Karen Ottemann

Karen Ottemann
University of California, Santa Cruz | UCSC · Department of Microbiology & Environmental Toxicology

Ph.D.

About

125
Publications
12,986
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,868
Citations

Publications

Publications (125)
Article
Full-text available
Helicobacter pylori infects roughly half the world’s population, causing gastritis, peptic ulcers, and gastric cancer in a subset. These pathologies occur in response to a chronic inflammatory state, but it is not fully understood how H. pylori controls this process. We characterized the inflammatory response of H. pylori mutants that cannot produc...
Preprint
Full-text available
Bacteria localize proteins to distinct subcellular locations. One family of proteins with distinct cellular placement are chemoreceptors, which frequently localize to the bacterial pole. Although some polarity-promoting mechanisms have been described, there are many chemoreceptors that lack clear routes to becoming polar. The TlpD chemoreceptor of...
Article
Full-text available
Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm...
Article
Full-text available
The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemo...
Article
Full-text available
A cornerstone of bacterial molecular biology is the ability to genetically manipulate the microbe under study. Many bacteria are difficult to manipulate genetically, a phenotype due in part to robust removal of newly acquired DNA, for example, by restriction-modification (R-M) systems. Here, we report approaches that dramatically improve bacterial...
Preprint
Full-text available
The stomach pathogen Helicobacter pylori utilizes two scaffold proteins, CheW and CheV1, to build critical chemotaxis arrays. Chemotaxis helps bacteria establish and maintain infection. Mutants lacking either of these chemotaxis proteins have different soft agar phenotypes: deletion of cheW creates non-chemotactic strains, while deletion of cheV1 r...
Article
Full-text available
The complement system has long been appreciated for its role in bloodborne infections, but its activities in other places, including the gastrointestinal tract, remain elusive. Here, we report that complement restricts gastric infection by the pathogen Helicobacter pylori. This bacterium colonized complement-deficient mice to higher levels than wil...
Article
Full-text available
The flagellar motor protein FliL is conserved across many microbes, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from fliL studies and found they utilized alleles that differed in the amount of N- and C-terminal regions that were retained. Alleles that retain the N-terminal cytoplasmic and transmembr...
Article
Full-text available
Helicobacter pylori colonizes half of the world's population and is responsible for a significant disease burden by causing gastritis, peptic ulcers, and gastric cancer. The development of host inflammation drives these diseases, but there are still open questions in the field about how H. pylori controls this process. We characterized H. pylori in...
Article
Full-text available
Chemotaxis signal transduction systems are common in the archaeal and bacterial world, but not all systems contain the same components. The rationale for this system variation remains unknown.
Preprint
Bacterial surface sensing is often conferred by flagella. The flagellar motor protein FliL plays a key role in this process, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from studies on these fliL alleles and found they inadvertently compared mutants with differing length of the retained native N-ter...
Article
Full-text available
Significance Bacteria have evolved appendages called flagella that are spun by an ingenious rotary motor that harnesses electrochemical energy to power rotation. To uncover and understand nature's blueprint of this nanoscale engine, an integrative structural biology approach is required. We used a combination of mutagenesis, cryogenic electron tomo...
Article
Full-text available
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA's sensing pro...
Preprint
Full-text available
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing pro...
Article
Full-text available
Coronavirus disease 2019 (COVID-19) has dramatically altered our lives in 2020, a vivid reminder that infectious disease continues to threaten society.…
Article
Full-text available
Helicobacter pylori is a chronic bacterial pathogen that thrives in several regions of the stomach, causing inflammation that can vary by site and result in distinct disease outcomes. Whether the regions differ in terms of host-derived metabolites is not known. We thus characterized the regional variation of the metabolomes of mouse gastric corpus...
Article
Full-text available
Biofilm growth is a widespread mechanism that protects bacteria against harsh environments, antimicrobials, and immune responses. These types of conditions challenge chronic colonizers such as Helicobacter pylori but it is not fully understood how H. pylori biofilm growth is defined and its impact on H. pylori survival. To provide insights into H....
Preprint
Helicobacter pylori is a chronic bacterial pathogen that thrives in several regions of the stomach, causing inflammation that can vary by site and result in distinct disease outcomes. It is not known, however, whether the host-derived metabolites differ between the two main regions, the corpus and antrum. We thus characterized the metabolomes of mo...
Article
Full-text available
Helicobacter pylori, a WHO class I carcinogen, is one of the most successful human pathogens colonizing the stomach of over 4.4 billion of the world’s population. Antibiotic therapy represents the best solution but poor response rates have hampered the elimination of H. pylori. A growing body of evidence suggests that H. pylori forms biofilms, but...
Article
Full-text available
150 years after Louis Pasteur's germ theory ushered in the “golden age of microbiology” (1), infectious disease research is taking center stage again.…
Article
Full-text available
Helicobacter pylori ( H. pylori ) is a pathogen that chronically colonizes the stomach of approximately half of the world population and contributes to the development of gastric inflammation. We previously demonstrated in vivo that H. pylori uses motility to preferentially colonize injury sites in the mouse stomach. However, the chemoreceptor resp...
Preprint
Full-text available
Biofilm growth protects bacteria against harsh environments, antimicrobials, and immune responses. Helicobacter pylori is a bacterium that has a robust ability to maintain colonization in a challenging environment. Over the last decade, H. pylori biofilm formation has begun to be characterized, however, there are still gaps in our understanding abo...
Conference Paper
Background Helicobacter pylori ( H. pylori ) is a pathogen that contributes to the development of gastric inflammation. H. pylori chronically colonizes the stomach of approximately half of the world population. We previously demonstrated in vivo that H. pylori preferentially colonizes injury sites of the stomach. In this study, we used a reductioni...
Article
The epithelial cell layer of the major organs of the mammalian gastrointestinal (GI) tract is extensively invaginated into thousands of gland and crypt structures. These are lined by distinct sets of epithelial cells and may comprise discrete niches. The host maximizes the distance between the epithelial cell layer and GI-inhabiting microbes to lim...
Article
Full-text available
Biofilms, communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances, pose a substantial health risk and are key contributors to many chronic and recurrent infections. Chronicity and recalcitrant infections are also common features associated with the ulcer-causing human pathogen H. pylori . However, relati...
Article
Full-text available
An exciting conference showcasing cutting edge research in bacterial signal transduction, chemotaxis, and motility will be held in January 2019. This conference, called Bacterial Locomotion and Signal Transduction (BLAST), will be held in New Orleans, LA, USA, under the auspices of chair Birgit Scharf. The conference has been held biennially since...
Preprint
Full-text available
Helicobacter pylori has an impressive ability to persist chronically in the human stomach. Similar characteristics are associated with biofilm formation in other bacteria. The H. pylori biofilm process, however, is poorly understood. To gain insight into this mode of growth, we carried out comparative transcriptomic analysis between H. pylori biofi...
Article
Full-text available
Bacterial flagella are rotary nano-machines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation...
Article
Full-text available
Eosinophils are predominantly known for their contribution to allergy. Here, we have examined the function and regulation of gastrointestinal eosinophils in the steady-state and during infection with Helicobacter pylori or Citrobacter rodentium . We find that eosinophils are recruited to sites of infection, directly encounter live bacteria, and act...
Article
Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori , which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations calle...
Article
Full-text available
The epithelial layer of the gastrointestinal tract contains invaginations, called glands or crypts, which are colonized by symbiotic and pathogenic microorganisms and may function as designated niches for certain species. Factors that control gland colonization are poorly understood, but bacterial chemotaxis aids occupation of these sites. We repor...
Chapter
This chapter describes two spatial chemotaxis assays, the nutrient-depleted chemotaxis assay and agarose-plug-bridge assay, which enable the evaluation of putative chemoeffectors. These two assays have worked well with Campylobacter jejuni and Helicobacter pylori, and techniques for using these assays with these microbes are described.
Article
Helicobacter pylori is a Gram-negative bacterium that infects half of the world's population, causing gastritis, peptic ulcers, and gastric cancer. To establish chronic stomach infection, H. pylori utilizes chemotaxis, driven by a conserved signal transduction system. Chemotaxis allows H. pylori to sense an array of environmental and bacterial sign...
Article
Full-text available
The gastric lamina propria is largely uncharted immunological territory. Here we describe the evolution and composition of the gastric, small intestinal, and colonic lamina propria mononuclear phagocyte system during the steady state and infection with the gastric pathogen Helicobacter pylori. We show that monocytes, CX3CR1hi macrophages, and CD11b...
Preprint
Full-text available
The epithelial layer of the gastrointestinal tract contains invaginations, called glands or crypts, which are colonized by symbiotic and pathogenic microorganisms and may function as designated niches for certain species. Factors that control gland colonization are poorly understood, but bacterial chemotaxis aids occupation of these sites. We repor...
Article
Full-text available
It is recently appreciated that many bacterial chemoreceptors have ligand-binding domains (LBD) of the dCACHE family, a structure with two PAS-like subdomains, one membrane-proximal and the other membrane-distal. Previous studies had implicated only the membrane-distal subdomain in ligand recognition. Here, we report the 2.2 Å resolution crystal st...
Article
Significance Signal transduction systems are important pathways that organisms use to sense and respond to their environments. Chemotaxis is controlled by a signal transduction system that allows bacteria to coordinate their movement in response to their environment. This response requires proper assembly and localization of large multiprotein chem...
Article
Full-text available
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra-and intergenomic...
Article
Full-text available
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic...
Article
Full-text available
The human pathogen Helicobacter pylori uses the host receptor α 5 β 1 integrin to trigger inflammation in host cells via its cag PAI type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS, via tempering the bacterium's interaction with α 5 β 1 integrin. Previously, imaA nul...
Article
Full-text available
Importance: Many bacteria have an impressive ability to stay in the gastrointestinal tract for decades despite ongoing flow and antimicrobial attacks. How this staying power is achieved is not fully understood, but it is important to understand as scientists plan so-called designer microbiomes. The gastrointestinal tract is lined with repeated inv...
Article
Full-text available
Importance: Helicobacter pylori senses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellar-based motility, in a process called chemotaxis. Chemotaxis is employed during infection and presumably aids H. pylori in encountering and colonizing preferred niches. A cytoplasmic chemor...
Article
Helicobacter pylori is a human specific pathogen that chronically infects about 50% of the world's population. After traveling through the harsh environment of the stomach lumen, H. pylori colonizes the mucosal surface and within the glands of the human stomach. During colonization, H. pylori uses motility and its chemotaxis signaling system to sen...
Article
Almost 20 years ago, urea was described as a chemotaxis attractant for Helicobacter pylori. In this issue of Cell Host & Microbe, Huang et al. (2015) report that H. pylori employs its urease enzyme to destroy urea to bring the concentration into a range that provokes an attractant response. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphat...
Article
Full-text available
Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V...
Article
Full-text available
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric...
Article
Key points: An in vitro approach to study gastric development is primary mouse-derived epithelium cultured as three-dimensional spheroids known as organoids. We have devised two unique gastric fundic-derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Organoids...
Article
Full-text available
Chemoreceptors sense environmental signals and drive chemotactic responses in Bacteria and Archaea. There are two main classes of chemoreceptors: integral inner membrane and soluble cytoplasmic proteins. The latter were identified more recently than integral membrane chemoreceptors and have been studied much less thoroughly. These cytoplasmic chemo...
Article
Background Helicobacter pylori (H. pylori) infection leads to acute induction of Sonic Hedgehog (Shh) in the stomach that is associated with the initiation of gastritis. The mechanism by which H. pylori induces Shh is unknown. Shh is a target gene of transcription factor Nuclear Factor-κB (NFκB). We hypothesize that NFκB mediates H. pylori-induced...
Article
Full-text available
Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment,...
Article
FliG and FliM are switch proteins that regulate the rotation and switching of the flagellar motor. Several assembly models for FliG and FliM have recently been proposed; however, it remains unclear whether the assembly of the switch proteins is conserved among different bacterial species. We applied a combination of pull-down, thermodynamic and str...