About
271
Publications
84,404
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
50,818
Citations
Publications
Publications (271)
Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the mea...
Understanding brain function relies on the collective work of many labs generating reproducible results. However, reproducibility has not been systematically assessed within the context of electrophysiological recordings during cognitive behaviors. To address this, we formed a multi-lab collaboration using a shared, open-source behavioral task and...
Understanding brain function relies on the collective work of many labs generating reproducible results. However, reproducibility has not been systematically assessed within the context of electrophysiological recordings during cognitive behaviors. To address this, we formed a multi-lab collaboration using a shared, open-source behavioral task and...
Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates. These features arise in model circuits operating in a ‘fluctuation-driven regime’, in which fluctuations in membrane potentials emerge from the network dynamics. However, it is still debated whether the cortex operates in such a regime. We evaluated the f...
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to...
During foraging behavior, action values are persistently encoded in neural activity and updated depending on the history of choice outcomes. What is the neural mechanism for action value maintenance and updating? Here, we explore two contrasting network models: synaptic learning of action value versus neural integration. We show that both models ca...
Neural representations of information are shaped by local network interactions. Previous studies linking neural coding and cortical connectivity focused on stimulus selectivity in the sensory cortex. Here we study neural activity in the motor cortex during naturalistic behavior in which mice gathered rewards with multidirectional tongue reaching. T...
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and th...
With the rapid adoption of high-density electrode arrays for recording neural activity, electrophysiology data volumes within labs and across the field are growing at unprecedented rates. For example, a one-hour recording with a 384-channel Neuropixels probe generates over 80 GB of raw data. These large data volumes carry a high cost, especially if...
The activity of single neurons encodes behavioral variables, such as sensory stimuli \autocite{hubelReceptiveFieldsSingle1959} and behavioral choice \autocite{brittenAnalysisVisualMotion1992, guoFlowCorticalActivity2014}, but their influence on behavior is often mysterious. We estimated the influence of a unit of neural activity on behavioral choic...
The neural representations of prior information about the state of the world are poorly understood. To investigate this issue, we examined brain-wide Neuropixels recordings and widefield calcium imaging collected by the International Brain Laboratory. Mice were trained to indicate the location of a visual grating stimulus, which appeared on the lef...
A key challenge in neuroscience is understanding how neurons in hundreds of interconnected brain regions integrate sensory inputs with prior expectations to initiate movements. It has proven difficult to meet this challenge when different laboratories apply different analyses to different recordings in different regions during different behaviours....
Activity related to movement is found throughout sensory and motor regions of the brain. However, it remains unclear how movement-related activity is distributed across the brain and whether systematic differences exist between brain areas. Here, we analyzed movement related activity in brain-wide recordings containing more than 50,000 neurons in m...
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to...
Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neuron...
A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell’s molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the small gene panel. We address this challenge by in...
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chem...
Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenes...
We describe an architecture for organizing, integrating and sharing neurophysiology data within a single laboratory or across a group of collaborators. It comprises a database linking data files to metadata and electronic laboratory notes; a module collecting data from multiple laboratories into one location; a protocol for searching and sharing da...
Behavior requires neural activity across the brain, but most experiments probe neurons in a single area at a time. Here we used multiple Neuropixels probes to record neural activity simultaneously in brain-wide circuits, in mice performing a memory-guided directional licking task. We targeted brain areas that form multi-regional loops with anterior...
Brain-computer interface (BCI) experiments have shown that animals are able to adapt their recorded neural activity in order to receive reward. Recent studies have highlighted two phenomena. First, the speed at which a BCI task can be learned is dependent on how closely the required neural activity aligns with pre-existing activity patterns: learni...
Here we report SUPPORT (Statistically Unbiased Prediction utilizing sPatiOtempoRal information in imaging daTa), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatially neighboring pixels in the same...
A bstract
Cellular functions are regulated by synthesizing and degrading proteins on time scales ranging from minutes to weeks. Protein turnover varies across proteins, cellular compartments, cell types, and tissues. In the brain, circuit-specific protein turnover is thought to underlie synaptic plasticity, but current methods to track protein turn...
We propose centralized brain observatories for large-scale recordings of neural activity in mice and non-human primates coupled with cloud-based data analysis and sharing. Such observatories will advance reproducible systems neuroscience and democratize access to the most advanced tools and data.
In foraging, behavior is guided by action values that are stored in memory and updated depending on the history of choices and rewards. What is the neural mechanism for action value maintenance and reward-dependent update? Here we explore two contrasting network models: neural integration and synaptic learning of action value. We show that both mec...
Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates. These features arise in model circuits operating in a 'fluctuation-driven regime', in which fluctuations in membrane potentials emerge from the network dynamics. However, it is still unclear whether the cortex operates in this regime. We evaluated the flu...
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimate...
Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a limited subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity o...
Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circu...
Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey compu...
The ability to optically image cellular transmembrane voltage at millisecond-timescale resolution can offer unprecedented insight into the function of living brains in behaving animals. The chemigenetic voltage indicator Voltron is bright and photostable, making it a favorable choice for long in vivo imaging of neuronal populations at cellular reso...
Calcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems. The popular GCaMP indicators are based on the calcium-binding protein calmodulin and the RS20 peptide. These sensors report neural activity at timescales much slower than electrical signaling, limited by their biophysical properties and...
Calcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems. The popular GCaMP indicators are based on the calcium-binding protein calmodulin and the RS20 peptide. These sensors report neural activity at timescales much slower than electrical signaling, limited by their biophysical properties and...
Recently developed probes for extracellular electrophysiological recordings have large numbers of electrodes on long linear shanks. Linear electrode arrays, such as Neuropixels probes, have hundreds of recording electrodes distributed over linear shanks that span several millimeters. Because of the length of the probes, linear probe recordings in r...
Decisions are held in memory until enacted, which makes them potentially vulnerable to distracting sensory input. Gating of information flow from sensory to motor areas could protect memory from interference during decision-making, but the underlying network mechanisms are not understood. Here, we trained mice to detect optogenetic stimulation of t...
Recording many neurons for a long time
The ultimate aim of chronic recordings is to sample from the same neuron over days and weeks. However, this goal has been difficult to achieve for large populations of neurons. Steinmetz et al. describe the development and testing of Neuropixels 2.0. This new electrophysiological recording tool is a miniaturiz...
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic imp...
The ability to probe the membrane potential of multiple genetically defined neurons simultaneously would have a profound impact on neuroscience research. Genetically encoded voltage indicators are a promising tool for this purpose, and recent developments have achieved a high signal-to-noise ratio in vivo with 1-photon fluorescence imaging. However...
Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed E xpansion- As sisted Iterative F luorescence In S itu H ybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey...
Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-pho...
Head Post and Cranial Window Outline Janelia Research Campus Svoboda Lab Developed by Karel Svoboda for Trachtenberg et al 2002 Improved by Anthony Holtmaat for Holtmaat et al 2006 and Holtmaat et al 2009 Improved by Daniel Huber for Huber et al 2012 Compiled by Bryan Maclennan (2013), Abridged version by Courtney Davis (2015) Compiled to protocols...
Two-photon microscopy together with fluorescent proteins and fluorescent protein-based biosensors are commonly used tools in neuroscience. To enhance their experimental scope, it is important to optimize fluorescent proteins for two-photon excitation. Directed evolution of fluorescent proteins under one-photon excitation is common, but many one-pho...
To study the dynamics of neural processing across timescales, we require the ability to follow the spiking of thousands of individually separable neurons over weeks and months, during unrestrained behavior. To address this need, we introduce the Neuropixels 2.0 probe together with novel analysis algorithms. The new probe has over 5,000 sites and is...
Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying...
Calcium imaging with fluorescent protein sensors is widely used to record activity in neuronal populations. The transform between neural activity and calcium-related fluorescence involves nonlinearities and low-pass filtering, but the effects of the transformation on analyses of neural populations are not well understood. We compared neuronal spike...
Two-photon microscopy together with fluorescent proteins and fluorescent protein-based biosensors are commonly used tools in neuroscience. To enhance their experimental scope, it is important to optimize fluorescent proteins for two-photon excitation. Directed evolution of fluorescent proteins under one-photon excitation is common, but many one-pho...
These protocols are part of a yet unpublised paper by the same title.
Imaging neurons and neural circuits over large volumes at high speed and subcellular resolution is a difficult task. Incorporating a Bessel focus module into a two-photon fluorescence mesoscope, we achieved rapid volumetric imaging of neural activity over the mesoscale with synaptic resolution. We applied the technology to calcium imaging of entire...
Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations1–4. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average5,6. Cortical neurons that encode differ...
Recently developed silicon probes have large numbers of recording electrodes on long linear shanks. Specifically, Neuropixels probes have 960 recording electrodes distributed over 9.6 mm shanks. Because of their length, Neuropixels probe recordings in rodents naturally span multiple brain areas. Typical studies collate recordings across several rec...
This protocol is used to inject viral vectors expressing proteins such as ion channels, transcription factors, enzymes, receptors, fluorescent proteins or other non-toxic, non-hazardous payloads. The viral vectors include AAV, Adenovirus, modified RV, Lentivirus, Modified Herpes Simplex Virus, and Pseudorabies Virus. The protocol is often performed...
Decisions about future actions are held in memory until enacted, making them vulnerable to distractors. The neural mechanisms controlling decision robustness to distractors remain unknown. We trained mice to report optogenetic stimulation of somatosensory cortex, with a delay separating sensation and action. Distracting stimuli influenced behavior...
Calcium imaging with fluorescent protein sensors is widely used to record activity in neuronal populations. The transform between neural activity and calcium-related fluorescence involves nonlinearities and a low-pass filter, but the effects of the transformation on analyses of neural populations are not well understood. We compared neuronal spikes...
Recording well and craniotomy for acute extracellular electrophysiological recordings in head-restrained mice
Optogenetics allows manipulations of genetically and spatially defined neuronal populations with excellent temporal control. However, neurons are coupled with other neurons over multiple length scales, and the effects of localized manipulations thus spread beyond the targeted neurons. We benchmarked several optogenetic methods to inactivate small r...
The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decisio...
The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decisio...
The majority of cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing for pattern completion and other computations1. Cortical circuits contain subnetworks, consisting of neurons with similar receptive fields and elevated connectivity relative to the network average2,3. Understanding the comput...
The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decisio...
Step-by-step instructions for electrophysiological recordings using multiple Neuropixels probes in head-fixed mice
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neuron...
In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181–183, Gao et al. 2018, Nature, 563, 113–116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than th...
Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolu...
Visualizing neuronal activity in vivo
Imaging the changes in fluorescence of voltage-sensitive reagents would enable monitoring of the activity of neurons in vivo. Abdelfattah et al. created such a voltage indicator by designing a protein that combines the voltage sensor domain from microbial rhodopsin with a domain that captures a dye molecule wit...
Neural computation involves diverse types of GABAergic inhibitory interneurons that are integrated with excitatory (E) neurons into precisely structured circuits. To understand how each neuron type shapes sensory representations, we measured firing patterns of defined types of neurons in the barrel cortex while mice performed an active, whisker-dep...
Calcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual...
Neuronal inactivation is commonly used to assess the involvement of groups of neurons in specific brain functions. Optogenetic tools allow manipulations of genetically and spatially defined neuronal populations with excellent temporal resolution. However, the targeted neurons are coupled with other neural populations over multiple length scales. As...
Short-term memory is associated with persistent neural activity without sustained input, arising from the interactions between neurons with short time constants. A variety of neural circuit motifs could account for measured neural activity. A mechanistic understanding of the neural circuits supporting short-term memory requires probing network conn...
UniClear procedure for whole mouse brain clearing and refractive index matching. The advantages of this method are that the method is water-based and produces a mechanically robust specimen. Cleared brains can be imaged with lightsheet microscopes (e.g. Zeiss Z1 lightsheet).
Information processing in the neocortex is performed by GABAergic interneurons that are integrated with excitatory neurons into precisely structured circuits. To reveal how each neuron type shapes sensory representations, we measured spikes and membrane potential of specific types of neurons in the barrel cortex while mice performed an active, whis...
This protocol described using food restriction to motivate mice to participate in behavioral tasks. Infant formula is used as the reward during behavioral training.