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Abstract Advances in DNA sequencing technologies
have led to an avalanche-like increase in the number of
gene sequences deposited in public databases over the last
decade as well as the detection of an enormous number of
previously unseen nucleotide variants therein. Given the
size and complex nature of the genome-wide sequence
variation data, as well as the rate of data generation, ex-
perimental characterization of the disease association of
each of these variations or their effects on protein
structure/function would be costly, laborious, time-con-
suming, and essentially impossible. Thus, in silico
methods to predict the functional effects of sequence var-
iations are constantly being developed. In this review, we
summarize the major computational approaches and tools
that are aimed at the prediction of the functional effect of
mutations, and describe the state-of-the-art databases that
can be used to obtain information about mutation signif-
icance. We also discuss future directions in this highly
competitive field.
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Abbreviations
TCGA The Cancer Genome Atlas
ICGC International Cancer Genome Consortium
SNP Single nucleotide polymorphism
HGMD Human Gene Mutation Database
sSNP Nonsynonymous SNP
OMIM Online Mendelian Inheritance in Man
HGV Human Genome Variation
PMD Protein Mutant Database
EVS Exome Variant Server
COSMIC Collection of somatic mutations in cancer
NCBI National Center for Biotechnology Information
dbSNP SNP Database
LSDB Large number of locus-specific databases
HGVS Human Genome Variation Society
MAF Minor allele frequency
MSA Multiple sequence alignment
PDB Protein Data Bank
SS Secondary structure
CAGI Critical Assessment of Genome Interpretation

Introduction

The revolution in DNA sequencing technologies has resulted
in an enormous increase in the number of publicly available
gene sequences over the last several years, and these technol-
ogies continue to evolve [1, 2]. Next-generation sequencing
projects not only generate millions of new gene sequences
from a large variety of organisms but also huge numbers of
previously unseen single nucleotide variants found therein [3].
Large ongoing initiatives, such as The Cancer Genome Atlas
(TCGA [4]; Cancer Genome Atlas Network, http://
cancergenome.nih.gov/), the International Cancer Genome
Consortium (ICGC [5]; http://dcc.icgc.org), and the 1000
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Genomes Projec t Consor t ium ([6] ; h t tp : / /www.
1000genomes.org/), as well as the sequencing of
genomes of patients affected by rare diseases [7–10],
have produced comprehensive catalogs of mutations in
the human genome. Single-nucleotide polymorphisms
(SNPs) are by far the most common group of genetic
variations found in humans. The International HapMap
Pro j ec t ( h t t p : / / h apmap .ncb i . n lm .n ih .gov / ) ha s
documented approximately 10 million common SNPs,
defined as single base-pair substitutions with a minor al-
lele frequency >1 % in (one or more) human populations.
The 1000 Genomes Project Consortium has estimated that
the difference between the genome of a randomly selected
individual and the reference genome is at about 10,000
nonsynonymous (that lead to an amino acid substitution)
sites, and about the same number of synonymous sites. In
the Human Gene Mutation Database (HGMD, www.
hgmd.org [11]), SNPs constitute more than half of all
the disease-associated variations. Small indels (insertions
and deletions) up to 20 base pairs (bp) long are the second
largest class of mutations often associated with genetic
diseases [11]. In the HGMD release 2015.2, deletions
and insertions that cause inherited diseases account for
24,454 (27 %) and 10,617 (6 %), respectively, of all the
mutations in the database, and combinations of short in-
sertions and deletions add an extra 2,436 (1.4 %) varia-
t ions. In protein coding regions, indels can be
frameshifting (FS) or non-frameshifting (NFS) depending
whether an indel inserts or deletes a multiple of three
nucleotides. NFS indels thus do not alter the coding re-
gion but lead to an insertion or deletion of extra amino
acids, which can affect the protein’s function and, as a
consequence, may also cause serious Mendelian diseases
[12–16]. On the other hand, FS indels, having a length
indivisible by three, shift the reading frame and alter the
coding sequence downstream of the indel site, which also
often leads to the introduction of a stop codon.

Given the size and complex nature of the genome-wide
sequence variation data as well as the rate of data generation,
experimentally characterizing the disease association of each
of these variations and/or their effects on protein structure/
function would be costly, laborious, time-consuming, and
practically impossible. Thus, computational tools to predict
the functional effects of sequence variations are constantly
being developed. These tools have been used to investigate
the impact of nonsynonymous SNPs (nsSNPs) and indels on
protein function and to identify variations that are likely to be
deleterious and those that are neutral. The ability to computa-
tionally discriminate between pathogenic and benign variants
can significantly aid in targeting disease-causing mutations by
helping in the selection and prioritization of the Bbest^ candi-
dates. Identifying and interpreting genomic variants associat-
ed with genetic diseases is an extremely important step which

could pave the way for personalizedmedicine and diagnostics.
For example, in silico mutation assessment can facilitate
in vitro studies in reverse genetic projects in which mutations
are introduced randomly into the genome of an experimental
organism and in projects based on the random mutagenesis of
genes of interest [17–19]. Prioritizing mutations before
in vitro mutagenesis can increase the effectiveness of novel
deleterious mutation searches. The tools that have been devel-
oped to predict mutation effects are quite general and can
therefore be applied to any organisms, as was done, for exam-
ple, in a large-scale TILLING reverse-genetics project that
aimed to study mutations in Arabidopsis, zebrafish, maize,
Drosophila, and Lotus [20]. Nonsynonymous variants are
much better understood in terms of their biochemical and
biophysical impact on the gene product than synonymous
SNPs (i.e., SNPs that do not lead to changes in the protein
sequences) and variations that occur in noncoding genomic
regions; therefore, it is not surprising that most prediction
tools have focused on nonsynonymous variants. However,
some research (albeit to a significantly smaller extent) was
also performed to investigate the impact of insertions and
deletions on protein function. In this review, we summarize
the major computational approaches and tools that aim to
predict the functional effects of mutations. We also discuss
future directions in this highly competitive field.

Databases

The diagnostics of Mendelian disorders consists mainly of the
identification of genomic variations and their annotations.
There are numerous publicly available mutation databases that
can be used for this purpose [21]. Human genome variation
databases also can serve as starting points for predicting the
functional effects of mutations because they can provide both
training and testing subsets for many of the in silico tools. The
accuracy of prediction tools is highly dependent on the train-
ing sets used, which ideally should contain the disease-
causing and neutral variations; therefore, the preparation of
training datasets is a crucial step in the whole prediction pro-
cess. Moreover, estimation of the accuracy of a prediction
depends on the mutation sets used to test the tools. Further,
the efficiency of a prediction tool is also influenced by the
number of deleterious and benign mutations that can be col-
lected from publically available databases. Deleterious
nsSNPs are often collected from the Online Mendelian Inher-
itance in Man (OMIM) database [22], the HGMD [11], the
dbSNP database [23, 24], and the Human Genome Variation
(HGV) database [25]. In addition, mutations at the protein
level can be collected from UniProtKB/Swiss-Prot [26, 27]
and the Protein Mutant Database (PMD; [28]), though the
PMD was last updated in 2007. Other mutation data sources
are the 1000 Genome Project and the 6,500 Exomes Project
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(Exome Variant Server; EVS; Seattle, WA; http://evs.gs.
washington.edu/EVS/), with the former often being used to
estimate mutation frequencies and serving as a source of
neutral mutations, which are usually defined as mutations
that have relatively high (>5 %) minor allele frequencies
[29]. The major sources of somatic mutations related to
cancers are TCGA (http://cancergenome.nih.gov/), the
Catalogue of Somatic Mutations in Cancer (COSMIC; [30];
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/),
and the ICGC (https://dcc.icgc.org/), but these databases are
not suitable for creating the training and testing sets because
these mutations are of unknown significance. Although
somatic mutation databases do not contain phenotype data,
they can be used to estimate the efficiency of mutation effect
prediction tools because the recurrence of somatic mutations
has been correlated with their phenotypic effects [31]. Here
we discuss the available mutation databases in more detail.

The 1000 Genomes Project (http://www.ncbi.nlm.nih.gov/
variation/tools/1000genomes/) is an international research
effort that was launched in 2008 to establish a detailed
catalogue of human genetic variations. In 2012, the
sequencing of 1,092 genomes from 14 populations was
published [6]. The database contains almost 40 million
genomic variants, which have been mapped to the human
genome reference genome (version GRCh37/hg19). The
database does not contain any phenotypic information but it
can still be used to obtain important clues about which
variants cause or are associated with genetic diseases; for
instance, the observed polymorphism frequencies can be
used to deduce whether a variation might be pathogenic or
neutral (i.e., variations that indicate relatively high
frequencies are not expected to cause any significant effect,
otherwise they would be excluded by evolution).

The Exome Variant Server is another very popular source
of genome variation frequency data. It focuses on rare genetic
variations that may be associated with heart, lung, and blood
disorders by sequencing the protein coding regions of the
human genome across diverse populations. The EVS current-
ly contains sequence information for the exomes of 6,503
individuals, and allele frequencies are provided for
European-American and African-American populations.
While individual genotype and phenotype data are not avail-
able on the EVS, these data can be accessed through the Na-
tional Center for Biotechnology Information (NCBI) dbGAP
database of genotypes and phenotypes [32]. An important
feature of EVS is the inclusion of samples from patients with
rare Mendelian disorders. Even researchers who are not inter-
ested specifically in heart, lung and blood disorders can use
the database as a frequency filter in much the same way as the
1000 Genomes Project data are exploited.

The SNP Database (dbSNP; [23]) is a free public deposi-
tory for genetic variations within and across different organ-
isms which is developed and maintained by the NCBI in

collaboration with the National Human Genome Research In-
stitute. The dbSNP release 142 (16 October 2014) contains
more than 88 million validated human refSNP clusters. The
dbSNP accepts submissions for any organism from many
sources including research laboratories, collaborative poly-
morphism discovery efforts, large-scale genome sequencing
consortia, and other databases (e.g., the SNP consortium and
HapMap [33]), and thereby serves as a major repository for
genomic variations. The database does not, however, contain
information about variant type, frequency, or causation, and
variants present only in tumors can be included. In addition,
the quality of the data in the dbSNP has been questioned and
the database is known to contain a significant portion of false
positives [34–36]. It is important to keep in mind that an entry
in the dbSNP does not necessarily indicate disease causation,
although some refSNP clusters include predicted clinical sig-
nificance and associated scientific citations; therefore, the
dbSNP has begun to offer limited phenotype information.
Nevertheless, the dbSNP still serves as an important source
of genome variation data and contains information from the
1000 Genomes and ESP projects.

One of the most notable attempts to gather together the
disease-causing or disease-associated genome variations was
the creation of the HGMD [37, 11], which collects published
data from the scientific literature and has both free (public)
and paid access options. HGMD is often used by researchers
to annotate genomic variations found in sequencing experi-
ments. The free public version of HGMD (http://www.hgmd.
org) allows limited access for academic institutions and
nonprofit organizations, while a subscription to HGMD
Professional is required for full access. HGMD
Professional provides pathogenicity predictions generated
using several methods such as SIFT [38], PolyPhen-2 [39,
40], and MutPred [41]. The HGMD contains only pub-
lished variants and often provides only the primary cita-
tion; thus, other mutation databases may provide more
extensive reference lists.

A large number of locus-specific databases (LSDBs) have
been developed and are typically curated by experts in the
specific field. The Human Genome Variation Society
(HGVS) maintains a list of available LSDBs (around 1600)
on their website (http://www.hgvs.org/dblist/glsdb.html).
General recommendations for the creation and curation of
such databases have been proposed [42], and rules for the
nomenclature of mutations have been discussed by den
Dunnen and Antonarakis [43]. To improve uniformity
between the databases, the HGVS has developed the Leiden
Open Variation Database (LOVD; http://www.lovd.nl/3.0/
home), a free tool for LSDB development that provides a
consistent user interface [44]. Variant data can be quite
extensive and include information about phenotype,
functional data, family information, reported frequency, and
references. One of the common problems with LSDBs is that
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they are only as good as the information provided by
submitters and curators, which varies.

Another popular resource is the Online Mendelian Inheri-
tance in Man (OMIM [22]; http://www.omim.org), which was
started in the 1960s by Victor A. McKusick as a physical
catalog of Mendelian traits and disorders with or without
known molecular etiology. Curation of the database is
currently carried out at the Johns Hopkins University School
of Medicine and it was transitioned to an online version in
1985. Variant information follows the textual summary and
typically does not include precise HGVS nomenclature or
genomic coordinates. For this reason, searching OMIM for
specific variants can be challenging, and OMIM is often
most useful for understanding the connection of a specific
gene to a disease.

ClinVar ([45]; http://www.ncbi.nlm.nih.gov/clinvar/) was
started in 2012 as a free public archive to store the links
between genomic variations and phenotypes. The database
was populated initially using variants from OMIM,
GeneReviews (http://www.ncbi.nlm.nih.gov/books/
NBK1116/), various LSDBs, and local databases provided
by some scientific laboratories. Nevertheless, ClinVar now
serves as a central repository for predictions of causation,
with five standard categories that range from benign to
pathogenic and addi t ional ca tegories that cover
pharmacogenomics and complex traits. At the beginning of
2015, ClinVar contained more than 150,000 accessioned
submissions. In addition to individual variant entries,
ClinVar, like HGMD, provides gene information from
external sources and links it to a wealth of related
information in the database.

The UniProtKB/Swiss-Prot database (The UniProt Consor-
tium; http://www.uniprot.org/ [46, 27]) contains high-quality
manually curated protein sequence and functional informa-
tion. Both manual curation and automatic annotation are used
to add new information to the database entries, and cross-
referencing tomore than 120 external databases provides links
to additional relevant information. Thus, the database contains
a significant amount of information about the biological func-
tions of proteins derived from the scientific literature. Human
polymorphisms and disease-associated mutations from
UniProt are collected into a single text file, Humsavar
(http://www.uniprot.org/docs/humsavar), which contained
about 25,000 disease-associated and about 38,000 common
polymorphisms in the 4 February 2015 release. Based on in-
formation from the UniProtKB database, two training datasets
(HumDiv and HumVar), both of which contain deleterious
and benign mutations, were created by developers of the pop-
ular PolyPhen-2 program [40, 39]. HumDiv was compiled
from all of the damaging alleles with known effects on mo-
lecular function (usually this means that they are associated
with diseases) present in the UniProtKB database, plus likely
neutral substitutions obtained from multiple sequence

alignments of human proteins with closely related mammalian
homologs. HumVar contains all human disease-causing mu-
tations from UniProtKB, together with common human
nsSNPs (MAF (minor allele frequency) >1 %) that have not
been annotated as involved in disease and are therefore treated
as nondamaging. Because of their simplicity of use, these
datasets have been used to train and estimate the efficiency
of mutation effect in a number of prediction tools [40, 47–49].

Methods

The molecular mechanisms that cause the dysfunction of mu-
tagenic proteins vary significantly, and numerous methods to
predict the possible effects of mutations have been developed.
These methods can be classified into three main categories: (i)
methods based on evolutionary (sequence conservation) infor-
mation, (ii) methods based on the protein 3D structure, and
(iii) methods based on various properties calculated directly
from the amino acid sequence. The final goal of the majority
of prediction tools is a binary (yes/no) classification of the
variation as either pathogenic or benign. Most of these
methods (see Fig. 1) first calculate a number of parameters
related to changes caused by missense mutations. The
resulting vector of the parameters is then used to obtain a
Bdecision^ score. Finally, a threshold is chosen such that pos-
sibly deleterious and benign mutations are separated in an
optimal manner. Methods to transform the vector into a single
score vary (see Table 1) and include machine learning tech-
niques, such as neural networks (SNAP; [50]), random forests
(MutPred, nsSNPAnalyzer [51, 41]), and support vector ma-
chines (PhD-SNP, SNPs&GO, SNPs&GO3d [47, 52]), empir-
ical rules (PolyPhen [53], MutationAssessor [54]), Bayesian
methods (PolyPhen-2 [39]), and others (SIFT, Panther,
MAPP; [55, 38, 56]). Machine learning has been shown to
be a convenient tool for protein function predictions as it uses
several criteria to infer output without explicitly assuming a
pre-determined model [57]. However, supervised methods are
highly dependent on the training datasets that are used, and to
increase their reliability, large and accurate datasets are nor-
mally required. In many cases, the datasets contain mutations
annotated as Bpathogenic^ and Bneutral,^ but this information
often conflicts with manual annotations made by experts.
Here, we discuss the major approaches and methods used by
prediction tools.

Sequence conservation methods

One of the approaches most commonly used to estimate the
effects of mutations is sequence comparisons of many homol-
ogous proteins. These approaches employ the concept of nat-
ural select ion, which states that organisms with
malfunctioning proteins do not survive; therefore, mutations
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that have a significant adverse impact are not normally detect-
ed in a healthy population. Thus, amino acid substitutions in
highly conserved positions in the sequences are expected to be
deleterious with a high probability, while amino acid substitu-
tions in variable positions in the sequences are usually not so
critical. Ideally, only true orthologs at high evolutionary dis-
tances should be compared to ensure that the selected homol-
ogous sequences have accumulated enough Bneutral^ muta-
tions. Most of the tools that employ sequence conservation
methods include paralogs in the total set of homologous se-
quences, which may confound the predictions of conserved
residues only among the orthologs [56, 58]. Sequence com-
parisons are performed using multiple sequence alignments
(MSAs) of homologous proteins. Numerous methods for
MSA are available, but the alignment of distantly related pro-
teins remains a challenging computational task. The common-
ly used progressive alignment methods do not guarantee an
optimal solution and have had limited success in aligning
divergent sequences [59]. While it is recommended [60]
that many homologs should be included to build a reason-
able MSA (usually 100 or more sequences), it is not al-
ways possible to collect enough high sequence identity
orthologs, and the inclusion of sequences with low simi-
larities introduces noise that lowers the confidence of pre-
dictions based on MSAs. Paralogous sequences are some-
times added to capture a sufficiently diverse sample of
evolutionary variation; however, because paralogs may
have different functions, this approach can reduce the sen-
sitivity of the method. The selection of homologs is still a
double-edged sword, and the way that a method handles
the problem can influence its efficiency. Some tools take
an MSA as input and play no part in selecting the

homologs (MAPP, Align-GVGD [56, 61]), while others
can either generate an MSA automatically or take one
provided by the user (PolyPhen-2, PMut, SIFT [62, 38,
39]). To generate an MSA, basic automated tools search
protein databases such as UniProt or NCBI nr [63, 64]
using BLAST [65] programs with predefined search op-
tions (E-value, sequence identity) or employ information
from the Pfam database of protein families [66]. The most
widely used programs for MSAs include ClustalW,
Clustal Omega [67], DIALIGN-T [68], MAFFT [69],
MUSCLE [70], PROBCONS [71], and T-COFFEE [72].
Some tools combine several methods to generate a single
output, such as the web-based, user-friendly M-Coffee
[73], which allows users to select the alignment methods
to combine. It has been reported that MSA tools are prone
to errors, which can lead to incorrect phylogenies
[74–76]. Significant efforts have been made to character-
ize the accuracy of the various MSA methods [59,
77–81], but no one program is ideal; therefore, it is ad-
visable to use more than one method to obtain a reliable
MSA, especially for the distantly related proteins.

Having constructed an MSA, heuristic models can be used
to calculate positional conservation and estimate the possible
effect of mutations. Most of the tools use amino acid substi-
tution matrices such as BLOSUM, PAM, or PHAT combined
with statistical models to perform this task. These matrices
reflect the observed frequencies of amino acid substitutions
in MSAs [82, 83]]. BLOSUM matrices (e.g., BLOSUM62 or
BLOSUM45) are derived using different evolutionary dis-
tances in an MSA. BLOSUM62, for example, is built using
amino acid sequences with similarities of <62 %. The average
BLOSUM62 score is lower for pathogenic substitutions than

Fig. 1 General workflow
employed by mutation effect
prediction tools
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for neutral substitutions [84, 85]. For PAM matrices, the
higher the matrix number, the more diverse the proteins used

to build it (e.g., PAM-Xmeans that Xmutations per 100 amino
acids may have happened). Many of the existing tools do not

Table 1 Popular mutation effect prediction tools and the methods
employed. a AS alignment score; b NN neural networks; c HMM hidden
Markov models; d RF random forests; e SVM support vector machine; f

BC Bayesian classification; g DT decision tree; h ILP inductive logic

programming; i nsSNP nonsynonymous SNP; j NFS indels non-
frameshifting insertions and deletions; k FS indels frameshifting
insertions and deletions

Method Aimed at Based on  

Conservation 

Analysis 

Structure 

Attributes 

Sequence 

Attributes 

SIFT nsSNP
i
 AS

a

PMut nsSNP NN
b

Panther nsSNP HMM
c

nsSNPAnalyzer nsSNP RF
d

MAPP nsSNP AS 

Align-GVGD nsSNP AS     

PhD-SNP nsSNP SVMe

SNAP nsSNP NN 

Parepro nsSNP SVM 

SNP&GO nsSNP SVM 

MutPred nsSNP RF 

PolyPhen-2 nsSNP BC
f

MutationTaster nsSNP BC 

SNP&GO 3d nsSNP SVM 

Mutation 

Assessor 

nsSNP 
AS 

Hansa nsSNP SVM 

PROVEAN 
nsSNP, 

NFS indelsj
AS 

FATHMM nsSNP HMM 

VEST3 nsSNP RF 

CADD 
nsSNP, NFS indels, 

FS indels
k

SVM 

SIFT indel FS indels DTg

KD4i NFS indels ILPh

DDig-in 
NFS indels 

FS indels 
SVM 

PaPI 
nsSNP, NFS indels, 

FS indels 
RF 

HMMvar 
NFS indels, 

FS indels
k

HMM 
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calculate the conservation scores but use SIFT [51, 50] or
Panther [86] scores instead, which generate reliable classifica-
tions based on the sequence conservation alone.

Structure-based methods

The 3D structure of a protein is the basis of its function. Nu-
merous mutations involved in genetic diseases are known to
affect the stability of protein structure [87–89]. Therefore, a
number of protein structure stability analysis tools have been
developed (reviewed in detail in [90]). Structural changes can
alter protein–protein, protein–ligand, and protein–DNA inter-
actions, which can also impact on the function of a protein.
However, not much attention has been paid to such com-
plexes, mainly because of the lack of an adequate amount of
experimental data. The majority of structure stability predic-
tion methods are based on supervised learning and are there-
fore highly dependent on the training datasets used. Databases
with experimental thermodynamic parameters for both wild-
type and mutant proteins, such as ProTherm [91], ProNIT
[92], and more recently SKEMPI [93], which describes pro-
tein–protein complexes, have helped overcome the problem of
data availability.

Protein structure stability prediction tools have implement-
ed both statistical and physics-based free-energy potentials. A
general equation that has been used to calculate protein free-
energy changes as the result of a mutation is:

G ¼ α ΔV vdWð Þ þ β ΔV elecð Þ þ γ ΔSAð Þ þ δ;

where α is the contribution of the van der Waals energy, β is
the contribution of the electrostatic energy, and γ is the con-
tribution of the nonpolar component of the solvation energy,
which are calculated for both the wild-type and mutant protein
structures. This formula can be extended to include contribu-
tions from hydrophobic groups, hydrogen bonds, steric over-
laps between atoms in the structure, and entropy changes, as
has been done in FoldX [94]. Other packages that use free-
energy potentials to measure protein destabilization caused by
a mutation include Eris [95], EGAD [96], TINKER [97], and
Concoord [98]. Apart from statistical or biophysical methods
to calculate free-energy potentials, an alternative approach is
to represent the structure as a graph based on amino acid
interactions [99, 100]. For instance, the Bongo method [99]
predicts the structural effects of nsSNPs by evaluating graph-
theoretic metrics and identifying key residues using a vertex
cover algorithm. Distance patterns can be extracted from these
graphs and summarized in a structural signature that can then
be used as evidence to train predictive models. Da Silveira
et al. [101] first reported the use of inter-residue distance pat-
terns or signatures to define protein contacts and demonstrated
that they were conserved across protein folds. The Cutoff
Scanning Matrix is a protein structural signature [102] that

has been used successfully in large-scale protein function pre-
dictions and structural classification tasks. Pires et al. [103]
extended the inter-residue signature to the atomic level
and successfully applied it in large-scale receptor-based
ligand predictions.

Despite significant advances in methods to estimate protein
stability changes caused by a mutation, they have rarely been
implemented in missense variant classification tools. Al-
though information about stability changes upon mutation
could be useful in predicting the effect of a mutation on pro-
tein function, the degree of a stability change is likely to vary
significantly among different proteins. Moreover, these algo-
rithms return structural information that has to be processed by
the user to make an informed assessment of pathogenicity.
Thus, an in-depth understanding of these parameters is
required for proper interpretation of the structural infor-
mation. In addition, protein stability prediction tools
have demonstrated a low correlation with high-quality
experimental data [104]. Thus, methods based on the
3D-structural stability of proteins require further devel-
opment before they can be widely used to predict the
possible effect of protein structural variations on protein
function.

PolyPhen-2 [40] is a widely used tool that predicts the
impact of an amino acid change on the structure and func-
tion of a protein using simple geometric features, such as
Ramachandran plots, changes in solvent-accessible sur-
face areas, numbers of (side chain)–(side chain) and (main
chain)–(side chain) H-bonds formed, distances to the clos-
est atoms of other Protein Data Bank (PDB; www.rcsb.
org; [105]) chains, and distances to important sites.
Another popular tool that also employs protein 3D
structure is SNP&GO3d [47], which uses an amino acid
environment derived from the protein structure, with
further support vector machine implementation. Protein
structures are usually obtained from the PDB, and
homology modeling is used to predict the 3D structures
of proteins that are not in the PDB. PolyPhen-2 can read-
ily map the corresponding positions in an amino acid se-
quence to a selected PDB structure, which is a nontrivial
task when dealing with significant amounts of sequence
and structure data. Predictors based on structural features
alone have been outcompeted [106]. Although the num-
bers of experimentally determined 3D structures have in-
creased significantly over the last several years [2], one
protein structure is often not enough to accurately
determineprotein function. Posttranslational modifications
are vital features of a protein that may be affected by
sequence changes [107] but cannot be detected by struc-
ture methods. Nevertheless, the combination of protein
structure predictions with amino acid sequence analysis
can significantly increase the accuracy of structure–func-
tion prediction methods [108].
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Sequence-based methods

Amino acid sequences can provide diverse information about
protein properties. Physicochemical parameters of the resi-
dues in a sequence, including hydrophobicity [109–115],
charge, polarity, dissociation constants for COOH– and
NH3– groups, molecular weight, and volume, are the most
commonly used. By calculating changes in the physicochem-
ical properties upon a mutation, it is possible to predict the
potential effect of missense substitutions. The Grantham
chemical difference matrix [116], which calculates differences
in amino acid polarity, volume, and side-chain atomic compo-
sition (defined as the atomic weight ratio of hetero (non-
carbon) elements in end groups or rings to carbons in the side
chains), has been implemented in mutation effect prediction
tools [61]. The average Grantham difference for pathogenic
substitutions has been found to be higher than the average
Grantham difference for neutral substitutions [117, 85, 118].
Apart from calculating physicochemical properties of amino
acids, tools have been developed to predict secondary struc-
ture (SS), protein disorder segments, and transmembrane and
signal domains based on an amino acid sequence. Predictions
of the SS of proteins improved substantially in the 1990s and
2000s as evolutionary information from the diverse proteins
belonging to the same structural family was included in the
prediction tools. However, with the exponential growth in the
numbers of X-ray protein structures, SS prediction tools were
overshadowed by direct protein structure analysis programs,
although the prediction of SS is still widely used because of its
simplicity. Other less commonly used structural features that
can be predicted based on an amino acid sequence alone in-
clude stability change [119, 120], solvent accessibility [121],
coiled-coil structures [122], and B-factors [123]. Transmem-
brane and signal domain prediction tools are of particular in-
terest because amino acid changes in these domains may im-
ply a more severe restriction on differences in physicochemi-
cal properties between the wild-type and mutated amino acid.
For example, changes in the hydrophilic or charged amino
acids in a transmembrane domain may impact on the protein
segments embedded in a membrane. Sequences are assumed
to be disordered when they lack an ordered SS element. Dis-
ordered proteins, also known as Bintrinsically disordered
proteins^ [124] or intrinsically unstructured proteins [125,
126], may be involved in protein–DNA binding, posttransla-
tional modifications, phosphorylation, signaling, and regula-
tion [127–129]. By analyzing the distribution of mutations
within ordered and disordered segments of a sequence, Pajkos
et al. [130] showed that cancer-associated mutations were
more likely to occur in ordered regions, while neutral poly-
morphisms were more likely to occur in disordered segments.
This finding clearly demonstrates the benefit of taking disor-
der levels into account when predicting the effects of amino
acid mutations. Moreover, mutations themselves may

introduce disorder into an ordered wild-type protein, causing
incorrect folding. A large number of disorder predictors have
been developed [131] that are based on protein amino acid
composition, amino acid energy profiles and physicochemical
properties, specific sequence patterns, as well as protein X-ray
structures, and they are implemented in the protein MSA, SS
prediction, and function annotation tools.

Additionally, specialized databases that focus on the anno-
tation of the protein domain architecture, such as the popular
Pfam database, have also been used for mutation effect assess-
ment, since variations in functionally important regions have a
higher probability of being pathogenic. Protein databases can
also be used to derive posttranslational modifications, disul-
fide bonds, active sites, protein–protein interactions, and other
sites that may bemore susceptible to severe mutations because
of their direct control of a protein’s function. Since these fea-
tures are defined by the protein sequences alone, there are
methods to predict them based on amino acid composition
[132–134, 123]. Some of these methods have been imple-
mented in mutation effect prediction tools.

Understanding the effect of short insertions and deletions

Another important aspect to consider is short insertions and
deletions. One significant limitation of the majority of in silico
methods is that they usually aim at the single amino acid
substitutions and do not deal with sequence variations such
as small indels, even though these are known to account for
almost a quarter of existing Mendelian disorders [37]. The
majority of them are FS indels, the impact of which is expect-
ed to be pathological, and only two methods [135, 136] have
been developed for them. At the same time, significantly more
attention has been paid to studying the effect of NFS indels.
However, development of the tools needed to accurately pre-
dict the effects of NFS indels is complicated due to a small
number of exonic indels associated with human diseases (ap-
proximately 2,500 variants in the HGMD), especially the pu-
tatively neutral ones. The latter are usually obtained from the
1000 Genomes Project and account for approximately 1,500
variants [137]. Assuming the number of descriptors usually
taken into account for machine learning procedures, training
sets are usually not sufficient, as in the case of nsSNP. Never-
theless, several attempts to take into account this important
class of genomic variations have been implemented over the
last few years [60, 136–142]. These are also based on the
descriptor collections and applications of classifiers as well
as single-score MSA-based functions. For example,
PROVEAN [60] introduced an alignment-based score as a
measure to estimate the damaging effects of indels. Zhao
et al. [137] developed a support-vector-machine-based meth-
od, DDIG-in, for predicting disease-causing NFS indels.
Zhang et al. [143] developed a new classification method to
distinguish deleterious and neutral NFS indels by combining
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network and traditional sequential features of the environment
surrounding the indels. Limongelli et al. [142] employed
PolyPhen-2 and SIFT to predict the impact of indels via pseu-
do amino acid composition. In contrast to nsSNP effect pre-
diction tools, these basically use two sequences as input in-
stead of the sequence and point mutation. This makes it pos-
sible to judge not only the effects of indels but also those of the
mutations, which can be useful in certain cases since multiple
mutations may occur in the protein and predicting the effect of
each of them can be confusing [140].

Limitations and future directions

Automated predictions of the possible impact of amino acid
substitutions on protein function are of interest to researchers
and medical doctors because of their importance in the anno-
tation of the large genetic variation datasets that are being
produced by modern sequencing technologies, as well as their
application in identifying variants that cause rare Mendelian
disorders [144] and for profiling the spectrum of variations
uncovered by deep sequencing of large groups of individuals
[145]. Although mutation effect prediction tools often can
distinguish Mendelian-disorder-associated mutations from
neutral ones, this is usually achieved by assigning a special
score that should reflect the degree of function change. These
approaches use datasets to train the methods. OMIM, HGMD,
and Swiss-Prot are among the most widely used sources of
deleterious mutations, and these databases have largely been
created by utilizing data from the scientific literature. If a
mutation is identified in a patient suffering from an inherited
disease, it is often assumed that themutation is associated with
the disease and, unless other suspicious mutations are found,
the disease is considered to be caused by a single genome
sequence mutation. As a consequence of these assumptions,
misinterpretations of the significance of a prediction often
occur. First, even though a mutation may reduce the activity
of a protein, it may be fixed in a certain population because of
possible advantageous effects. The E6V substitution in human
β-globin is a good example of this. The E6V mutation causes
the hemoglobin aggregation that underlies sickle anemia and
should be defined as deleterious [146]. However, the predic-
tions for this mutation diverge among the tools, with the ma-
jority of them incorrectly predicting that this substitution is
benign. The effect of this mutation is complicated by the fact
that heterozygous carriers show resistance to malaria [147].
Second, apart from the case of overdominant selection, chang-
es in protein function caused by environmental factors and
complex diseases such as diabetes and hypertension are not
generally considered in mutation effect prediction tools. Com-
plex diseases are the consequences of numerous genetic var-
iations as well as lifestyle and environmental factors and, im-
portantly, it is often the case that not every mutation that con-
tributes to a complex disease leads to the loss of protein

activity. Thus, employing mutation effect prediction tools in
complex disease applications is senseless.

Another limitation is that most of the existing methods
for predicting the functional effects of mutations usually
divide the variants into two categories: neutral (non-dis-
ease-associated) and deleterious (disease-associated). Ap-
plications in cancer genomics have revealed that two cat-
egories are not enough to functionally characterize single
mutations [148]. Reva et. al. [54] have successfully real-
ized the idea of categorizing mutations into five types: (i)
Bgain of function^ mutations that convert genes into on-
cogenes, (ii) Bloss of function^ mutations that refer to
pathogenic mutations, (iii) Bdrug resistant^ mutations that
overcome drug effects, (iv) Bswitch of function^ muta-
tions, which are intermediate between (i) and (ii), and
(v) Bneutral^ mutations. Such categorization is supposed
to be more realistic than the Btwo types^ model because
different variants usually have different impacts on a pro-
tein’s function. Nevertheless, this idea of increasing the
number of categories is yet to find wide application in
Mendelian disease diagnostics.

Several possible directions have been explored to develop
tools that allow more accurate predictions of the functional
significance of mutations. These strategies include (i) the use
of more relevant features that better describe the properties of
substitutions (e.g., sequence or sequence-derived features,
structures, annotations from databases, physicochemical prop-
erties, computed scores, families, and networks) [149]; (ii)
selecting effective algorithms such as ensemble/multi-task-
learning approaches to train classifiers with improved perfor-
mance; (iii) collecting more insightful information from dif-
ferent sources and manually curating high-quality benchmark
datasets; (iv) developing prediction methods for in-frame
indels; (v) introducing new quantitative confidence scores that
evaluate the quality of predictions; (vi) developing user-
friendly tools or web servers that allow both single and batch
queries; and (vii) creating pipelines that combine different
tools that use different approaches (as has been done, for in-
stance, in Condel [31], Meta-SNP [150], PredictSNP [151],
and PON-P [152]).

As a consequence of codon degeneracy, not every DNA
mutation results in an amino acid change. Such synonymous
mutations are usually omitted in studies of inherited disease
causing mutations. Although their significance and roles in
trait development are unclear, there are several assumptions
regarding the possible ways in which synonymous SNPs can
initiate disease development. These include (i) alternative
splicing [153], (ii) microRNA binding efficiency [154], and
(iii) mRNA secondary structure differences resulting in a de-
crease in translation efficiency [155, 156] or protein
misfolding caused by an altered translation speed [157].
Moreover, it was shown that some synonymous sites are high-
ly conserved [158], indicating that conservation analysis at the

J Mol Model (2015) 21: 251 Page 9 of 14 251



DNA level may also lead to new possibilities for mutation
effect predictions.

It is also important to mention that the first Critical
Assessment of Genome Interpretation (CAGI, http://
genomeinterpretation.org/) experiment was organized in
2010. CAGI is an international effort to assess in silico
tools for predicting the phenotypic impacts of genomic
variations and to inform future research directions. In
this experiment, the organizers provided participants
with datasets of genetic variants to use for predictions of
their functional impact. The predictions were evaluated
against experimental characterizations by independent
assessors. Each CAGI experiment culminates with a
community workshop and publications to disseminate
results. Three rounds of predictions (2010, 2011, 2012–
2013) have now been carried out and have proven to be a
great success [159]. Several available predictors
performed well for disease and functional predictions. It
is clear that CAGI will play a very important role in
directing future efforts aimed at improving the quality of
mutation effect prediction methods.

Acknowledgments This study was partially supported by RFBR, re-
search project no. 15-04-04730, and grant no. RFMEFI60714X0098.

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. LevittM (2009)Nature of the protein universe. Proc Natl Acad Sci
USA 106(27):11079–11084. doi:10.1073/pnas.0905029106

2. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A (2014) Trends in
structural coverage of the protein universe and the impact of the
Protein Structure Initiative. Proc Natl Acad Sci USA 111(10):
3733–3738. doi:10.1073/pnas.1321614111

3. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation
discovery and genotyping. Nat Rev Genet 12(5):363–376. doi:10.
1038/nrg2958

4. Giordano TJ (2014) The Cancer Genome Atlas research network:
a sight to behold. Endocr Pathol 25(4):362–365. doi:10.1007/
s12022-014-9345-4

5. The International Cancer Genome Consortium, Hudson T et al
(2010) International network of cancer genome projects. Nature
464(7291):993–998. doi:10.1038/nature08987

6. 1000 Genomes Project Consortium, Abecasis GR, Auton A,
Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang
HM,Marth GT, McVean GA (2012) An integrated map of genetic
variation from 1,092 human genomes. Nature 491(7422):56–65.
doi:10.1038/nature11632

7. Ng SB, Nickerson DA, Bamshad MJ, Shendure J (2010)
Massively parallel sequencing and rare disease. Hum Mol Genet
19(R2):R119–R124. doi:10.1093/hmg/ddq390

8. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent
KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J,
Bamshad MJ (2010) Exome sequencing identifies the cause of a
Mendelian disorder. Nat Genet 42(1):30–35. doi:10.1038/ng.499

9. Thomas PD, Kejariwal A (2004) Coding single-nucleotide poly-
morphisms associated with complex vs. Mendelian disease: evo-
lutionary evidence for differences in molecular effects. Proc Natl
Acad Sci USA 101(43):15398–15403. doi:10.1073/pnas.
0404380101

10. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013)
Rare-disease genetics in the era of next-generation sequencing:
discovery to translation. Nat Rev Genet 14(10):681–691. doi:10.
1038/nrg3555

11. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN
(2014) The Human Gene Mutation Database: building a compre-
hensive mutation repository for clinical and molecular genetics,
diagnostic testing and personalized genomic medicine. Hum
Genet 133(1):1–9. doi:10.1007/s00439-013-1358-4

12. Bi XH, Lu CM, Liu Q, Zhang ZX, Zhao HL, Yu J, Zhang JW
(2012) A 14 bp indel variation in the NCX1 gene modulates the
age at onset in late-onset Alzheimer’s disease. J Neural Transm
119(3):383–386. doi:10.1007/s00702-011-0696-4

13. Dong B, Chen J, Zhang X, Pan Z, Bai F, Li Y (2013) Two novel
PRP31 premessenger ribonucleic acid processing factor 31 homo-
log mutations including a complex insertion-deletion identified in
Chinese families with retinitis pigmentosa. Mol Vis 19:2426–
2435

14. Yu Q, Zhou C, Wang J, Chen L, Zheng S, Zhang J (2013) A
functional insertion/deletion polymorphism in the promoter of
PDCD6IP is associated with the susceptibility of hepatocellular
carcinoma in a Chinese population. DNA Cell Biol 32(8):451–
457. doi:10.1089/dna.2013.2061

15. Glanzmann B, Lombard D, Carr J, Bardien S (2014) Screening of
two indel polymorphisms in the 5′UTR of the DJ-1 gene in South
African Parkinson’s disease patients. J Neural Transm 121(2):
135–138. doi:10.1007/s00702-013-1094-x

16. Ross JS, Wang K, Al-Rohil RN, Nazeer T, Sheehan CE, Otto GA,
He J, Palmer G, Yelensky R, Lipson D, Ali S, Balasubramanian S,
Curran JA, Garcia L, Mahoney K, Downing SR, Hawryluk M,
Miller VA, Stephens PJ (2014) Advanced urothelial carcinoma:
next-generation sequencing reveals diverse genomic alterations
and targets of therapy. Mod Pathol: Off J US Can Acad Pathol
Inc 27(2):271–280. doi:10.1038/modpathol.2013.135

17. Wrobel JA, Chao SF, Conrad MJ, Merker JD, Swanstrom R,
Pielak GJ, Hutchison CA 3rd (1998) A genetic approach for iden-
tifying critical residues in the fingers and palm subdomains of
HIV-1 reverse transcriptase. Proc Natl Acad Sci USA 95(2):
638–645

18. Zwick ME, Cutler DJ, Chakravarti A (2000) Patterns of genetic
variation in Mendelian and complex traits. Annu Rev Genomics
Hum Genet 1:387–407. doi:10.1146/annurev.genom.1.1.387

19. Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores
T, HollsteinM, Harris CC,Montesano R (1998) IARC database of
p53 gene mutations in human tumors and cell lines: updated com-
pilation, revised formats and new visualisation tools. Nucleic
Acids Res 26(1):205–213

20. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant
functional genomics. Annu Rev Plant Biol 54:375–401. doi:10.
1146/annurev.arplant.54.031902.135009

21. Johnston JJ, Biesecker LG (2013) Databases of genomic variation
and phenotypes: existing resources and future needs. Hum Mol
Genet 22(R1):R27–R31. doi:10.1093/hmg/ddt384

22. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA
(2005) Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic
Acids Res 33:D514–D517. doi:10.1093/nar/gki033

23. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski
EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic
variation. Nucleic Acids Res 29(1):308–311

251 Page 10 of 14 J Mol Model (2015) 21: 251

http://genomeinterpretation.org/
http://genomeinterpretation.org/
http://dx.doi.org/10.1073/pnas.0905029106
http://dx.doi.org/10.1073/pnas.1321614111
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1007/s12022-014-9345-4
http://dx.doi.org/10.1007/s12022-014-9345-4
http://dx.doi.org/10.1038/nature08987
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1093/hmg/ddq390
http://dx.doi.org/10.1038/ng.499
http://dx.doi.org/10.1073/pnas.0404380101
http://dx.doi.org/10.1073/pnas.0404380101
http://dx.doi.org/10.1038/nrg3555
http://dx.doi.org/10.1038/nrg3555
http://dx.doi.org/10.1007/s00439-013-1358-4
http://dx.doi.org/10.1007/s00702-011-0696-4
http://dx.doi.org/10.1089/dna.2013.2061
http://dx.doi.org/10.1007/s00702-013-1094-x
http://dx.doi.org/10.1038/modpathol.2013.135
http://dx.doi.org/10.1146/annurev.genom.1.1.387
http://dx.doi.org/10.1146/annurev.arplant.54.031902.135009
http://dx.doi.org/10.1146/annurev.arplant.54.031902.135009
http://dx.doi.org/10.1093/hmg/ddt384
http://dx.doi.org/10.1093/nar/gki033


24. Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a
database of single nucleotide polymorphisms. Nucleic Acids Res
28(1):352–355

25. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW (2014)
The Database of Genomic Variants: a curated collection of struc-
tural variation in the human genome. Nucleic Acids Res 42:D986–
D992. doi:10.1093/nar/gkt958

26. UniProt Consortium (2008) The Universal Protein Resource
(UniProt). Nucleic Acids Res 36:D190–D195. doi:10.1093/nar/
gkm895

27. UniProt Consortium (2015) UniProt: a hub for protein informa-
tion. Nucleic Acids Res 43:D204–D212. doi:10.1093/nar/gku989

28. Kawabata T, Ota M, Nishikawa K (1999) The Protein Mutant
Database. Nucleic Acids Res 27(1):355–357

29. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of
mutation pathogenicity prediction methods on missense variants.
Hum Mutat 32(4):358–368. doi:10.1002/humu.21445

30. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N,
Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY,
Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell
PJ (2015) COSMIC: exploring the world’s knowledge of somatic
mutations in human cancer. Nucleic Acids Res 43:D805–D811.
doi:10.1093/nar/gku1075

31. Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assess-
ment of the outcome of nonsynonymous SNVs with a consensus
deleteriousness score, Condel. Am J Hum Genet 88(4):440–449.
doi:10.1016/j.ajhg.2011.03.004

32. Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, LeeM,
Popova N, Sharopova N, Kimura M, Feolo M (2014) NCBI’s
Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids
Res 42:D975–D979. doi:10.1093/nar/gkt1211

33. International HapMap Consortium, Frazer KA et al (2007) A sec-
ond generation human haplotype map of over 3.1 million SNPs.
Nature 449(7164):851–861. doi:10.1038/nature06258

34. Reich DE, Gabriel SB, Altshuler D (2003) Quality and complete-
ness of SNP databases. Nat Genet 33(4):457–458. doi:10.1038/
ng1133

35. Mitchell AA, Zwick ME, Chakravarti A, Cutler DJ (2004)
Discrepancies in dbSNP confirmation rates and allele frequency
distributions from varying genotyping error rates and patterns.
Bioinformatics 20(7):1022–1032. doi:10.1093/bioinformatics/
bth034

36. Musumeci L, Arthur JW, Cheung FS, Hoque A, Lippman S,
Reichardt JK (2010) Single nucleotide differences (SNDs) in the
dbSNP database may lead to errors in genotyping and haplotyping
studies. Hum Mutat 31(1):67–73. doi:10.1002/humu.21137

37. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN
(2012) The Human Gene Mutation Database (HGMD) and its
exploitation in the fields of personalized genomics and molecular
evolution. Curr Protoc Bioinformatics Chapter 1:Unit 1.13. doi:
10.1002/0471250953.bi0113s39

38. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes
that affect protein function. Nucleic Acids Res 31(13):3812–3814

39. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional
effect of human missense mutations using PolyPhen-2. Curr
Protoc Hum Genet Chapter 7:Unit 7.20. doi:10.1002/
0471142905.hg0720s76

40. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova
A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and
server for predicting damaging missense mutations. Nat Methods
7(4):248–249. doi:10.1038/nmeth0410-248

41. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN,
Mooney SD, Radivojac P (2009) Automated inference of molec-
ular mechanisms of disease from amino acid substitutions.
Bioinformatics 25(21):2744–2750. doi:10.1093/bioinformatics/
btp528

42. Cotton RG, Auerbach AD, Beckmann JS, Blumenfeld OO,
Brookes AJ, Brown AF, Carrera P, Cox DW, Gottlieb B,
Greenblatt MS, Hilbert P, Lehvaslaiho H, Liang P, Marsh S,
Nebert DW, Povey S, Rossetti S, Scriver CR, Summar M, Tolan
DR, Verma IC, Vihinen M, den Dunnen JT (2008)
Recommendations for locus-specific databases and their curation.
Hum Mutat 29(1):2–5. doi:10.1002/humu.20650

43. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature
extensions and suggestions to describe complex mutations: a dis-
cussion. Hum Mutat 15(1):7–12. doi:10.1002/(SICI)1098-
1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N

44. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den
Dunnen JT (2011) LOVD v. 2.0: the next generation in gene
variant databases. Hum Mutat 32(5):557–563. doi:10.1002/
humu.21438

45. LandrumMJ, Lee JM, Riley GR, JangW, RubinsteinWS, Church
DM, Maglott DR (2014) ClinVar: public archive of relationships
among sequence variation and human phenotype. Nucleic Acids
Res 42:D980–D985. doi:10.1093/nar/gkt1113

46. Yip YL, Famiglietti M, Gos A, Duek PD, David FP, Gateau A,
Bairoch A (2008) Annotating single amino acid polymorphisms in
the UniProt/Swiss-Prot knowledgebase. Hum Mutat 29(3):361–
366. doi:10.1002/humu.20671

47. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insur-
gence of human genetic diseases associated to single point protein
mutations with support vector machines and evolutionary infor-
mation. Bioinformatics 22(22):2729–2734. doi:10.1093/
bioinformatics/btl423

48. Tian J, WuN, Guo X, Guo J, Zhang J, Fan Y (2007) Predicting the
phenotypic effects of non-synonymous single nucleotide polymor-
phisms based on support vector machines. BMCBioinformatics 8:
450. doi:10.1186/1471-2105-8-450

49. Hicks S, Wheeler DA, Plon SE, Kimmel M (2011) Prediction of
missense mutation functionality depends on both the algorithm
and sequence alignment employed. Hum Mutat 32(6):661–668.
doi:10.1002/humu.21490

50. Bromberg Y, Rost B (2007) SNAP: predict effect of non-
synonymous polymorphisms on function. Nucleic Acids Res
35(11):3823–3835. doi:10.1093/nar/gkm238

51. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying
disease-associated nonsynonymous single nucleotide polymor-
phisms. Nucleic Acids Res 33:W480–W482. doi:10.1093/nar/
gki372

52. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R
(2009) Functional annotations improve the predictive score of
human disease-related mutations in proteins. Hum Mutat 30(8):
1237–1244. doi:10.1002/humu.21047

53. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous
SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

54. Reva B, Antipin Y, Sander C (2011) Predicting the functional
impact of protein mutations: application to cancer genomics.
Nucleic Acids Res 39:e118. doi:10.1093/nar/gkr407

55. Mi H, Guo N, Kejariwal A, Thomas PD (2007) PANTHER ver-
sion 6: protein sequence and function evolution data with expand-
ed representation of biological pathways. Nucleic Acids Res 35:
D247–D252. doi:10.1093/nar/gkl869

56. Stone EA, Sidow A (2005) Physicochemical constraint violation
bymissense substitutions mediates impairment of protein function
and disease severity. Genome Res 15(7):978–986. doi:10.1101/gr.
3804205

57. Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I,
Lozano JA, Armananzas R, Santafe G, Perez A, Robles V (2006)
Machine learning in bioinformatics. Brief Bioinform 7(1):86–112

58. Ng PC, Henikoff S (2006) Predicting the effects of amino acid
substitutions on protein function. Annu Rev Genomics Hum
Genet 7:61–80. doi:10.1146/annurev.genom.7.080505.115630

J Mol Model (2015) 21: 251 Page 11 of 14 251

http://dx.doi.org/10.1093/nar/gkt958
http://dx.doi.org/10.1093/nar/gkm895
http://dx.doi.org/10.1093/nar/gkm895
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1002/humu.21445
http://dx.doi.org/10.1093/nar/gku1075
http://dx.doi.org/10.1016/j.ajhg.2011.03.004
http://dx.doi.org/10.1093/nar/gkt1211
http://dx.doi.org/10.1038/nature06258
http://dx.doi.org/10.1038/ng1133
http://dx.doi.org/10.1038/ng1133
http://dx.doi.org/10.1093/bioinformatics/bth034
http://dx.doi.org/10.1093/bioinformatics/bth034
http://dx.doi.org/10.1002/humu.21137
http://dx.doi.org/10.1002/0471250953.bi0113s39
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1093/bioinformatics/btp528
http://dx.doi.org/10.1093/bioinformatics/btp528
http://dx.doi.org/10.1002/humu.20650
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1%3C7::AID-HUMU4%3E3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1%3C7::AID-HUMU4%3E3.0.CO;2-N
http://dx.doi.org/10.1002/humu.21438
http://dx.doi.org/10.1002/humu.21438
http://dx.doi.org/10.1093/nar/gkt1113
http://dx.doi.org/10.1002/humu.20671
http://dx.doi.org/10.1093/bioinformatics/btl423
http://dx.doi.org/10.1093/bioinformatics/btl423
http://dx.doi.org/10.1186/1471-2105-8-450
http://dx.doi.org/10.1002/humu.21490
http://dx.doi.org/10.1093/nar/gkm238
http://dx.doi.org/10.1093/nar/gki372
http://dx.doi.org/10.1093/nar/gki372
http://dx.doi.org/10.1002/humu.21047
http://dx.doi.org/10.1093/nar/gkr407
http://dx.doi.org/10.1093/nar/gkl869
http://dx.doi.org/10.1101/gr.3804205
http://dx.doi.org/10.1101/gr.3804205
http://dx.doi.org/10.1146/annurev.genom.7.080505.115630


59. Pervez MT, Babar ME, Nadeem A, Aslam M, Awan AR, Aslam
N, Hussain T, Naveed N, Qadri S, Waheed U, Shoaib M (2014)
Evaluating the accuracy and efficiency ofmultiple sequence align-
ment methods. Evol Bioinformatics Online 10:205–217. doi:10.
4137/EBO.S19199

60. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012)
Predicting the functional effect of amino acid substitutions and
indels. PLoS One 7:e46688. doi:10.1371/journal.pone.0046688

61. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T,
Samollow PB, de Silva D, Zharkikh A, Thomas A (2006)
Comprehensive statistical study of 452 BRCA1 missense substi-
tutions with classification of eight recurrent substitutions as neu-
tral. J Med Genet 43(4):295–305. doi:10.1136/jmg.2005.033878

62. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X,
Orozco M (2005) PMUT: a web-based tool for the annotation of
pathological mutations on proteins. Bioinformatics 21(14):3176–
3178. doi:10.1093/bioinformatics/bti486

63. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence database
of genomes, transcripts and proteins. Nucleic Acids Res 33:
D501–D504. doi:10.1093/nar/gki025

64. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference se-
quences (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res 35:D61–
D65. doi:10.1093/nar/gkl842

65. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990)
Basic local alignment search tool. J Mol Biol 215(3):403–410.
doi:10.1016/S0022-2836(05)80360-2

66. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C,
Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L,
Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The
Pfam protein families database. Nucleic Acids Res 40:D290–
D301. doi:10.1093/nar/gkr1065

67. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, LiW, Lopez
R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins
DG (2011) Fast, scalable generation of high-quality protein mul-
tiple sequence alignments using Clustal Omega. Mol Syst Biol 7:
539. doi:10.1038/msb.2011.75

68. Subramanian AR,Weyer-Menkhoff J, KaufmannM,Morgenstern
B (2005) DIALIGN-T: an improved algorithm for segment-based
multiple sequence alignment. BMC Bioinformatics 6:66. doi:10.
1186/1471-2105-6-66

69. Katoh K, Standley DM (2013) MAFFT multiple sequence align-
ment software version 7: improvements in performance and us-
ability. Mol Biol Evol 30(4):772–780. doi:10.1093/molbev/
mst010

70. Edgar RC (2004) MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Res 32(5):
1792–1797. doi:10.1093/nar/gkh340

71. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005)
ProbCons: probabilistic consistency-based multiple sequence
alignment. Genome Res 15(2):330–340. doi:10.1101/gr.2821705

72. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel
method for fast and accurate multiple sequence alignment. J Mol
Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

73. Wallace IM, O’Sullivan O, Higgins DG, Notredame C (2006) M-
Coffee: combining multiple sequence alignment methods with T-
Coffee. Nucleic Acids Res 34(6):1692–1699. doi:10.1093/nar/
gkl091

74. Kim J, Ma J (2011) PSAR: measuring multiple sequence align-
ment reliability by probabilistic sampling. Nucleic Acids Res
39(15):6359–6368. doi:10.1093/nar/gkr334

75. Martin W, Roettger M, Lockhart PJ (2007) A reality check for
alignments and trees. Trends Genet 23(10):478–480. doi:10.
1016/j.tig.2007.08.007

76. Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement
prevents errors in sequence alignment and evolutionary analysis.
Science 320(5883):1632–1635. doi:10.1126/science.1158395

77. Pais FS, Ruy Pde C, Oliveira G, Coimbra RS (2014) Assessing the
efficiency of multiple sequence alignment programs. Algorithms
Mol Biol 9(1):4. doi:10.1186/1748-7188-9-4

78. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E (2006) A statis-
tical score for assessing the quality of multiple sequence align-
ments. BMC Bioinformatics 7:484. doi:10.1186/1471-2105-7-
484

79. Golubchik T, Wise MJ, Easteal S, Jermiin LS (2007) Mind the
gaps: evidence of bias in estimates of multiple sequence align-
ments. Mol Biol Evol 24(11):2433–2442. doi:10.1093/molbev/
msm176

80. Nuin PA, Wang Z, Tillier ER (2006) The accuracy of several
multiple sequence alignment programs for proteins. BMC
Bioinformatics 7:471. doi:10.1186/1471-2105-7-471

81. Raghava GP, Searle SM, Audley PC, Barber JD, Barton GJ (2003)
OXBench: a benchmark for evaluation of protein multiple se-
quence alignment accuracy. BMC Bioinformatics 4:47. doi:10.
1186/1471-2105-4-47

82. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices
from protein blocks. Proc Natl Acad Sci USA 89(22):10915–
10919

83. Dayhoff MOSRM (1978) A model of evolutionary change in pro-
teins. Atlas Protein Seq Structure 5:345–351

84. Ferrer-Costa C, Orozco M, de la Cruz X (2002) Characterization
of disease-associated single amino acid polymorphisms in terms
of sequence and structure properties. J Mol Biol 315(4):771–786.
doi:10.1006/jmbi.2001.5255

85. Balasubramanian S, Xia Y, Freinkman E, Gerstein M (2005)
Sequence variation in G-protein-coupled receptors: analysis of
single nucleotide polymorphisms. Nucleic Acids Res 33(5):
1710–1721. doi:10.1093/nar/gki311

86. Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD,
Hayden MR (2005) Accurate prediction of the functional signifi-
cance of single nucleotide polymorphisms and mutations in the
ABCA1 gene. PLoS Genet 1(6):e83. doi:10.1371/journal.pgen.
0010083

87. Bross P, Corydon TJ, Andresen BS, Jorgensen MM, Bolund L,
Gregersen N (1999) Protein misfolding and degradation in genetic
diseases. Hum Mutat 14(3):186–198. doi:10.1002/(SICI)1098-
1004(1999)14:3<186::AID-HUMU2>3.0.CO;2-J

88. Wang Z, Moult J (2001) SNPs, protein structure, and disease.
Hum Mutat 17(4):263–270. doi:10.1002/humu.22

89. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and
SNP selection for association studies. BMCBioinformatics 7:166.
doi:10.1186/1471-2105-7-166

90. Kucukkal TG, Yang Y, Chapman SC, Cao W, Alexov E (2014)
Computational and experimental approaches to reveal the effects
of single nucleotide polymorphisms with respect to disease diag-
nostics. Int J Mol Sci 15(6):9670–9717. doi:10.3390/
ijms15069670

91. Gromiha MM, Uedaira H, An J, Selvaraj S, Prabakaran P, Sarai A
(2002) ProTherm, thermodynamic database for proteins and mu-
tants: developments in version 3.0. Nucleic Acids Res 30(1):301–
302

92. Kumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K,
Uedaira H, Sarai A (2006) ProTherm and ProNIT: thermodynamic
databases for proteins and protein–nucleic acid interactions.
Nucleic Acids Res 34:D204–D206. doi:10.1093/nar/gkj103

93. Moal IH, Fernandez-Recio J (2012) SKEMPI: a Structural Kinetic
and Energetic database of Mutant Protein Interactions and its use
in empirical models. Bioinformatics 28(20):2600–2607. doi:10.
1093/bioinformatics/bts489

251 Page 12 of 14 J Mol Model (2015) 21: 251

http://dx.doi.org/10.4137/EBO.S19199
http://dx.doi.org/10.4137/EBO.S19199
http://dx.doi.org/10.1371/journal.pone.0046688
http://dx.doi.org/10.1136/jmg.2005.033878
http://dx.doi.org/10.1093/bioinformatics/bti486
http://dx.doi.org/10.1093/nar/gki025
http://dx.doi.org/10.1093/nar/gkl842
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/nar/gkr1065
http://dx.doi.org/10.1038/msb.2011.75
http://dx.doi.org/10.1186/1471-2105-6-66
http://dx.doi.org/10.1186/1471-2105-6-66
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1101/gr.2821705
http://dx.doi.org/10.1006/jmbi.2000.4042
http://dx.doi.org/10.1093/nar/gkl091
http://dx.doi.org/10.1093/nar/gkl091
http://dx.doi.org/10.1093/nar/gkr334
http://dx.doi.org/10.1016/j.tig.2007.08.007
http://dx.doi.org/10.1016/j.tig.2007.08.007
http://dx.doi.org/10.1126/science.1158395
http://dx.doi.org/10.1186/1748-7188-9-4
http://dx.doi.org/10.1186/1471-2105-7-484
http://dx.doi.org/10.1186/1471-2105-7-484
http://dx.doi.org/10.1093/molbev/msm176
http://dx.doi.org/10.1093/molbev/msm176
http://dx.doi.org/10.1186/1471-2105-7-471
http://dx.doi.org/10.1186/1471-2105-4-47
http://dx.doi.org/10.1186/1471-2105-4-47
http://dx.doi.org/10.1006/jmbi.2001.5255
http://dx.doi.org/10.1093/nar/gki311
http://dx.doi.org/10.1371/journal.pgen.0010083
http://dx.doi.org/10.1371/journal.pgen.0010083
http://dx.doi.org/10.1002/(SICI)1098-1004(1999)14:3%3C186::AID-HUMU2%3E3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1098-1004(1999)14:3%3C186::AID-HUMU2%3E3.0.CO;2-J
http://dx.doi.org/10.1002/humu.22
http://dx.doi.org/10.1186/1471-2105-7-166
http://dx.doi.org/10.3390/ijms15069670
http://dx.doi.org/10.3390/ijms15069670
http://dx.doi.org/10.1093/nar/gkj103
http://dx.doi.org/10.1093/bioinformatics/bts489
http://dx.doi.org/10.1093/bioinformatics/bts489


94. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L
(2005) The FoldXweb server: an online force field. Nucleic Acids
Res 33:W382–W388. doi:10.1093/nar/gki387

95. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator
of protein stability. Nat Methods 4(6):466–467. doi:10.1038/
nmeth0607-466

96. Pokala N, Handel TM (2005) Energy functions for protein design:
adjustment with protein-protein complex affinities, models for the
unfolded state, and negative design of solubility and specificity. J
Mol Biol 347(1):203–227. doi:10.1016/j.jmb.2004.12.019

97. Pappu RV, Hart RK, Ponder JW (1998) Analysis and application
of potential energy smoothing and search methods for global op-
timization. J Phys Chem B 102(48):9725–9742. doi:10.1021/
Jp982255t

98. deGroot BL, vanAalten DMF, Scheek RM, Amadei A, Vriend G,
Berendsen HJC (1997) Prediction of protein conformational free-
dom from distance constraints. Proteins 29(2):240–251. doi:10.
1002/(Sici)1097-0134(199710)29:2<240::Aid-Prot11>3.0.Co;2-
O

99. Cheng TMK, Lu YE, Vendruscolo M, Lio P, Blundell TL (2008)
Prediction by graph theoretic measures of structural effects in pro-
teins arising from non-synonymous single nucleotide polymor-
phisms. PLoS Comp Biol 4(7):e1000135. doi:10.1371/journal.
pcbi.1000135

100. Pires DEV, Ascher DB, Blundell TL (2014) mCSM: predicting the
effects of mutations in proteins using graph-based signatures.
Bioinformatics 30(3):335–342. doi:10.1093/bioinformatics/
btt691

101. da Silveira CH, Pires DEV, Minardi RC, Ribeiro C, Veloso CJM,
Lopes JCD, Meira W, Neshich G, Ramos CHI, Habesch R,
Santoro MM (2009) Protein cutoff scanning: a comparative anal-
ysis of cutoff dependent and cutoff free methods for prospecting
contacts in proteins. Proteins 74(3):727–743. doi:10.1002/Prot.
22187

102. Pires DE, de Melo-Minardi RC, dos Santos MA, da Silveira CH,
Santoro MM, Meira W Jr (2011) Cutoff Scanning Matrix (CSM):
structural classification and function prediction by protein inter-
residue distance patterns. BMC Genomics 12(Suppl 4):S12. doi:
10.1186/1471-2164-12-S4-S12

103. Pires DE, de Melo-Minardi RC, da Silveira CH, Campos FF,
Meira W Jr (2013) aCSM: noise-free graph-based signatures to
large-scale receptor-based ligand prediction. Bioinformatics
29(7):855–861. doi:10.1093/bioinformatics/btt058

104. Potapov V, CohenM, Schreiber G (2009) Assessing computation-
al methods for predicting protein stability upon mutation: good on
average but not in the details. Protein Eng Des Sel 22(9):553–560.
doi:10.1093/protein/gzp030

105. Berman HM,Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig
H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank.
Nucleic Acids Res 28(1):235–242

106. Gnad F, Baucom A, Mukhyala K, Manning G, Zhang Z (2013)
Assessment of computational methods for predicting the effects of
missense mutations in human cancers. BMC Genomics 14(Suppl
3):S7. doi:10.1186/1471-2164-14-S3-S7

107. Gnad F, Ren S, Choudhary C, Cox J, Mann M (2010) Predicting
post-translational lysine acetylation using support vector ma-
chines. Bioinformatics 26(13):1666–1668. doi:10.1093/
bioinformatics/btq260

108. Saunders CT, Baker D (2002) Evaluation of structural and evolu-
tionary contributions to deleterious mutation prediction. J Mol
Biol 322(4):891–901

109. Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic
moment detects periodicity in protein hydrophobicity. Proc Natl
Acad Sci USA 81(1):140–144

110. Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpo-
lar transbilayer helices in amino acid sequences of membrane

proteins. Annu Rev Biophys Biophys Chem 15:321–353. doi:10.
1146/annurev.bb.15.060186.001541

111. Kyte J, Doolittle RF (1982) A simple method for displaying the
hydropathic character of a protein. J Mol Biol 157(1):105–132

112. WimleyWC,White SH (1996) Experimentally determined hydro-
phobicity scale for proteins at membrane interfaces. Nat Struct
Biol 3(10):842–848

113. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H,
Nilsson I, White SH, von Heijne G (2005) Recognition of trans-
membrane helices by the endoplasmic reticulum translocon.
Nature 433(7024):377–381. doi:10.1038/nature03216

114. Hopp TP, Woods KR (1981) Prediction of protein antigenic deter-
minants from amino acid sequences. Proc Natl Acad Sci USA
78(6):3824–3828

115. Stamm M, Staritzbichler R, Khafizov K, Forrest LR (2014)
AlignMe—a membrane protein sequence alignment web server.
Nucleic Acids Res 42:W246–W251. doi:10.1093/nar/gku291

116. Grantham R (1974) Amino acid difference formula to help explain
protein evolution. Science 185(4154):862–864

117. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y,
Shattuck D, Skolnick MH, Gutin A, Tavtigian SV (2004)
Analysis of missense variation in human BRCA1 in the context
of interspecific sequence variation. J Med Genet 41(7):492–507

118. Miller MP, Kumar S (2001) Understanding human disease muta-
tions through the use of interspecific genetic variation. Hum Mol
Genet 10(21):2319–2328

119. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting
stability changes upon mutation from the protein sequence or
structure. Nucleic Acids Res 33:W306–W310. doi:10.1093/nar/
gki375

120. Capriotti E, Fariselli P, Rossi I, Casadio R (2008) A three-state
prediction of single point mutations on protein stability changes.
BMC Bioinformatics 9(Suppl 2):S6. doi:10.1186/1471-2105-9-
S2-S6

121. Rost B (1996) PHD: predicting one-dimensional protein structure
by profile-based neural networks. Methods Enzymol 266:525–
539

122. Delorenzi M, Speed T (2002) An HMM model for coiled-coil
domains and a comparison with PSSM-based predictions.
Bioinformatics 18(4):617–625

123. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown
CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic
disorder. Protein Sci 13(1):71–80. doi:10.1110/ps.03128904

124. Melamud E, Moult J (2003) Evaluation of disorder predictions in
CASP5. Proteins 53(Suppl 6):561–565. doi:10.1002/prot.10533

125. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins:
re-assessing the protein structure–function paradigm. J Mol Biol
293(2):321–331. doi:10.1006/jmbi.1999.3110

126. Tompa P (2002) Intrinsically unstructured proteins. Trends
Biochem Sci 27(10):527–533

127. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins
and their functions. Nat Rev Mol Cell Biol 6(3):197–208. doi:10.
1038/nrm1589

128. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and
functions of usefully disordered proteins. Adv Protein Chem 62:
25–49

129. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker
AK (2002) Intrinsic disorder in cell-signaling and cancer-
associated proteins. J Mol Biol 323(3):573–584

130. Pajkos M, Meszaros B, Simon I, Dosztanyi Z (2012) Is there a
biological cost of protein disorder? Analysis of cancer-associated
mutations. Mol BioSyst 8(1):296–307. doi:10.1039/c1mb05246b

131. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009)
Predicting intrinsic disorder in proteins: an overview. Cell Res
19(8):929–949. doi:10.1038/cr.2009.87

J Mol Model (2015) 21: 251 Page 13 of 14 251

http://dx.doi.org/10.1093/nar/gki387
http://dx.doi.org/10.1038/nmeth0607-466
http://dx.doi.org/10.1038/nmeth0607-466
http://dx.doi.org/10.1016/j.jmb.2004.12.019
http://dx.doi.org/10.1021/Jp982255t
http://dx.doi.org/10.1021/Jp982255t
http://dx.doi.org/10.1002/(Sici)1097-0134(199710)29:2%3C240::Aid-Prot11%3E3.0.Co;2-O
http://dx.doi.org/10.1002/(Sici)1097-0134(199710)29:2%3C240::Aid-Prot11%3E3.0.Co;2-O
http://dx.doi.org/10.1002/(Sici)1097-0134(199710)29:2%3C240::Aid-Prot11%3E3.0.Co;2-O
http://dx.doi.org/10.1371/journal.pcbi.1000135
http://dx.doi.org/10.1371/journal.pcbi.1000135
http://dx.doi.org/10.1093/bioinformatics/btt691
http://dx.doi.org/10.1093/bioinformatics/btt691
http://dx.doi.org/10.1002/Prot.22187
http://dx.doi.org/10.1002/Prot.22187
http://dx.doi.org/10.1186/1471-2164-12-S4-S12
http://dx.doi.org/10.1093/bioinformatics/btt058
http://dx.doi.org/10.1093/protein/gzp030
http://dx.doi.org/10.1186/1471-2164-14-S3-S7
http://dx.doi.org/10.1093/bioinformatics/btq260
http://dx.doi.org/10.1093/bioinformatics/btq260
http://dx.doi.org/10.1146/annurev.bb.15.060186.001541
http://dx.doi.org/10.1146/annurev.bb.15.060186.001541
http://dx.doi.org/10.1038/nature03216
http://dx.doi.org/10.1093/nar/gku291
http://dx.doi.org/10.1093/nar/gki375
http://dx.doi.org/10.1093/nar/gki375
http://dx.doi.org/10.1186/1471-2105-9-S2-S6
http://dx.doi.org/10.1186/1471-2105-9-S2-S6
http://dx.doi.org/10.1110/ps.03128904
http://dx.doi.org/10.1002/prot.10533
http://dx.doi.org/10.1006/jmbi.1999.3110
http://dx.doi.org/10.1038/nrm1589
http://dx.doi.org/10.1038/nrm1589
http://dx.doi.org/10.1039/c1mb05246b
http://dx.doi.org/10.1038/cr.2009.87


132. Radivojac P, Vucetic S, O’Connor TR, UverskyVN, Obradovic Z,
Dunker AK (2006) Calmodulin signaling: analysis and prediction
of a disorder-dependent molecular recognition. Proteins 63(2):
398–410. doi:10.1002/prot.20873

133. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG,
Obradovic Z, Dunker AK (2004) The importance of intrinsic dis-
order for protein phosphorylation. Nucleic Acids Res 32(3):1037–
1049. doi:10.1093/nar/gkh253

134. Daily MD,Masica D, Sivasubramanian A, Somarouthu S, Gray JJ
(2005) CAPRI rounds 3–5 reveal promising successes and future
challenges for RosettaDock. Proteins 60(2):181–186. doi:10.
1002/prot.20555

135. Folkman L, Yang Y, Li Z, Stantic B, Sattar A, Mort M, Cooper
DN, Liu Y, Zhou Y (2015) DDIG-in: detecting disease-causing
genetic variations due to frameshifting indels and nonsense muta-
tions employing sequence and structural properties at nucleotide
and protein levels. Bioinformatics 31(10):1599–1606. doi:10.
1093/bioinformatics/btu862

136. Hu J, Ng PC (2013) SIFT Indel: predictions for the functional
effects of amino acid insertions/deletions in proteins. PLoS One
8(10):e77940. doi:10.1371/journal.pone.0077940

137. Zhao HY, Yang YD, Lin H, Zhang XJ, Mort M, Cooper DN, Liu
YL, Zhou YQ (2013) DDIG-in: discriminating between disease-
associated and neutral non-frameshifting micro-indels. Genome
Biol 14(3):R23. doi:10.1186/Gb-2013-14-3-R23

138. Zia A, Moses AM (2011) Ranking insertion, deletion and non-
sense mutations based on their effect on genetic information.
BMC Bioinformatics 12:299. doi:10.1186/1471-2105-12-299

139. Kircher M,Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure
J (2014) A general framework for estimating the relative pathoge-
nicity of human genetic variants. Nat Genet 46(3):310–315. doi:
10.1038/ng.2892

140. Liu M, Watson LT, Zhang L (2014) Quantitative prediction of the
effect of genetic variation using hidden Markov models. BMC
Bioinformatics 15:5. doi:10.1186/1471-2105-15-5

141. Bermejo-Das-Neves C, Nguyen HN, Poch O, Thompson JD
(2014) A comprehensive study of small non-frameshift
insertions/deletions in proteins and prediction of their phenotypic
effects by a machine learning method (KD4i). BMC
Bioinformatics 15:111. doi:10.1186/1471-2105-15-111

142. Limongelli I,Marini S, Bellazzi R (2015) PaPI: pseudo amino acid
composition to score human protein-coding variants. BMC
Bioinformatics 16:123. doi:10.1186/s12859-015-0554-8

143. Zhang N, Huang T, Cai YD (2015) Discriminating between dele-
terious and neutral non-frameshifting indels based on protein in-
teraction networks and hybrid properties. Mol Genet Genomics
290(1):343–352. doi:10.1007/s00438-014-0922-5

144. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ,
Nickerson DA, Shendure J (2011) Exome sequencing as a tool
for Mendelian disease gene discovery. Nat Rev Genet 12(11):
745–755. doi:10.1038/nrg3031

145. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE,
Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D,
Leal SM, Gabriel S, Rieder MJ, Abecasis G, Altshuler D,
Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD,
Bamshad MJ, Akey JM, Broad GO, Seattle GO, Project NES
(2012) Evolution and functional impact of rare coding variation

from deep sequencing of human exomes. Science 337(6090):64–
69. doi:10.1126/science.1219240

146. Alper SL (2013) Harnessing red cell membrane pathophysiology
towards point-of-care diagnosis for sickle cell disease. J Physiol
591(Pt 6):1403–1404. doi:10.1113/jphysiol.2013.252429

147. Aidoo M, Terlouw DJ, Kolczak M, McElroy PD, ter Kuile FO,
Kariuki S, Nahlen BL, Lal AA, Udhayakumar V (2002) Protective
effects of the sickle cell gene against malaria morbidity and mor-
tality. Lancet 359(9314):1311–1312. doi:10.1016/S0140-
6736(02)08273-9

148. Gong S, Blundell TL (2010) Structural and functional restraints on
the occurrence of single amino acid variations in human proteins.
PLoS One 5(2):e9186. doi:10.1371/journal.pone.0009186

149. Wang MJ, Sun ZW, Akutsu T, Song JM (2013) Recent advances
in predicting functional impact of single amino acid polymor-
phisms: a review of useful features, computational methods and
available tools. Curr Bioinform 8(2):161–176

150. Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment
predicts disease-associated single nucleotide variants. BMC
Genomics 14(Suppl 3):S2. doi:10.1186/1471-2164-14-S3-S2

151. Bendl J, Stourac J, Salanda O, Pavelka A,Wieben ED, Zendulka J,
Brezovsky J, Damborsky J (2014) PredictSNP: robust and accu-
rate consensus classifier for prediction of disease-related muta-
tions. PLoS Comput Biol 10(1):e1003440. doi:10.1371/journal.
pcbi.1003440

152. Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M
(2012) PON-P: integrated predictor for pathogenicity of missense
variants. Hum Mutat 33(8):1166–1174. doi:10.1002/humu.22102

153. Faa V, Coiana A, Incani F, Costantino L, Cao A, Rosatelli MC
(2010) A synonymous mutation in the CFTR gene causes aberrant
splicing in an Italian patient affected by a mild form of cystic
fibrosis. J Mol Diagn 12(3):380–383. doi:10.2353/jmoldx.2010.
090126

154. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-
Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X, Harel-
Bellan A, Mograbi B, Darfeuille-Michaud A, Hofman P (2011) A
synonymous variant in IRGM alters a binding site for miR-196
and causes deregulation of IRGM-dependent xenophagy in
Crohn’s disease. Nat Genet 43(3):242–245. doi:10.1038/ng.762

155. Wang DX, Sadee W (2006) Searching for polymorphisms that
affect gene expression and mRNA processing: example ABCB1
(MDR1). AAPS J 8(3):E515–E520. doi:10.1208/Aapsj080361

156. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K,
Korchynskyi O, Makarov SS, Maixner W, Diatchenko L (2006)
Human catechol-O-methyltransferase haplotypes modulate pro-
tein expression by altering mRNA secondary structure. Science
314(5807):1930–1933. doi:10.1126/science.1131262

157. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM,
Ambudkar SV, Gottesman MM (2007) A Bsilent^ polymorphism
in the MDR1 gene changes substrate specificity. Science
315(5811):525–528. doi:10.1126/science.1135308

158. Katsnelson A (2011) Breaking the silence. Nat Med 17(12):1536–
1538. doi:10.1038/Nm1211-1536

159. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman
RB (2011) Bioinformatics challenges for personalized medicine.
Bioinformatics 27(13):1741–1748. doi:10.1093/bioinformatics/
btr295

251 Page 14 of 14 J Mol Model (2015) 21: 251

http://dx.doi.org/10.1002/prot.20873
http://dx.doi.org/10.1093/nar/gkh253
http://dx.doi.org/10.1002/prot.20555
http://dx.doi.org/10.1002/prot.20555
http://dx.doi.org/10.1093/bioinformatics/btu862
http://dx.doi.org/10.1093/bioinformatics/btu862
http://dx.doi.org/10.1371/journal.pone.0077940
http://dx.doi.org/10.1186/Gb-2013-14-3-R23
http://dx.doi.org/10.1186/1471-2105-12-299
http://dx.doi.org/10.1038/ng.2892
http://dx.doi.org/10.1186/1471-2105-15-5
http://dx.doi.org/10.1186/1471-2105-15-111
http://dx.doi.org/10.1186/s12859-015-0554-8
http://dx.doi.org/10.1007/s00438-014-0922-5
http://dx.doi.org/10.1038/nrg3031
http://dx.doi.org/10.1126/science.1219240
http://dx.doi.org/10.1113/jphysiol.2013.252429
http://dx.doi.org/10.1016/S0140-6736(02)08273-9
http://dx.doi.org/10.1016/S0140-6736(02)08273-9
http://dx.doi.org/10.1371/journal.pone.0009186
http://dx.doi.org/10.1186/1471-2164-14-S3-S2
http://dx.doi.org/10.1371/journal.pcbi.1003440
http://dx.doi.org/10.1371/journal.pcbi.1003440
http://dx.doi.org/10.1002/humu.22102
http://dx.doi.org/10.2353/jmoldx.2010.090126
http://dx.doi.org/10.2353/jmoldx.2010.090126
http://dx.doi.org/10.1038/ng.762
http://dx.doi.org/10.1208/Aapsj080361
http://dx.doi.org/10.1126/science.1131262
http://dx.doi.org/10.1126/science.1135308
http://dx.doi.org/10.1038/Nm1211-1536
http://dx.doi.org/10.1093/bioinformatics/btr295
http://dx.doi.org/10.1093/bioinformatics/btr295

	Computational approaches to study the effects of small genomic variations
	Abstract
	Introduction
	Databases
	Methods
	Sequence conservation methods
	Structure-based methods
	Sequence-based methods
	Understanding the effect of short insertions and deletions
	Limitations and future directions

	References


