performed every 5–10
min from arterialized venous blood. Samples for serum insulin and free fatty

acids were taken every 30 min. Whole-body glucose uptake was calculated
from the glucose infusion rate after correcting for changes in the glucose pool
size (21).
Echocardiographic examination. To rule out silent ischemia, the subjects
underwent a rest and a bicycle exercise echocardiographic examination. All
echocardiographic recordings and analyses were performed by the same
experienced investigator (M.L.) using a commercially available ultrasound
scanner (Acuson 128XP/10; Acuson, Mountain View, CA). Standard echocar-
diographic views of the left ventricle were obtained, and resting cardiac
dimensions were measured. Thereafter, an upright bicycle-ergometer exercise
test was performed by increasing the work load by 20 W at 1-min intervals.
The test was continued until extreme fatigue or 90% of the predicted
maximum heart rate. The echocardiograms were recorded before and imme-
diately after the exercise. All subjects had a normal exercise capacity, were
asymptomatic, had no diagnostic ST-changes in electrocardiograms, and
exhibited no wall motion abnormalities either at rest or immediately after
exercise.
Analytical methods. During insulin clamp, plasma glucose was determined
every 5 min by the glucose oxidase method (22). Serum insulin was measured
every 30 min by radioimmunoassay kit (Pharmacia, Uppsala, Sweden). Plasma
epinephrine and norepinephrine levels were measured at rest and after each
adenosine infusion as previously described (23). Serum total cholesterol, HDL
cholesterol, and triglyceride concentrations were measured using standard
enzymatic methods (Boehringer Mannheim, Mannheim, Germany) with a fully
automated analyzer (Hitachi 704; Hitachi, Tokyo, Japan). LDL cholesterol
concentration was calculated using the Friedewald formula (24).
Statistical methods. The results are expressed as means � SD. The
responses to adenosine infusion with and without hyperinsulinemia and the
interaction of these variables were tested using repeated-measures ANOVA
(25). For correlation analysis, Spearman’s correlation coefficients were calcu-
lated. Paired t tests were used when appropriate. P values �0.05 were
interpreted as statistically significant. All statistical tests were performed with
SAS statistical analysis system (SAS Institute, Gary, NC).

RESULTS

Metabolic and hormonal characteristics. Metabolic
and hormonal characteristics are given in Table 2 and
plasma catecholamines in Table 3. During insulin infu-
sions, serum insulin concentrations increased and serum
free fatty acid concentrations decreased significantly and
dose dependently, whereas plasma glucose concentrations
remained unaltered (Table 2). Whole-body glucose uptake
increased by 120% during the 5 mU � kg�1 � min�1 insulin
infusion compared with the 1 mU � kg�1 � min�1 insulin
infusion (P � 0.001) (Table 2). Adenosine infusion increased
plasma epinephrine and norepinephrine concentrations
(P � 0.05). Simultaneous hyperinsulinemia potentiated the
increase of these values (P � 0.05). Furthermore, during
supraphysiological hyperinsulinemia, the catecholamine
responses were higher than during physiological hyperin-
sulinemia (P � 0.05) (Table 3).
Hemodynamic measurements during PET. Blood pres-
sures, heart rates, and rate-pressure products (systolic
blood pressure � heart rate) are presented in Table 4.

FIG. 1. Design of the study. Myocardial perfusion was measured with
[15O]H2O four times: once during basal conditions and three times
during adenosine stimulation without and with simultaneous insulin
infusion. Insulin was infused at two rates: 1 and 5 mU � kg�1 � min�1.

TABLE 1
Characteristics of the study subjects

Age (years) 32 � 6
BMI (kg/m2) 24.1 � 1.8
VO2max (ml � kg�1 � min�1) 35.9 � 3.1
Blood pressure (mmHg) 125/77 � 11/10
Blood HbA1c (%) 5.2 � 0.4
Total cholesterol (mmol/l) 5.0 � 0.7
LDL cholesterol (mmol/l) 3.0 � 0.6
HDL cholesterol (mmol/l) 1.5 � 0.3
Triglycerides (mmol/l) 1.1 � 0.5

Data are means � SD.

TABLE 2
Metabolic and hormonal characteristics of the study subjects

Basal

Insulin infusion
1 mU � kg�1

� min�1
5 mU � kg�1

� min�1

Plasma glucose (mmol/l) 5.3 � 0.5 5.1 � 0.4 5.5 � 0.3
Serum insulin (mU/l) 7 � 2 65 � 11* 457 � 72*†
Serum FFA (mmol/l) 0.59 � 0.36 0.10 � 0.04‡ 0.04 � 0.01*†
Whole-body glucose

uptake (�mol �
kg�1 � min�1) 33.6 � 12.9 74.1 � 27.0†

Data are means � SD. *P � 0.001, ‡P � 0.05 vs. basal; †P � 0.001 vs.
1 mU � kg�1 � min�1.
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Adenosine infusion increased heart rate both without and
with simultaneous insulin infusions (P � 0.001 vs. basal).
During supraphysiological hyperinsulinemia, heart rate
was higher than during physiological hyperinsulinemia
(P � 0.05). Diastolic and systolic blood pressure increased
during insulin infusions (P � 0.05). Consequently, the
rate-pressure product significantly increased after adeno-
sine infusion and further increased during each insulin
infusion in a dose-dependent manner (P � 0.05) (Table 4).
Myocardial blood flow and coronary vascular resis-

tance. Myocardial blood flow results are presented in Fig.
2A. Basal myocardial blood flow was 0.84 � 0.17 ml � g�1

� min�1. Physiological hyperinsulinemia increased the ad-
enosine-stimulated flow by 20% (from 3.92 � 1.17 to 4.72 �
0.96 ml � g�1 � min�1; P � 0.05). Supraphysiological hyper-
insulinemia further increased the adenosine-stimulated flow
by 19% (to 5.61 � 1.03 ml � g�1 � min�1; P � 0.05) (Fig. 2A).

Coronary vascular resistance results during adenosine
stimulation are presented in Fig. 2B. Basal coronary vascular
resistance was 113.6 � 24.2 mmHg � min � g � ml�1. Adenosine
infusion decreased coronary vascular resistance by 77%
(to 26.0 � 10.2 mmHg � min � g � ml�1; P � 0.001).
Consequently, hyperinsulinemia decreased the adenosine-
stimulated coronary vascular resistance by 16% (to 21.8 �
6.5 mmHg � min � g � ml�1; P � 0.05), and supraphysiologi-
cal hyperinsulinemia further decreased it by 12% (to
19.2 � 4.9 mmHg � min � g � ml�1; P � 0.05) (Fig. 2B).
Correlation between whole-body glucose uptake and

hyperemic myocardial blood flow. A significant corre-
lation was found between whole-body glucose uptake
(measured during physiological hyperinsulinemia) and hy-
peremic myocardial blood flow during hyperinsulinemia
(physiological, r � 0.61, P � 0.06; supraphysiological, r �
0.87, P � 0.003) (Fig. 3). The correlation between whole-
body glucose uptake and adenosine-stimulated myocardial
perfusion did not reach statistical significance (r � 0.47,
P � 0.17).

DISCUSSION

The present data demonstrate that insulin is able to
enhance adenosine-stimulated myocardial perfusion and

that insulin induces a dose-dependent increase in hyper-
emic myocardial blood flow in healthy men. We found that
physiological hyperinsulinemia (serum insulin �65 mU/l)
significantly increased adenosine-stimulated myocardial
blood flow and that supraphysiological hyperinsulinemia
(serum insulin �460 mU/l) further enhanced hyperemic
myocardial blood flow. In addition, hyperemic myocardial
blood flow responses during insulin stimulation correlated
positively with whole-body glucose uptake.

The results of available studies concerning the effects of
insulin on coronary vasculature are controversial. In ani-
mal studies, myocardial blood flow has been found to be
either unchanged (26,27) or increased (28,29) by insulin.
Studies of insulin action on myocardial perfusion in hu-
mans are sparse. In an early study, an intravenous bolus of
2 units did not change coronary sinus flow or coronary
resistance (30). Moreover, physiological hyperinsulinemia
for 100 min had no effect on basal myocardial perfusion
(31). However, according to a meta-analysis of 75 articles
focusing on the peripheral vasculature, significant vasodi-
lation has been observed after either a longer period (�2
h) or a higher dose of insulin than in the previous study
(11). Thus, it is unlikely that basal myocardial blood flow
would have been significantly enhanced after 1 h of
physiological hyperinsulinemia in the present study.

In the present study, the effects of insulin were mea-
sured during adenosine-induced hyperemia. The adeno-
sine-induced coronary flow response reflects a combined
effect of endothelial-mediated vasodilatory function (32)
and vascular smooth muscle relaxation (33) and has been
used as an integrating measure of coronary reactivity
(34,35). Recently, Buus et al. (36) found that a significant
amount of the adenosine response is endothelium depen-
dent. In contrast to resting conditions where flow and
myocardial work (oxygen consumption) are tightly cou-
pled, during adenosine stimulation the metabolic control
of myocardial blood flow is lost. However, endothelial and
neurogenic controls are still functional. In addition, flow is
directly dependent on blood pressure and modulated by
mechanical forces within the myocardial wall (37). In the
peripheral vasculature, insulin enhances the effect of

TABLE 3
Plasma catecholamine concentrations during PET studies

Basal
Adenosine stimulation

Saline 1 mU � kg�1 � min�1 5 mU � kg�1 � min�1

Plasma epinephrine (nmol/l) 0.10 � 0.10 0.17 � 0.16* 0.23 � 0.16* 0.34 � 0.22†‡§
Plasma norepinephrine (nmol/l) 1.6 � 0.6 2.0 � 0.4* 2.2 � 0.4*‡ 2.6 � 0.5†�§

Data are means � SD. *P � 0.05, †P � 0.001 vs. basal; ‡P � 0.05, �P � 0.001 vs. saline; §P � 0.05 vs. 1 mU � kg�1 � min�1.

TABLE 4
Hemodynamic data during PET studies

Basal
Adenosine infusion

Saline 1 mU � kg�1 � min�1 5 mU � kg�1 � min�1

Heart rate (beats/min) 57 � 7 100 � 12* 106 � 9* 112 � 8*†‡
Systolic blood pressure (mmHg) 125 � 11 127 � 12 135 � 16§ 145 � 14*�‡
Diastolic blood pressure (mmHg) 77 � 10 75 � 12 80 � 13† 83 � 10†
Rate-pressure product (mmHg/min) 7,084 � 857 12,721 � 2,192* 14,259 � 2,009*† 16,170 � 1,836*�¶

Data are means � SD. *P � 0.001, §P � 0.05 vs. basal; †P � 0.05, �P � 0.001 vs. saline; ‡P � 0.05, ¶P � 0.001 vs. 1 mU � kg�1 � min�1.
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endothelium-dependent vasodilation before any changes
occur in basal blood flow (38,39). In our recent study (7),
we found that physiological hyperinsulinemia for 1 h
increases adenosine-induced myocardial blood flow in
healthy humans. Thus, it appears that hyperemic flow
responses are enhanced already after 1 h of physiological
hyperinsulinemia. In addition, the synergistic effect of
adenosine and insulin on myocardial perfusion demon-
strates that adenosine alone is not able to induce “maxi-
mal” hyperemia.

It has been demonstrated that insulin-induced vasodila-
tion is time and dose dependent in the peripheral vascu-
lature (9–11). In the present study, the increase of
hyperemic myocardial blood flow might also be partly due
to a time-dependent response to hyperinsulinemia. In the
peripheral vasculature, the flow response to insulin ap-
pears to be determined by the total exposure of insulin
(the dose of insulin and the duration of the insulin
infusion) (40). In the present study, the delay between the
two measurements was only 1 h, whereas the serum
insulin concentration was sevenfold higher during the
high-dose insulin infusion. Taking these results together,
the significantly higher level of hyperemic myocardial

blood flow during supraphysiological hyperinsulinemia
was likely caused by the dose-dependent rather than the
time-dependent response to insulin infusion.

The mechanism of insulin’s ability to increase adeno-
sine-stimulated myocardial perfusion cannot be answered
directly by the present study. Insulin induces vasodilation
via an endothelial-dependent mechanism by activating
L-arginine transport and nitric oxide synthase (15). In
vascular smooth muscle cells, insulin increases cyclic
adenosine monophosphate and cyclic guanosine mono-
phosphate concentrations (41,42). Recently, it was dem-
onstrated that insulin also increases large vessel compliance
as measured by pulse wave analysis (43). Interestingly,
this effect of insulin occurred within 30 min, whereas
peripheral vasodilation in resistance vessels appears to
require a longer period of time (43).

The other mechanism by which insulin induces vasodi-
lation is via the sympathetic nervous system. Insulin
increases plasma norepinephrine concentrations (44,45)
and muscle sympathetic nerve activity (13,44,45). Addi-
tionally, using power spectral analysis of R-R intervals,
insulin has also been found to stimulate cardiac sympa-
thetic activity (46). This insulin-induced increase in sym-
pathetic tone has been suggested to be mediated via the
central nervous system (44,45,47). For example, Natali et
al. (47) demonstrated that local forearm insulin adminis-
tration did not stimulate flow, whereas systemic insulin
infusion was able to increase muscle blood flow. However,
we have recently demonstrated that centrally mediated
sympathetic activation does not appear to play a major
role in regulating insulin action on hyperemic myocardial
perfusion in healthy subjects (7).

Insulin has both inotropic and chronotropic effects on
myocardium. Insulin has been reported to increase stroke
volume and cardiac output in a dose-dependent manner
(48–51). In addition, high-dose insulin infusion has been
found to increase heart rate (48). The findings of insulin’s
effects on blood pressure are controversial. Mean arterial

FIG. 2. Myocardial blood flow (A) and coronary vascular resistance (B)
during basal conditions and during adenosine stimulation without and
with simultaneous insulin infusion. Insulin was infused at two rates: 1
and 5 mU � kg�1 � min�1. For comparison, basal coronary vascular
resistance was 113.6 � 24.2 mmHg � min � g � ml�1. *P < 0.001 vs. basal;
†P < 0.05 vs. saline; ‡P < 0.05 vs. 1 mU � kg�1 � min�1.

FIG. 3. Whole-body glucose uptake measured during physiological
insulin infusion was associated with hyperemic myocardial blood flow
during both physiological (E) (r � 0.61, P � 0.06) and supraphysiologi-
cal (F) (r � 0.87, P < 0.003) hyperinsulinemia.
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pressure has been found to be decreased (44,48), un-
changed (13,30,31,46,52–54), or increased (51). In the
present study, hyperinsulinemia and simultaneous adeno-
sine infusion significantly increased blood pressure values,
heart rates, and plasma catecholamine concentrations.
However, the hyperemic myocardial blood flow responses
to insulin cannot be explained by changes in systemic
hemodynamics, since coronary vascular resistance, which
takes into account changes in blood pressure, was also
significantly changed by insulin.

Intravenous insulin therapy has been shown to be
beneficial in the treatment of patients with acute myocar-
dial infarction (2,55). At least in theory, the hyperemic
effects of insulin on the coronary vasculature might partly
contribute to this benefit. In concert with our findings, the
beneficial effects of insulin have been found to be dose
dependent in those large clinical trials (2,55). Hyperinsu-
linemia increased catecholamines, blood pressure values,
and heart rates, indicating an increase of sympathetic
activity. However, in clinical situations where GIK therapy
is given, 	-blockers are routinely used, and these agents
are likely to prevent the undesirable effects of insulin
therapy on sympathetic activity.

In summary, the results of the present study demon-
strate that insulin is able to enhance adenosine-stimulated
myocardial perfusion and that this response is dose de-
pendent in healthy subjects. These effects might contrib-
ute to the known beneficial dose-dependent effects of
insulin on myocardial ischemia. In addition, hyperemic
myocardial blood flow responses during insulin stimula-
tion were positively correlated with whole-body glucose
uptake, suggesting that sensitivity of coronary reactivity to
insulin parallels the insulin sensitivity at the whole-body
level. Further human studies are needed to investigate the
effects of insulin on coronary function in patients with
insulin resistance, diabetes, and coronary artery disease.
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