

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A New Authentication Scheme with Elliptical Curve Cryptography for Internet of Things (IoT) Environments

M Durairaj^{1*}, K Muthuramalingam²

¹Assistant Professor, School of Computer Science, Engineering and Application, Bharathidasan University ² Assistant Professor, School of Computer Science, Engineering and Application, Bharathidasan University *Email: bardmuthu@gmail.com

Abstract

Internet of Things (IoT) consists of a large number of connected objects that are communicating with each other. To support trusted communication between IoT objects, the authentication procedures should be used and applied to the communicating entities. Internet of Things (IoT) is an emerging technology, which makes the remote sensing and control across the heterogeneous network a reality, and has good prospects in industrial applications. As an essential infrastructure, Wireless Sensor Networks (WSNs) play a crucial role in industrial IoT. Due to the resource-constrained feature of sensor nodes, the design of security and efficiency balanced authentication scheme for WSNs becomes a significant challenge in IoT applications. In this paper, an anonymous authentication scheme for WSNs in an Internet of Things environments.

Keywords: Internet of Things, Authentication Scheme, Wireless Sensor Networks, Gate Way Node, Sensor Node, User.

1. Introduction

In the early 90s, the word internet is used to express the technology of connecting computers all over the globe using wired or wireless links. Since then the internet has been effectively used for files sharing, web browsing, e-commerce, social media, etc. However, recent development and deployment of smart technologies have emerged the need for objects to be ubiquitously connected. Consequently, this necessitates the need for more sophisticated techniques to support new machine-to-machine (M2M) communication. To evolve a new world of connected objects, the Internet of Things (IoT) has introduced as the future of the internet [1, 2].

The development of IoT has many influences on human life. Human lifestyle is gradually changing toward smartness and intelligence which can be facilitated by the development of smart homes and smart communities as a part of the IoT [3]. Moreover, IoT applications support different daily activities such as route planning, navigation, transportation decisions, traffic and healthcare monitoring, elderly and children supervision, and many more [4].

As is the future of the Internet, the provision of security services, such as authentication, is an essential factor to encourage people to use new technologies and securely access various IoT resources. Users would not be convenient to share and exchange their data and personal information unless protection schemes are used to prevent any malicious behavior. Therefore, efficient security and authentication techniques are necessary for comprehensive and fast deployment of IoT.

2. Related Works

Table 1 gives the associated works carried out in the authentication process of the Internet of Things (IoT) environments. Cloud services are considered as the vital part of the IoT since it handles the full range of data.

Table 1: Related works on Authentication techniques			
Author	Paper Title	Methods or	Description
Name		Steps used	
Moghad	A scalable	Modified Dif-	In this paper,
dam,	and effi-	fie-Hellman	client-based user
Faraz	cient user	Agent	authentication
Fatemi,	authentica-	(MDHA), ZKP	agent has been
et al [1]	tion scheme	Diffie-Hellman	introduced to
	for cloud		confirm an identi-
	computing		ty of the user on
	environ-		the client side.
	ments		
Singh,	A secure	Multi-tier au-	This paper pro-
Ashish,	multi-tier	thentication	poses a reliable
and	authentica-		and more ad-
Kakali	tion scheme		vanced multi-tier
Chatter-	in cloud		authentication
jee [2]	computing		scheme for access-
	environ-		ing cloud services
	ment		
Yang,	An ID-	One way hash	This paper intro-
Jen Ho,	based user	function, XOR	duces a new ID-
and Pei	authentica-	operation	based user authen-
Yu Lin	tion scheme		tication scheme
[3]	for cloud		for cloud compu-
	computing		ting has proposed.
			The authors
			proved that the

 Table 1: Related Works on Authentication techniques

Copyright © 2016 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

			proposed scheme has higher security levels and lower computation costs.
Tien-Ho Chen, Hsiu-lien Yeh, Wei- Kuan Shih [4]	An Ad- vanced ECC Dy- namic ID- Based Remote Mutual Authentica- tion Scheme for Cloud Computing	Elliptic Curve Cryptosystem (ECC)	This paper pro- poses an ECC dynamic ID-based remote mutual authentication scheme for remote devices to solve the issues.
Tsai, Jia- Lun, and Nai-Wei Lo [5]	A privacy- aware authentica- tion scheme for distrib- uted mobile cloud com- puting services	bilinear pairing, One-way hash function	This paper pro- poses the trusted Smart Card Gen- erator (SCG) service is not involved in indi- vidual user au- thentication pro- cess. The proposed scheme reduces authentication processing time required by com- munication and computation be- tween cloud ser- vice providers and traditional trusted third party service. Formal security proof and perfor- mance analyses are conducted to show that the scheme is both secure and effi- cient.
Powell, Court- ney, Takashi Aizawa, and Masahar u Muneto mo [6]	Design of an SSO Authentica- tion Infra- structure for Hetero- geneous Inter-cloud Environ- ments	single sign-on (SSO)	This paper out- lines the plan of an authentication infrastructure for linking distributed heterogeneous cloud systems managed by dif- ferent cloud man- agement middle- ware to enable them to interoper- ate as an integrat- ed inter-cloud system. This au- thentication infra- structure achieves single sign-on (SSO), which allows users to log in once and access the various cloud systems without being asked to log in again at each operation.
Peng, Siwei [7]	An Id- based Mul- tiple Au- thentication scheme against attacks in wireless sensor networks	Symmetrical Encryption	This paper pre- sents a novel au- thentication scheme to prevent these attacks. This Id-based Multiple Authentication (IMA) scheme based upon the mutual identity authentication and

			steganography to give a secure mechanism for data aggregation in WSNs.
Nguyen, Tien Dung, and Eui- Nam Huh [8]	A Dynamic ID-Based Authentica- tion Scheme for M2M Communi- cation of Healthcare Systems	Probabilistic Key manage- ment	This paper pro- posed a simple architecture M2M service apply any hospital which considers the mobility of doc- tors and patients. An efficient secu- rity scheme with dynamic ID-based authentication using crucial pairwise distribu- tion is involved in the M2M system. It can be assured high security through security analysis under shared key attack and Sybil attack.
Chu, Fuzhi, et al [9]	An im- proved identity authentica- tion scheme for the internet of things in heteroge- neous net- working environ- ments	Elliptical Curve Cryptography	This paper pro- poses an identity authentication scheme based on identity authenti- cation scheme based on elliptic curve algorithm for public and private key pair to meet the security requirements of the Internet of Things in hetero- geneous network- ing environments.
Liu, Jing, Yang Xiao, and CL Philip Chen [10]	Authentica- tion and access control in the internet of things	Elliptical Curve Cryptography, Role-based Access Control	This paper mainly analyzes existing authentication and access control methods, and then, it designs a feasi- ble one for the Internet of Things.
Jan, Mian Ahmad, et al [11]	A robust authentica- tion scheme for observ- ing re- sources in the internet of things environ- ment	Symmetrical Cryptography, XOR operation	This paper pro- poses a light- weight mutual authentication scheme which validates the iden- tities of the partic- ipating devices before engaging them in communi- cation for the resource observa- tion.

3. Proposed Authentication Scheme for the Internet of Things

A new authentication scheme has proposed for securing the IoT environments. An Elliptical Curve Cryptography system has used to strengthening the encryption and decryption process [12,13]. This authentication scheme is composed of two main phases. i) Registration phase, ii) Login and Authentication phase.

3.1. Registration Phase

This registration phase has formed two stages. The first stage is the registration between the user and the gateway, and the second stage is the registration between the sensor node and the gateway.

Table 2: Plain points in the Elliptical Curve Cryptography

Pmsg(X)	Pmsg(Y)
54	3151
19	2118
37	3236
75	3398
145	3322
127	3051
110	36
93	1787

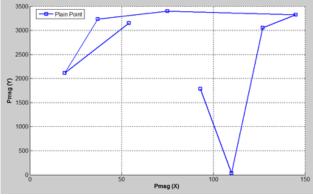


Fig.1: Plain Points in Elliptical Curve

Registration between user – gateway and sensor-gateway *Step 1:* The user U selects the ID and password and picks the random integer b from the key pool for key generation using Elliptical Curve Cryptography. The Sensor S selects its ID and generates the random number y.

Step 1.1: The user selects a random number dA between the range [1, n-1]. It is the private key of the user.

Step1.2: Then the user generates the public key using the formula $PA = dA^*G$

Step 1.3: Similarly gateway selects a private key dB and generates its public key PB=dB*G.

Step 1.4: The user generates the security key K=dA * PB and the gateway also receives the security key K=dB * PA

Step 2: The user and sensor create the pair of signing and verifying keys and send a message to the Gateway. To sign a message m by the user, it performs the following steps:

Step 2.1: It calculates a cryptographic hash function e=HASH (m)

Step 2.2: The user then selects a random integer k from [1,n-1].

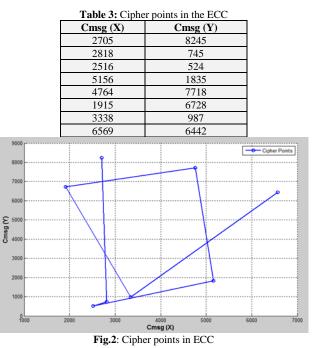
Step 2.3: The it computes a pair (r,s)

Step 2.4: $r = x1 \pmod{n}$ where (x1,y1) = k*G

Step 2.5: s= k-1(e+ dA*r)

Step 2.6: This pair (r,s) defines the signature.

Step 2.7: The signature has sent to the gateway.


Step 3: Gateway stores the values, and sets the pair of private and public keys.

Step 4: Gateway computes the value of the password regarding ciphertext and sends a message to the user. The password of user and sensor can be converted into ciphertext using ECC encryption algorithm.

Step 4.1: Let m has any point M on the elliptic curve. *Step 4.2:* The user and sensor node select a random number k from [1,n-1]. *Step 4.3:* The ciphertexts generated will be the pair of points (B1, B2) where

B1 = k*GB2 = M + (k*G)

Step 5: When the user receives message stores value in Smart Card (SC).

3.2. Login and Authentication Phase

Once the registration process got over, the user has to communicate with the sensor node via the gateway.

Step 1: User inserts Smart Cart into the terminal, and inputs the user id and password.

Step 2: It computes the values and compares the values with the SC.

Step 3: User selects the secret key from the Key pool using ECC.

Step 4: Then user computes the value using secret key and ciphertext.

Step 5: Then it generates the signature and sends the message to the Gate-way.

Step 6: When the gateway node receives the message from the user and restores its secret value.

Step 7: It extracts the secret key from the value. The decryption process is carried out using this secret key.

Step 7.1: The gateway computes the product of B1 and its private key.

Step 7.2: Then the gateway subtracts this product from the second point B2.

M = B2-(dB*B1)M is the original data sent by the user.

Step 8: The ciphertext has decrypted, and it verifies the signature with the secret key for authenticating the user.

Step 8.1: For authentication, the gateway needs to verify the pair (r,s) are in the range of [1,n-1].

Step 8.2: The gateway again calculates the hash function e as in signature generation.

Step 8.3: Then the gateway calculates $w = s-1 \mod(n)$.

Step 8.4: Then calculate $u1 = e^*w \pmod{n}$ and $u2 = r^*w \pmod{n}$

Step 8.5: Calculate (x1,y1) = u1*G + u2*PA.

n)

Step 8.6: If $x1 = r \pmod{n}$, then the signature is valid.

Step 9: If the signature is not valid, then again repeat the process from step

4. Result and Discussion

In this paper, Elliptical Curve Cryptography provides two essential services for securing the IoT environments.

- Securing the Information: It has provided by using encryption and decryption.
- Authenticating the Information: Digital Signature has used for providing the authentication.

In this paper, Elliptical Curve Cryptography has utilized to ensure the security of the information and authenticating the user, sensor and gateway node in the Internet of Things environments.

This paper implements the proposed authentication scheme with ECC and RSA to analyze the performance of the scheme. Three data inputs of 8bits, 64 bits, and 256 bits are considered based on the ECC and recommendation of NIST.

Table 4: NIST Recommended Security Bit Level

Security Bit Level	ECC	RSA
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

 Table 5a:
 8bits Encryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Sagurity Dit Laval	Encryption Time in Seconds	
Security Bit Level	ECC	RSA
80	0.4776	0.0406
112	2.2121	0.0288
128	3.7874	0.0416
192	4.6377	0.0497

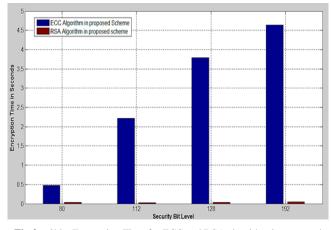


Fig.3a: 8bits Encryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

 Table 5b:
 8bits Decryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Security Bit Level	Decryption Time in Seconds	
Security Bit Level	ECC	RSA
80	1.4376	0.8634
112	1.6774	2.8186
128	1.8781	6.8518
192	2.1133	12.5563

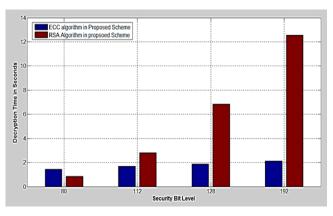


Fig.3b: 8bits Decryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

 Table 5c:
 8bits Total Encryption and Decryption Time for ECC and RSA

 Algorithms in proposed Authentication Scheme

Committee Dit Lorent	Total Time in Seconds		
Security Bit Level	ECC	RSA	
80	1.9152	0.904	
112	3.8791	2.8474	
128	5.6655	6.8934	
192	6.7510	12.606	

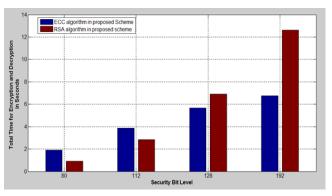


Fig.3c: 8bits Total Encryption and Decryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

Above table, 5a gives the encryption time of Elliptical Curve Cryptography and RSA in the proposed authentication scheme for IoT environment. Table 5b represents the decryption time of ECC and RSA in proposed scheme and table 5c depicts the total encryption and decryption time for various security bit levels. Considering the above tables, ECC takes more time for encryption and decryption for lower security bits levels (80 and 112 bits), whereas, for higher security bit levels, RSA takes more time for executing the encryption and decryption. Figure 3a, 3b, and 3c give the graphical representation of the 8bits encryption, decryption and total time of ECC and RSA in the proposed authentication scheme for various security bit levels.

 Table 6a:
 64bits Encryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

C! D'+ I1	Encryption Time in Seconds	
Security Bit Level	ECC	RSA
80	2.2776	0.2455
112	9.8966	0.1746
128	15.1771	0.2763
192	20.1419	0.2496

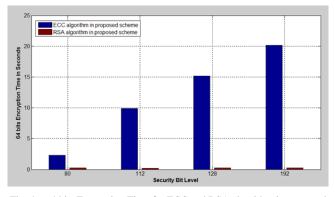


Fig. 4a: 64 bits Encryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

 Table 6b: 64 bits Decryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Converter Dit Louil	Decryption Time in Seconds	
Security Bit Level	ECC	RSA
80	5.8188	5.6281
112	6.8444	20.3217
128	7.4493	45.5691
192	7.5896	76.6553

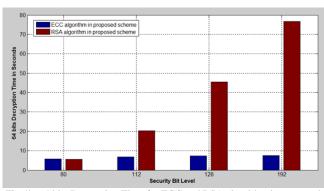


Fig.4b: 64 bits Decryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

 Table 4c:
 64 bits Total Encryption and Decryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Converter Dit Louis	Total Time in Seconds	
Security Bit Level	ECC	RSA
80	8.0964	5.8736
112	16.741	20.4963
128	22.6264	45.8494
192	27.7315	76.9049

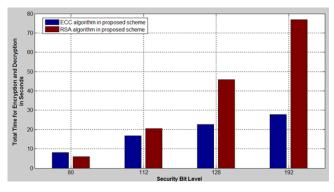


Fig. 4c: 64 bits Total Encryption and Decryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

Above table, 6a gives the 64bits encryption time of Elliptical Curve Cryptography and RSA in the proposed authentication scheme for IoT environment. Table 6b represents the 64 bits decryption time of ECC and RSA in proposed scheme and table 6c depicts the total encryption and decryption time of 64bits for various security bit levels. Considering the above tables, ECC takes more time for encryption and decryption for lower security bits levels (80 and 112 bits), whereas, for higher security bit levels, RSA takes more time for executing the encryption and decryption. Figure 4a, 4b, and 4c give the graphical representation of the 64bits encryption, decryption and total time of ECC and RSA in the proposed authentication scheme for various security bit levels.

 Table 7a:
 256 bits Encryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Committy Dit Lovol	Encryption Time in Seconds	
Security Bit Level	ECC	RSA
80	7.8331	0.6687
112	38.8117	0.4926
128	57.5477	0.6522
192	76.6145	0.6829

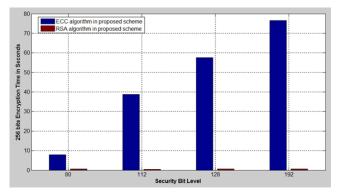


Fig.5a: 256 bits Encryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

 Table 7b:
 256 bits Decryption Time for ECC and RSA Algorithms in proposed Authentication Scheme

Security Bit Level	Encryption Time in Seconds	
	ECC	RSA
80	21.9962	18.4266
112	25.4442	103.1446
128	26.5171	208.7175
192	31.2633	310.1758

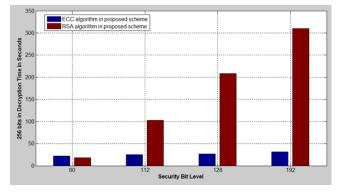


Fig.5b: 256 bits Decryption Time for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

Table 7c: 256 bits Total Time of Encryption and Decryption for ECC and RSA Algorithms in proposed Authentication Scheme

Security Bit Level	Encryption Time in Seconds	
	ECC	RSA
80	29.8293	103.8133
112	64.2559	103.6372
128	84.0648	209.3697
192	107.8778	310.8587

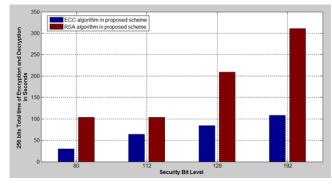


Fig.5c: 256 bits Total time of Encryption and Decryption for ECC and RSA algorithm in proposed Authentication scheme for various security bit levels

Above table, 7a gives the 64bits encryption time of Elliptical Curve Cryptography and RSA in the proposed authentication scheme for IoT environment. Table 7b represents the 256 bits decryption time of ECC and RSA in proposed scheme and table 7c depicts the total encryption and decryption time of 256 bits for various security bit levels. Considering the above tables, ECC takes more time for encryption and decryption for lower security bits levels (80 and 112 bits), whereas, for higher security bit levels, RSA takes more time for executing the encryption and decryption. Figure 5a, 5b, and 5c give the graphical representation of the 256 bits encryption, decryption and total time of ECC and RSA in the proposed authentication scheme for various security bit levels.

5. Conclusion

In this paper, a new authentication scheme with Elliptical Curve Cryptography (ECC) scheme in the context of the Internet of Things (IoT). The proposed authentication scheme composed of two phases: i) Registration phase and ii) Login and an Authentication phase. ECC takes less time for decryption than RSA in the higher security level. ECC performs in less total time for Encryption and decryption of details among User, Gateway, and Sensor nodes. When it has compared with the various security bit levels, the proposed authentication scheme with ECC algorithm outperforms than the proposed scheme with RSA.

References

- Moghaddam, Faraz Fatemi, et al. "A scalable and efficient user authentication scheme for cloud computing environments." *Region 10 Symposium, 2014 IEEE*. IEEE, 2014.
- [2] Singh, Ashish, and Kakali Chatterjee. "A secure multi-tier authentication scheme in cloud computing environment." *Circuit, Power* and Computing Technologies (ICCPCT), 2015 International Conference on. IEEE, 2015.
- [3] Yang, Jen Ho, and Pei Yu Lin. "An ID-based user authentication scheme for cloud computing." *Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference on.* IEEE, 2014.
- [4] Chen, Tien-Ho, Hsiu-lien Yeh, and Wei-Kuan Shih. "An advanced ECC dynamic id-based remote mutual authentication scheme for cloud computing." *Multimedia and Ubiquitous Engineering (MUE)*, 2011 5th FTRA International Conference on. IEEE, 2011.
- [5] Tsai, Jia-Lun, and Nai-Wei Lo. "A privacy-aware authentication scheme for distributed mobile cloud computing services." *IEEE* systems journal 9.3 (2015): 805-815.

- [6] Powell, Courtney, Takashi Aizawa, and Masaharu Munetomo. "Design of an SSO authentication infrastructure for heterogeneous inter-cloud environments." *Cloud Networking (CloudNet), 2014 IEEE* 3rd International Conference on. IEEE, 2014.
- [7] Peng, Siwei. "An Id-based Multiple Authentication scheme against attacks in wireless sensor networks." *Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on*. Vol. 3. IEEE, 2012.
- [8] Nguyen, Tien Dung, and Eui-Nam Huh. "A Dynamic ID-Based Authentication Scheme for M2M Communication of Healthcare Systems." Int. Arab J. Inf. Technol. 9.6 (2012): 511-519.
- [9] Chu, Fuzhi, et al. "An improved identity authentication scheme for internet of things in heterogeneous networking environments." *Network-Based Information Systems (NBiS), 2013 16th International Conference on.* IEEE, 2013.
- [10] Liu, Jing, Yang Xiao, and CL Philip Chen. "Authentication and access control in the internet of things." *Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International Conference* on. IEEE, 2012.
- [11] Jan, Mian Ahmad, et al. "A robust authentication scheme for observing resources in the internet of things environment." *Trust, Security and Privacy in Computing and Communications (TrustCom)*, 2014 IEEE 13th International Conference on. IEEE, 2014.
- [12] Shankar, K., and P. Eswaran. "RGB based multiple share creation in visual cryptography with aid of elliptic curve cryptography." *China Communications* 14.2 (2017): 118-130.
- [13] Shankar, K., and P. Eswaran. "RGB-Based Secure Share Creation in Visual Cryptography Using Optimal Elliptic Curve Cryptography Technique." *Journal of Circuits, Systems and Computers* 25.11 (2016): 1650138.