
Hadoop: Addressing Challenges of Big Data

Kamalpreet Singh
Assistant Professor, CSE Department

Lovely Professional University
Jalandhar, India

kamalpreet.17706@lpu.co.in

Ravinder Kaur
Assistant Professor, CSE Department

Lovely Professional University
Jalandhar, India

ravinder.17686@lpu.co.in

Abstract— Hadoop is an open source cloud computing platform
of the Apache Foundation that provides a software programming
framework called MapReduce and distributed file system, HDFS.
It is a Linux based set of tools that uses commodity hardware,
which are relatively inexpensive, to handle, analyze and
transform large quantity of data. Hadoop Distributed File
System, HDFS, stores huge data set reliably and streams it to
user application at high bandwidth and MapReduce is a
framework that is used for processing massive data sets in a
distributed fashion over a several machines. This paper gives a
brief overview of Big Data, Hadoop MapReduce and Hadoop
Distributed File System along with its architecture.

Keywords—Big Data;Hadoop;MapReduce;HDFS; Namenode;
Datanode

I. INTRODUCTION AND RELATED WORK
 Big data (also spelled Big Data) [1] is a general term used

to describe the voluminous amount of unstructured and semi-
structured data that a company generates, the data that would
take too much time and cost too much money to load into
a relational database for analysis. Big Data refers to large
collection of data (that may be structured, unstructured or semi
structured) that expands so quickly that it is difficult to manage
with regular database or statistical tools. Hadoop [2] is a
framework written in Java, distributed under Apache License,
developed by Doug Cutting. Hadoop is basically used for
analyzing and processing Big Data. Hadoop supports the
running of application on Big Data, and addresses three main
challenges (3V) created by Big Data-

• Volume - Hadoop provides framework to scale out
horizontally to arbitrarily large data sets to address
volume of data.

• Velocity - Hadoop handles furious rate of incoming
data from very large system.

• Variety - Hadoop supports complex jobs to handle
any variety of unstructured data.

 Hadoop is a whole ecosystem of projects that work together to
provide a common set of services. It transforms commodity
hardware into a coherent service that stores petabytes of data
reliably and also processes that data efficiently through huge
distribution.

A key characteristic of Hadoop is the partitioning of both
data and computation across number of hosts reliably, and then
executing application computations in parallel close to their
required data. The key attributes of Hadoop are that it is
redundant and reliable, that is if you lose a machine due to
some failure, it automatically replicates your data immediately
without the operator having to do anything, it is extremely
powerful in terms of data access and is preliminary batch
processing centric and makes it easier to distributed
applications using MapReduce software paradigm. Moreover it
runs on commodity hardware which cuts off the cost of buying
special expensive hardware and RAID systems.

 Figure 1: Various Challenges of Big Data

In traditional approach, as depicted in Figure 1, an

enterprise uses a powerful computer to process the data
available. But there is an upper limit to the amount of data
processed because it is not scalable and Big Data grows with
great velocity and variety, whereas Hadoop follows a very
different approach as compared to the traditional enterprise
approach. In this Big Data is first broken into smaller pieces
so that large amount of data can be handled efficiently and
effectively. Along with this data segregation, Hadoop breaks
the computations into pieces as well that need to be
performed on the data. Once all the child computations are
finished, the results are combined together and sent back to
the application.

.

686978-1-4799-2572-8/14/$31.00 c©2014 IEEE

II. ARCHITECTURE
At a very high level, Hadoop has two m

MapReduce and filesystem, HDFS as sho
MapReduce is the processing part of Hado
the jobs. HDFS refers to Hadoop Distribu
stores all the data redundantly required fo
Projects here refer to set of tools that are man
under the umbrella of Hadoop to provide
task related to Hadoop. Hadoop’s origin co
File System GFS [3] and MapReduce [4
Apache HDFS and Apache MapReduce resp

 Figure 2: High Level Architecture of

A. MapReduce
 Hadoop MapReduce is a software progr

well as an associated implementation for pro
sets in a distributed fashion on large clus
inexpensive commodity hardware in an effic
tolerant manner. A MapReduce task divides
across various independent chunks which a
completely parallelized manner by user spec
that generates a set of intermediate < key, val

 The output of these map functions, afte
the framework, serve as input to the user redu
reduces/merges all < key, value > pairs ass
intermediate key. The MapReduce fram
responsibility of splitting the input dat
machines, scheduling the task execution as w
and re-executing the failed tasks along w
required inter-machine communications. A
written in MapReduce styles are automatical
programmers could focus on writing scale f
making programming easier. These scal
executed on large clusters of commodity m
relatively inexpensive. Thus, with help of Ma
framework, programmers with little knowled
distributed systems can also easily make use
a large distributed system.

• Working of MapReduce:

The MapReduce framework maps the
<key, value> pairs and produces a set of ou
pairs of merging all the pairs associated
intermediate key, that is, MapReduce work

main components-
own in Figure 2.
oop and manages
uted File System
for computations.
naged by Apache
assistance in the

ome from Google
] which become
ectively.

Hadoop

ramming model as
ocessing large data
sters of relatively
cient reliable, fault
s the input data set
are processed in a
ified map function
lue > pairs.

er being sorted by
uce function which
ociated with same

mework takes the
ta across several
well as monitoring

with managing the
As the programs
ly parallelized, the
free programs thus
ed programs are

machines which are
apReduce software
dge of parallel and
of the resources of

input dataset into
utput <key, value>
d with the same
ks exclusively on

<key, value> pair. The two ope
and reduce come from func
which pass functions as ar
Following is the step wise
MapReduce

1. MapReduce framewo
segments.

2. These segments a
machines/clusters for computat

3. Map script, which is
machine to process portion of
set of intermediate <key, value>

4. The pairs with same k
MapReduce library and pas
aggregation.

5. Reduce script, which i
collection of intermediate key
for that keys and merges them
script into a smaller set of va
aggregates the values of the c
value> pairs having the same ke

Below is the diagrammatic
scenario taking WordCount e
MapReduce application that
occurrences of each word in a g

 Figure 3: Wo

The map function emits each w
amount of occurrence as <valu
WordCount example for simp
aggregates all count emitted
together.

• Implementation
MapReduce framework is

which manages the jobs. It ha
Task Tracker.
Having multiple machines with
a gulf of clusters, there is a sing
slave Task Tracker per cluster
is responsible for accepting th
smaller components and schedu
individual slave task trackers.
of monitoring the task tracker
task tracker fails. Thus, Job Tr

erations in MapReduce, i.e. map
tional programming languages
rguments to other functions.

description of execution of

ork splits the input data into

are then passed different
ion.

written by user, runs on each
data given to it and produces a

> pair.

key are grouped together by the
ssed to Reduce function for

is also written by the user, takes
I along with their set of values

m according to the user specified
alues. Thus, the reduce function
collection of intermediate <key,
ey.

explanation of above explained
example. WordCount [5] is a
outputs the total number of

given input data.

orkflow of MapReduce

word as <key> and its associated
ue>. Value is taken as ‘1’ in this
plification. The reduce function

for a particular word <key>

the processing part of Hadoop
as two parts - Job Tracker and

h Hadoop creates a cluster. For
gle master Job Tracker and one
node. The master Job Tracker

he users’ jobs, dividing it into
uling these computations to the
It also takes the responsibility

r and re-executes the task if a
racker acts as a coordinator for

2014 IEEE International Advance Computing Conference (IACC) 687

MapReduce. The MapReduce server on a typical machine is
called Task Tracker which is responsible for running the
tasks assigned by the Job Tracker and reports the Job Tracker
once the task assigned to it is completed. Job tracker then
combines the results and sends the final result back to the
application.

• Fault Tolerance for Computation
Hadoop is built keeping in mind the hardware and

software failures. It is inbuilt for fault tolerance for task
tracker service running on the slave computers. If any of the
clusters fails or if just the task tracker service fails, Job
Tracker through regular monitoring detects the failure and
delegates the same job to other working task tracker. Fault
tolerance is not only limited to the slave task trackers. In
order to avoid single point of failure in case if master Job
tracker fails, enterprise version of Hadoop keeps two master,
one as main master and the other as back up master in case
the master dies.

B. HDF S
The HDFS [6] is distributed file system component of

Hadoop designed to store and support large amount of data sets
on commodity hardware reliably and efficiently. Like other file
system, PVFS [7], Luster, Hadoop Distributed File System also
has master / slave architecture, with master as Name Node and
slave as Data Node. HDFS stores all the filesystem metadata
on single Name Node. However unlike Luster and PVFS,
HDFS uses replication of data stored on Data Node to provide
reliability instead of using data protection mechanism such as
RAID. The application data is stored as multiple copies on a
number of slave Data Nodes, which are usually one per node in
cluster.

• NameNode

The master Name Node as a coordinator of HDFS
manages the filesystem namespace by keeping index of data
location and regulates access to files by clients. Files and
directories are represented on Name Node and it executes
operations like opening, closing and renaming files and
directories. NameNode itself doesn’t store any data neither
does any data flows through the name node. It only
determines and keeps track of mapping of file blocks to Data
Node, thereby acting as a repository for all HDFS metadata.
Any application requiring data, first contacts the NameNode
which provides locations of data blocks containing the file.
While storing/writing data to HDFS, NameNode chooses a
group of (by default three) to store the block replicas. The
client application then pipelines the data to the Data Node
nominated by Name Node.

• DataNode
Data Nodes are responsible for storing the blocks of file

as determined by the Name Node. Data file to be stored is
first split into one or more blocks internally. Data Nodes
serve the read write requests from file system’s client data.
These are also responsible for creating, deleting and
replicating blocks of file after being instructed by the Name
Node.

 Figure 4: Master/Slave Architecture of Hadoop

• Fault Tolerance for Data

In Hadoop, failures are treated as norms rather than
exception. The master Name Node makes sure that each block
always has the required number of replicas through Heartbeat
[6] and block report messages received from Data Nodes.
Name Node also prevents Data Node from being over
replicated and under replicated by evenly distributing the block
of file and its replicas. Thus if a Data Node fails due to some
reason, data can still be retrieved from other Data Nodes
having its replica.

Name Node is the single point of availability failure. If a
Name Node goes down, the Data Nodes would not be able to
make any sense of the data blocks on them. So in order to
avoid this single point of failure, Enterprise version of Hadoop
keeps two masters, one as main master and the other as backup
master in case the main master fails.

III. INCREASED THROUGHPUT BY MIGRATING
COMPUTATIONS RATHER THAN DATA

When the size of data is very large, it is always more
efficient to perform the computations requested by an
application closer to where the data it needs to operate on is
stored. In Hadoop, MapReduce framework and Hadoop
Distributed File System run on the same set of nodes, that is,
the storage and compute nodes are the same. This configuration
of Hadoop framework minimizes network congestion and
increases bandwidth across the clusters as it schedules the
computation closer to where data (or its replica) is present
rather than migrating the large data sets to where application is
running. This increases the overall throughput of the system.

IV. REPLICA PLACEMENT

The placement of replica is critical to HDFS reliability and
performance. HDFS acts as a self-healing system. As
depicted in the figure suppose the second data node fails, we
still have two other DataNodes having the required data’s
replicas. If a DataNode goes down, then the heartbeat from
DataNode to NameNode will cease and after ten minutes
NameNode will consider that DataNode to be dead and all
the blocks that were stored on that DataNode will be re-
replicated and distributed evenly on other living DataNodes.

688 2014 IEEE International Advance Computing Conference (IACC)

Figure 5: Replica Placement with replication value =3

V. RACK AWARENESS POLICY
An HDFS file consists of blocks. Whenever a new block is

required to store the data, the NameNode allocates a block with
a unique block ID and determines a list of DataNodes to host
replicas of the block. Data is then pipelined from the client to
the DataNodes in following the sequence of minimum distance
from the client. As shown in the figure, nodes are spread across
multiple racks that share a switch connected by one or more
core switches. The NameNode, acting as a central place
maintains the metadata that helps in resolving the rack location
of each DataNode. The main motive of rack aware replica
policy is to improve reliability and availability of data along
with network bandwidth utilization. The default HDFS rack
aware replica policy is as follows:

• No DataNode should contain more than one replica of
any block of file.

• No rack should contain more than two replicas of the
same block, provided there are sufficient numbers of racks
on the cluster.

Figure 6: Rack Awareness

The default HDFS block placement policy provides a tradeoff
between minimizing the write cost, and maximizing data
reliability, availability and aggregate read bandwidth. When a
new block is created, HDFS places the first replica on the node
where the writer is located, the second and the third replicas on
two different nodes in a different rack, and the rest are placed
on random nodes with restrictions that no more than one
replica is placed at one node and no more than two replicas are
placed in the same rack when the number of replicas is less
than twice the number of racks. The choice to place the second
and third replicas on a different rack better distributes the block
replicas for a single file across the cluster. If the first two
replicas were placed on the same rack, for any file, two-thirds
of its block replicas would be on the same rack.

CONCLUSION
Hadoop was originally designed for processing batch-

oriented processing jobs, such as creating web page indices or
analyzing log data. Hadoop is not used for OnLine Transaction
Processing workloads and OnLine Analytical Processing or
Decision Support System workloads where data are randomly
or sequentially on structured data like a relational data to
generate reports that provide business intelligence. However
being reliable, (both in terms of computation and data), fault
tolerant, scalable and powerful, Hadoop is now widely used by
Yahoo!, Amazon, eBay, Facebook, IBM, Netflix, and Twitter
to develop and execute large-scale analytics or applications for
huge data sets. MapReduce framework of Hadoop also eases
the job of programmers as they need not to worry about the
location of data file, management of failures, and how to break
computations into pieces as all the programs written are scaled
automatically by Hadoop. Programmers only have to focus on
writing scale free programs.

REFERENCES

[1] Zach Brown. (2014, January 22). Big Data (2nd ed.) [Online].
Available: http://technologyadvice.com/category/big-data/

[2] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Yahoo!
Press,June 5, 2009..

[3] S. Ghemawat, H. Gobioff, S. Leung. “The Google file system,” In Proc.
of ACM Symposium on Operating Systems Principles, Lake George
NY, Oct 2003, pp 29–43.

[4] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” In Proc. of the 6th Symposium on Operating Systems
Design and Implementation, San Francisco CA, Dec. 2004,

[5] WordCount Example, June 10, 2011 [Online]
http://wiki.apache.org/hadoop/WordCount

[6] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler.
“The Hadoop Distributed File System”, Yahoo!, IEEE 2010

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. “PVFS: A
parallel file system for Linux clusters,” in Proc. of 4th Annual Linux
Showcase and Conference, 2000, pp. 317–327.

2014 IEEE International Advance Computing Conference (IACC) 689

