Karen Anderson

Karen Anderson
University of Exeter | UoE · Environment and Sustainability Institute

BSc, PhD

About

179
Publications
102,513
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,869
Citations
Introduction
My research is focused on developing novel remote sensing methods for assessing landscapes, particularly soils, vegetation and peatlands. I am particularly interested in understanding ecological structures, and my work seeks to develop new approaches for the monitoring, measuring and modeling of natural environments. To this end, I use laser scanning, hyperspectral imaging, field spectroscopy and unmanned aerial vehicles in my research. I also use 3D tools for community engagement.
Additional affiliations
September 1999 - September 2004
University of Southampton
Position
  • PhD Student
October 2005 - present
University of Exeter
Position
  • Professor (Associate)

Publications

Publications (179)
Article
Full-text available
Ecologists require spatially explicit data to relate structure to function. To date, heavy reliance has been placed on obtaining such data from remote-sensing instruments mounted on spacecraft or manned aircraft, although the spatial and temporal resolutions of the data are often not suited to local-scale ecological investigations. Recent technolog...
Article
Information on soil surface roughness at the centimetre scale is needed for inclusion in a range of physical and functional algorithms including heat budgets, runoff and sediment transfer models, and can also be used to understand soil degradation processes. Previous work has shown that such information can be obtained from multiple view angle meas...
Article
This paper describes a study aimed at quantifying uncertainty in field measurements of vegetation canopy hemispherical conical reflectance factors (HCRF). The use of field spectroradiometers is common for this purpose, but the reliability of such measurements is still in question. In this paper we demonstrate the impact of various measurement uncer...
Article
Full-text available
Remote sensing is now in a strong position to provide meaningful spatial data for use in soil science investigations. In the last 10 years, advancements in remote sensing techniques and technologies have given rise to a wealth of exciting new research fi ndings in soil-related disciplines. This paper provides a critical insight into the role played...
Article
Full-text available
This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903-"Spectral Sampling Tools for Vegetat...
Preprint
Full-text available
In High Mountain Asia (HMA) ongoing climate change threatens mountain water resources as glaciers melt, and the resulting changes in runoff and water availability are likely to have considerable negative impacts on ecological and human systems. Numerous assessments of the ways in which these glaciers will respond to climate warming have been publis...
Preprint
Full-text available
In High Mountain Asia (HMA) climate change threatens mountain water resources as glaciers melt, and the resulting changes in runoff and water availability are hypothesised to have considerable negative impacts on ecological and human systems. Numerous assessments of the ways in which glaciers will respond to climate warming have been published over...
Article
Full-text available
The Himalayan alpine zone (HAZ)—a high-altitude zone above approximately 4,100 m.a.s.l., is projected to experience strong eco-environmental changes with climate change. As plants expand their range in this region, other processes are likely to be impacted; for example, flows and stores of water. A first vital step in conceptualizing HAZ ecohydrolo...
Article
This editorial reports on a horizon scan exercise that was undertaken to identify new frontier topics, new or emerging themes/concepts, or new philosophical questions of relevance to physical geography. Researchers with broad geographical and disciplinary scope, all of whom were members of the journal's editorial board or editorial advisory board,...
Article
Full-text available
Peatland restoration is experiencing a global upsurge as a tool to protect and provide various ecosystem services. As the range of peatland types being restored diversifies, do previous findings present overly optimistic restoration expectations? In an eroding and restored upland peatland we assessed short-term (0–4 year) effects of restoration on...
Article
Full-text available
Drone-based multispectral sensing is a valuable tool for dryland spatial ecology, yet there has been limited investigation of the reproducibility of measurements from drone-mounted multispectral camera array systems or the intercomparison between drone-derived measurements, field spectroscopy, and satellite data. Using radiometrically calibrated da...
Article
Full-text available
In the UK, tree, hedgerow, and woodland (THaW) habitats are key havens for biodiversity and support many related ecosystem services. The UK is entering a period of agricultural policy realignment with respect to natural capital and climate change, meaning that now is a critical time to evaluate the distribution, resilience, and dynamics of THaW hab...
Article
Full-text available
This journal (Drone Systems and Applications; DSA) conducted a targeted “horizon scan” during 2022 within our team of editors and associate editors. We asked— Which research areas currently under-represented in Drone Systems and Applications would you like to see more heavily represented in the future? The process highlighted five areas of interest...
Article
Full-text available
For much of their existence, the environmental benefits of artificial satellites, particularly through provision of remotely sensed data, seem likely to have greatly exceeded their environmental costs. With dramatic current and projected growth in the number of Earth‐observation and other satellites in low Earth orbit, this trade‐off now needs to b...
Article
Full-text available
Climate change is projected to have important impacts on snow and vegetation distribution in global mountains. Despite this, the coupling of ecological shifts and hydrological processes within alpine zones has not attracted significant scientific attention. As the largest and one of the most climatically sensitive mountain systems, we argue that Hi...
Article
Full-text available
Different fields use different terms, but by changing its title, this journal is advocating for the discontinuation of ‘unmanned’ and recognition of ‘drone’ as an umbrella term for all robotic vehicles.
Article
Full-text available
Beavers influence hydrology by constructing woody dams. Using a Before After Control Impact experimental design, we quantified the effects of a beaver dam sequence on the flow regime of a stream in SW England and consider the mechanisms that underpin flow attenuation in beaver wetlands. Rainfall‐driven hydrological events were extracted between 200...
Article
Full-text available
The eddy covariance method is widely used to investigate fluxes of energy, water, and carbon dioxide at landscape scales, providing important information on how ecological systems function. Flux measurements quantify ecosystem responses to environmental perturbations and management strategies, including nature‐based climate‐change mitigation measur...
Article
Full-text available
Eurasian beaver (Castor fiber) were nearly hunted to extinction but have recovered to occupy much of their former range. Beaver were extirpated from Great Britain c. 400 years ago but have recently been reintroduced. The River Otter catchment, Devon was the site of the first licensed wild release of beavers in England. With further releases being c...
Article
Full-text available
Accurate and up‐to‐date land cover maps are vital for underpinning evidence‐based landscape management decision‐making. However, the technical skills required to extract tailored information about land cover dynamics from these open‐access geospatial data often limit their use by those making landscape management decisions. Using Dartmoor National...
Article
Full-text available
Changes in plant cover and productivity are important in driving Arctic soil carbon dynamics and sequestration, especially in peatlands. Warming trends in the Arctic are known to have resulted in changes in plant productivity, extent and community composition, but more data are still needed to improve understanding of the complex controls and proce...
Article
Full-text available
Insect pollinators are affected by the spatio-temporal distribution of floral resources, which are dynamic across time and space, and also influenced heavily by anthropogenic activities. There is a need for spatial data describing the time-varying spatial distribution of flowers, which can be used within behavioral and ecological studies. However,...
Article
Full-text available
We outline the principles of the natural capital approach to decision making and apply these to the contemporary challenge of very significantly expanding woodlands as contribution to attaining net zero emissions of greenhouse gases. Drawing on the case of the UK, we argue that a single focus upon carbon storage alone is likely to overlook the othe...
Article
Full-text available
Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryla...
Article
Full-text available
In this paper we use a numerical glacier-climate model, a detailed photogrammetric survey and lichenometry to reconstruct small palaeoglaciers on Ben Nevis and surrounding mountains in western Scotland. These glaciers would have been sustained under a climate where the mean annual air temperature was –1.0°C to –2.0°C compared to present-day values...
Preprint
Beavers influence hydrology by constructing woody dams. Using a before after control impact experimental design, we quantified the effects of a beaver dam sequence on the flow regime of a stream in SW England. Building upon our previous research (Puttock et al., 2021), we consider the mechanisms that underpin flow attenuation in beaver wetlands. Ra...
Article
Sparse in situ measurements and poor understanding of the impact of sea ice on air-sea gas exchange introduce large uncertainties to models of polar oceanic carbon uptake. The eddy covariance technique can be used to produce insightful air-sea gas exchange datasets in the presence of sea ice, but results differ between studies. We present a critica...
Article
Full-text available
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise...
Article
Full-text available
We first validate the performance of the Portable Optical Particle Spectrometer (POPS), a small light-weight and high sensitivity optical particle counter, against a reference scanning mobility particle sizer (SMPS) for a month-long deployment in an environment dominated by biomass burning aerosols. Subsequently, we examine any biases introduced by...
Article
Full-text available
Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change t...
Article
Full-text available
Grasslands vary with diverse forms and functions ranging from monocultures of perennial rye grass to more biodiverse unimproved grasslands which cover around 5% of Europe. Despite the broad diversity of grassland types, within environmental and flood risk models grasslands are frequently represented by a singular set of hydrological and structural...
Article
Full-text available
Striving to achieve a diverse and inclusive workplace has become a major goal for many organisations around the world [...]
Article
Full-text available
Natural flood management (NFM), or working with natural processes, is a growing flood risk management method in the UK, Europe and worldwide. However, unlike the current dominant technical flood management, it lacks an established evidence base of flood risk parameters. This lack of evidence base can limit the uptake of NFM as a flood management me...
Article
Full-text available
Context Microclimate (fine-scale temperature variability within metres of Earth’s surface) is highly influential on terrestrial organisms’ ability to survive and function. Understanding how such local climatic conditions vary is challenging to measure at adequate spatio-temporal resolution. Microclimate models provide the means to address this limi...
Article
In the high mountains of Asia, ongoing glacier retreat threatens human and ecological systems through reduced water availability. Rock glaciers are climatically more resistant than glaciers and contain valuable water volume equivalents (WVEQ). Across High Mountain Asia (HMA) the WVEQ of rock glaciers is poorly quantified, and thus their hydrologica...
Preprint
Full-text available
The Printed Optical Particle Spectrometer (POPS) is an advanced and small low-cost, light-weight, and high-sensitivity optical particle counter (OPC), particularly designed for deployed on unpiloted aerial vehicles (UAVs) and balloon sondes. We report the performance of the POPS against a reference scanning mobility particle sizer (SMPS) and an air...
Article
Full-text available
In the Himalaya, climate change threatens mountain water resources as glaciers melt and changes in runoff and water availability are likely to have considerable negative impacts on ecological and human systems. While much has been written on the effect of climate change on glaciers in the Himalaya and its impact on sustainability, almost nothing ha...
Article
Full-text available
Drained peatlands dominated by purple moor grass (Molinia caerulea) are widespread in the UK and Western Europe. Although substantial carbon stores may be present in these peatlands, in this degraded state they are not currently acting as carbon sinks. Therefore, M.caerulea dominated peatlands have been identified as potential sites for ecohydrolog...
Article
Full-text available
Quantifying the timing of vegetation phenology is critical for monitoring and modelling ecosystem responses to environmental change. Phenological processes have been studied from landscape to global scales using Earth observing satellite data, and at local scale by in situ surveys of individual plants. Now, data acquired from multi-spectral sensors...
Technical Report
Full-text available
for more information visit: https://space-science.wwf.de/drones this is a detailed handbook for conservation practitioners (not just academics) to understand the benefits, opportunities, limits of drone technology. Drones are often hailed as a panacea for conservation problems - in this guide we use the scientific literature and 10 case studies (...
Article
Full-text available
Many analyses of biological responses to climate rely on gridded climate data derived from weather stations, which differ from the conditions experienced by organisms in at least two respects. First, the microclimate recorded by a weather station is often quite different to that near the ground surface, where many organisms live. Second, the tempor...
Preprint
Full-text available
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, yet are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely-sensed biomass products and are undersampled by in-situ monitoring. Current global change t...
Article
Full-text available
Accelerated soil erosion can result in substantial declines in soil fertility and has devastating environmental impacts. Consequently, understanding if rates of soil erosion are acceptable is of local and global importance. Herein we use empirical soil erosion observations collated into an open access geodatabase to identify the extent to which exi...
Article
Full-text available
Eurasian beaver (Castor fiber) populations are expanding across Europe. Depending on location, beaver dams bring multiple benefits and/or require management. Using nationally available data, we developed: a Beaver Forage Index (BFI), identifying beaver foraging habitat, and a Beaver Dam Capacity (BDC) model, classifying suitability of river reaches...
Preprint
Full-text available
In High Mountain Asia (HMA), ongoing glacier retreat affects human and ecological systems through reduced water availability. Rock glaciers are climatically more resilient than glaciers and likely contain potentially valuable water volume equivalents (WVEQ). In HMA knowledge of rock glaciers is extremely sparse and here we present the first systema...
Article
Full-text available
Across the semiarid ecosystems of the southwestern USA, there has been widespread encroachment of woody shrubs and trees including Juniperus species into former grasslands. Quantifying vegetation biomass in such ecosystems is important because semiarid ecosystems are thought to play an important role in the global land carbon (C) sink, and changes...
Article
Full-text available
Compact multi-spectral sensors that can be mounted on lightweight drones are now widely available and applied within the geo-and environmental sciences. However; the spatial consistency and radiometric quality of data from such sensors is relatively poorly explored beyond the lab; in operational settings and against other sensors. This study explor...
Article
Full-text available
The mountain systems of the Hindu Kush Himalaya (HKH) are changing rapidly due to climatic change, but an overlooked component is the subnival ecosystem (between the treeline and snow line), characterized by short‐stature plants and seasonal snow. Basic information about subnival vegetation distribution and rates of ecosystem change are not known,...
Preprint
Full-text available
Structure-from-Motion Multi View Stereo (SfM-MVS) photogrammetry is a technique by which volumetric data can be derived from overlapping image sets, using changes of an objects position between images to determine its height and spatial structure. Whilst SfM-MVS has fast become a powerful tool for scientific research, its potential lies beyond the...
Conference Paper
Full-text available
The miniaturisation of multispectral sensors in recent years have resulted in a proliferation of applications particularly in vegetation-focused studies using lightweight drones. Multi-camera arrays (MCAs), capable of capturing information over different wavelength intervals using separate cameras with specific band-pass filters, are now commonplac...
Article
Full-text available
Image‐based modeling, and more precisely, Structure from Motion (SfM) and Multi‐View Stereo (MVS), is emerging as a flexible, self‐service, remote sensing tool for generating fine‐grained digital surface models (DSMs) in the Earth sciences and ecology. However, drone‐based SfM + MVS applications have developed at a rapid pace over the past decade a...
Article
Full-text available
In many of the world's high mountain systems, glacier recession in response to climate change is accompanied by a paraglacial response whereby glaciers are undergoing a transition to rock glaciers. We hypothesise that this transition has important implications for hydrological resources in high mountain systems and the surrounding lowlands given th...
Article
Full-text available
Peatlands are recognised as an important but vulnerable ecological resource. Understanding the effects of existing damage, in this case erosion, enables more informed land management decisions to be made. Over the growing seasons of 2013 and 2014 photosynthesis and ecosystem respiration were measured using closed chamber techniques within vegetated...
Article
Full-text available
Context An increased interest in the restoration of peatlands for delivering multiple benefits requires a greater understanding of the extent and location of natural and artificial features that contribute to degradation. Objectives We assessed the utility of multiple, fine-grained remote sensing datasets for mapping peatland features and associat...