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a b s t r a c t 

The challenge of simulating the broad open sea with limited computational resources has long been of 

interest in ocean engineering research. In view of this issue, this paper proposes a fully nonlinear po- 

tential flow method named the spectral coupled boundary element method (SCBEM). By leveraging the 

approach of domain decomposition, SCBEM achieves significantly reduced computational cost and an or- 

der of magnitude increase in computational domain compared to the conventional boundary element 

method (BEM). The SCBEM encompasses the marine structure with only a tiny BEM domain and em- 

ploys a high-order spectral layer to simulate the broad water outside the BEM domain. The performance 

of the SCBEM is evaluated through comparison with the wave damping approach and literature results 

for regular waves, modulated wave trains, focused waves, and diffraction of a vertical cylinder. The nu- 

merical results demonstrate the effectiveness and accuracy of the SCBEM in simulating a wide range of 

wavelengths and nonlinear wave interactions. 

© 2023 Published by Elsevier B.V. on behalf of Shanghai Jiaotong University. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Potential flow theory plays an important role in studies of water 

ave dynamics and wave–structure interactions. As hydrodynamic 

esearch has progressed and the focus on nonlinear wave behav- 

or has increased, the fully nonlinear potential flow method has 

ttracted increasing interest for its ability to account for nonlinear 

ater surfaces and instantaneous wet body surfaces [1–5] . 

Despite significant advancements in computing power, the sim- 

lation of a broad range of nonlinear free surfaces remains a chal- 

enge. Numerical methods based on potential flow theory can be 

ivided into two categories: spatial-based and boundary-based. 

he former, such as the finite element method (FEM), finite vol- 

me method (FVM), and harmonic polynomial cell (HPC) method 

6] , discretize the entire flow field into a highly detailed mesh to 

recisely capture the flow filed below the free surface. These meth- 

ds often require discretizing a computational domain of around a 

ozen wavelengths into millions of grids, leading to computation 

imes measured in days, even though only sparse matrices need to 

e solved. 
∗ Corresponding author. 
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Boundary-based methods, represented by the boundary ele- 

ent method (BEM), take advantage of the linearity of Laplace’s 

quation to discretize only the boundary. In comparison to spatial- 

ased methods, BEM requires fewer grids, however, the coefficient 

atrix solved by BEM is dense, resulting in a computational com- 

lexity of O (N 

2 ) for problems with N unknowns, even when uti- 

izing iterative solvers like Generalized Minimal Residual method 

GMRES). The development of algorithms such as the fast multi- 

ole algorithm [7] and Barnes–Hut algorithm [8] in the 1980s has 

ignificantly reduced the computational time of BEM simulations 

rom O (N 

2 ) to O (N) or O (N log N) . Nevertheless, the size of the

ree surface that can be effectively simulated with the BEM re- 

ains limited. The current state-of-the-art in fully nonlinear po- 

ential flow simulations [2,5] involves a relatively modest number 

f grids, usually in the range of a few tens of thousands, and a 

omputational domain limited to no more than 10 wavelengths. 

owever, the simulation time for a single case still often takes tens 

f core-hours. 

Due to limitations in computational efficiency, current numeri- 

al methods are usually limited to simulating small calculation do- 

ains. However, a considerable number of issues studied in the 

eld of marine and ocean engineering occur in an open ocean set- 

ing, where platforms or ships encounter incident waves and gen- 

rate scattering waves that propagate out to infinity. The phys- 
is is an open access article under the CC BY-NC-ND license 
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cal reality of unbounded seas and the finite computational do- 

ain form a contradictory pair. Therefore, it is necessary to uti- 

ize non-reflecting boundary conditions (NRBCs) when simulating 

n unbounded ocean [9–12] . The most widely used NRBC might be 

he wave damping technique, also known as numerical beach [13] . 

he computational domain is surrounded by a damping zone that 

educes the energy of outgoing waves, preventing them from re- 

ecting when they reach the truncation boundary. This approach is 

traightforward to implement and provides effective dissipation of 

igh-frequency waves. However, its effectiveness is limited by the 

equirement that the width of the damping zone must be greater 

han the wavelength of the waves to be damped [10] . The uti- 

ization of dispersion relations as a means of converting a trun- 

ated boundary into a transparent one that permits wave transmis- 

ion is also a widely researched area of NRBCs. The Sommerfeld–

rlanski condition, proposed by Orlanski [14] , is a prominent ex- 

mple of this approach, permitting waves of a specific speed to 

ass through without hindrance. Since then, various radiation-type 

oundary conditions have been explored and designed [15–19] , 

hich allow for the transmission of waves through the truncation 

oundary for a specific range of velocities. Additionally, there have 

een effort s to combine the advant ages of both damping layer and 

adiation conditions by integrating them, in order to effectively 

issipate short waves while allowing long waves to pass through 

he boundary [10,20,21] . 

On the other hand, multi-domain methods, also known as do- 

ain decomposition methods, strives to simulate larger compu- 

ational domains to better approximate the reality of unbounded 

cean. One well-known approach (see [22–24] ) involves treating 

he open sea outside the BEM computational domain as an outer 

omain, where the free-surface condition is linearized and de- 

cribed by the free-surface Green’s function on the truncation 

EM boundaries. The velocity matching condition at the trunca- 

ion boundaries constitutes a special type of NRBC, allowing waves 

f any frequency to pass freely from the inner BEM domain. How- 

ver, in nonlinear simulations, a large transition zone is required 

o gradually convert the nonlinear solution of the BEM domain 

o a linear form. Another promising strategy for modeling fully 

onlinear problems uses Rankine sources for all decomposed sub- 

omains [25] . By dividing the fluid domain into interconnected 

ubdomains and matching the velocity at the shared boundaries, 

he equation solved by BEM is transformed from a dense matrix 

o a block-banded matrix, which can be solved by an optimized 

anded solver with reduced cost. To reduce the computational 

ffort, De Haas and Zandbergen [26] solved the boundary value 

roblem individually for each subdomain and iteratively matched 

he velocity/potential of the shared imaginary boundaries. Bai and 

atock Taylor [27,28] , Geng et al. [29] further improved the itera- 

ion scheme of De Haas method. 

In this paper, a novel domain decomposition method, the spec- 

ral coupled boundary element method (SCBEM), is presented as a 

olution to simulate the vast ocean. The SCBEM employs a compact 

EM computational domain surrounding marine structures, and 

odels the broader water surface outside the BEM domain with 

he high-order spectral (HOS) method. With regard to the internal 

EM domain, the SCBEM may also be viewed as a specialized form 

f NRBC, allowing nonlinear waves to freely pass through the BEM 

oundary. Compared to conventional BEM, SCBEM entails signifi- 

antly lower computational expenses and permits computational 

omains that are tens of times larger, which aligns better with the 

eality of unbounded ocean and concurrently enables investigation 

f far-field waves. While conventional BEM approaches require sev- 

ral hours to conduct fully nonlinear simulations of wave–structure 

nteractions, SCBEM is capable of achieving the same results within 

 few minutes, demonstrating its potential for practical applica- 

ions. 
s

2 
The paper is structured as follows: Section 2 provides an 

verview of the basic principles and numerical implementation 

f the SCBEM. In Section 3 , we evaluate the performance of the 

CBEM in handling nonlinear waves through a series of simula- 

ions. We compare the results of regular wave simulations with 

hose obtained from the classical wave damping approach. Further, 

e examine the SCBEM’s ability to model modulated wave trains, 

ocused waves, and the diffraction around a vertical cylinder, and 

ompare these results with those reported in the literature. Finally, 

he conclusions of this study are summarized in Section 4 . 

. Mathematical model and numerical methods 

.1. Governing equations in the open sea 

Consider a Cartesian coordinate system with the z-axis verti- 

ally upward and the origin located at the calm water surface. As- 

uming the fluid to be inviscid and incompressible and the flow 

o be irrotational, the flow field can be described by the velocity 

otential in the framework of potential flow theory: 

 

2 φ( x , z, t) = 0 (1) 

u, v , w ) = ∇φ (2) 

here x ≡ (x, y ) denotes the horizontal vector, (u, v , w ) denotes

he velocity field in the x , y , and z directions, respectively. 

The free surface conditions are written under the Eulerian 

ethod as: 

∂ζ

∂t 
= 

∂φ

∂z 
− ∇ x φ · ∇ x ζ

∂φ

∂t 
= −gζ − (∇φ) 2 

2 

⎫ ⎪ ⎬ 

⎪ ⎭ 

on S f (3) 

here S f denotes the free surface, ζ ( x , t) is the free surface ele-

ation, g is the gravitational acceleration, and ∇ x ≡ (∂ / ∂ x , ∂ / ∂ y ) is 
he horizontal gradient. 

As the instantaneous free surface varies with time, following 

akharov [30] , we keep the horizontal coordinates of the control 

oints unchanged and introduce the surface potential: 

S ( x , t) = φ( x , ζ ( x , t) , t) (4) 

Substituting Eq. (4) into Eq. (3) , the chain rule allows the free 

urface conditions to be written as: 

∂ζ

∂t 
= 

(
1 + 

(∇ x ζ
)2 

)
∂φ

∂z 
− ∇ x φ

S · ∇ x ζ

∂φS 

∂t 
= 

1 + 

(∇ x ζ
)2 

2 

(
∂φ

∂z 

)2 

− gζ −
(∇ x φS 

)2 

2 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

on S f (5) 

In addition to the free surface condition, the velocity potential 

must also satisfy the bottom boundary condition: 

∂φ

∂z 
= 0 as z → −∞ (6) 

nd the boundary condition on solid body surface S b : 

∂φ

∂n 

= ( U + � × r ) · n on S b (7) 

here U , � are the velocity and angular velocity of the body, re- 

pectively, and r , n are the coordinates and unit normal of the sur- 

ace points, respectively. 

Once the initial values of free surface elevation ζ and velocity 

otential φS are known, along with the motion of the object, it is 

ossible to solve the initial boundary value problem (IBVP) con- 

tructed by Eqs. (5) –(7) together with the initial conditions. The 
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Fig. 1. Transition function T in the coupling region. 
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ey to solving this problem in the time domain lies in the evolu- 

ion of the free surface condition given by Eq. (5) . In order to calcu-

ate the temporal derivative, it is necessary to calculate ∇ x ζ , ∇ x φS , 

nd ∂ φ/∂ z. While ∇ x ζ and ∇ x φS can be easily obtained using nu-

erical methods such as FDM, solving for ∂ φ/∂ z at each time step 

s critical in solving this IBVP. 

At each time step, in order to obtain ∂ φ/∂ z on the free sur-

ace, it is necessary to solve the following boundary value problem 

BVP): 
 

 

 

 

 

 

 

 

 

 

 

φ = φS on S f 

∂φ

∂n 

= ( U + � × r ) · n on S b 

∂φ

∂z 
= 0 as z → −∞ 

(8) 

.2. Spectral coupled boundary element method 

.2.1. Decomposition strategy 

Eq. (8) defines the velocity potential φ through the imposition 

f the Dirichlet condition on the free surface, the Neumann con- 

ition on the solid surface, and the infinite depth condition. To 

olve for φ at each time step in fully nonlinear simulations, equa- 

ions must be established at instantaneous boundaries. However, 

raditional BEM approaches become increasingly time-consuming 

s the computational domain expands. Even with fast algorithms 

uch as FMM, ensuring convergence during iterative solving is dif- 

cult, necessitating careful design of pre-conditioners. 

To overcome these challenges and efficiently solve Eq. (8) , 

CBEM leverages the linear nature of Laplace’s equation by decom- 

osing the original BVP into two parts. The velocity potentials φH 

nd φR respectively satisfy the following boundary conditions: 
 

 

 

φH = T φS on S f∗

∂φH 

∂z 
= 0 as z → −∞ 

(9) 

 

 

 

 

 

 

 

 

 

 

 

φR = (1 − T ) φS on S f 

∂φR 

∂n 

= −∂φH 

∂n 

+ ( U + � × r ) · n on S b 

∂φR 

∂z 
= 0 as z → −∞ 

(10) 

ere T represents a transition function. The sum of φH and φR 

ives the velocity potential that satisfies the original boundary 

onditions in Eq. (8) . Due to the presence of the body surface, 

oles may exist in the free surface where the φS and ζ become 

ndefined. In Eq. (9) , S f∗ refers to the virtual free surface obtained 

fter filling the holes in the original free surface S f . 

Although it may appear that the number of BVPs to be solved 

as increased by one, clever utilization of the transition function T 
an render Eqs. (9) and (10) more amenable to numerical solution. 

 rectangular coupling region is manually defined to encompass 

he area that cannot be simulated using the HOS method. Beyond 

his coupling region, the value of T remains constant at 1: 

 = 

{
1 − T x T y in the couping region 

1 outside the coupling region 

(11) 

In the coupling region, T x and T y take on the following form: 

T x = 

1 

2 

(
erf 

(
4 d x 

l x 
− 2 

)
+ 1 

)

T y = 

1 

2 

(
erf 

(
4 d y 

l y 
− 2 

)
+ 1 

)
(12) 
3 
n which d x , d y are the minimum distances between a given posi- 

ion and the boundaries of the coupling zone along the x - and y -

xes, respectively. The internal margin of the coupling region con- 

ists of a transition zone that with lengths of l x and l y along the x -

nd y -axes, respectively. As shown in Fig. 1 , within this transition 

one, the value of T gradually transitions from 1 to 0. As for the 

nterior of the coupling region, the value of T remains fixed at 0. 

If we place the object of interest within the coupling region, 

ig. 2 demonstrates two BVPs that are divided using the transition 

unction. Here, the color denotes the boundary value. By employing 

he transition function, the Dirichlet problem for φH becomes that 

f a near-field velocity potential with a zero boundary condition, 

s shown in the figure. On the other hand, φR needs to solve a 

irichlet-Neumann problem with a zero far-field velocity potential. 

or φH , the HOS method can be used to quickly obtain solutions, 

hile the computational effort required to solve the BVP by BEM 

or φR will also be greatly reduced due to the presence of a zero 

ar-field velocity potential. 

.2.2. Desingularized Rankine panel method 

The present study implements a desingularized Rankine panel 

ethod (DRPM) to solve the BVP given by Eq. (10) . Additional per- 

inent information can be found in [24,31] . As an indirect boundary 

lement method, DRPM utilizes a superposition of Green’s func- 

ions to express the velocity potential φR : 

R ( x , z) = 

∑ 

i 
σi G i ( x , z) (13) 

here G i is the Green’s function that satisfies Laplace’s equa- 

ion and deep-water bottom condition, and σ is the source 

trength. 

Fig. 3 illustrates the discretization of the BEM domain. The free 

urface is discretized into a set of unstructured collocation points, 

ith source points placed above these collocation points. In accor- 

ance with Eq. (5) , the horizontal coordinates of the free-surface 

odes remain constant while the vertical coordinates move with 

he free surface. Consequently, the vertical coordinates of both 

he collocation points and the source points situated above must 

e updated in each timestep, reflecting the wave elevation. The 

ody surface is partitioned into triangular source panels, each hav- 

ng a collocation point situated at its center. This study uses a 

utting-mesh method to obtain the instantaneous wet surface. Ini- 

ially, a complete surface mesh is provided as input at the onset of 

he simulation. Subsequently, during each timestep, this complete 

esh is intersected by the virtual free surface, yielding the wetted 

urface mesh beneath the waterline. 

We denote the number of nodes on the free surface as N f 

nd the number of panels on the wetted body surface as N b . The

reen’s function, G 

pt 
i 

, induced by the i th point source located at 
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Fig. 2. Schematic diagram of the decomposition strategy. (color indicates the boundary value). 

Fig. 3. Discretization of the BEM domain. 
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ξ , η, ζ ) , is expressed as follows: 

 

pt 
i 

(x, y, z) = 

1 √ 

(x − ξ ) 2 + (y − η) 2 + (z − ζ ) 2 
(14) 

The Green’s function G 

pan 
i 

for the i th panel source (ξ , η, ζ ) ∈ S i 
s given by: 

 

pan 
i 

(x, y, z) = 

∫ ∫ 
S i 

1 √ 

(x − ξ ) 2 + (y − η) 2 + (z − ζ ) 2 
dS (15) 

The source strength distribution, σ pt and σ pan , must satisfy the 

irichlet condition at the free surface collocation points: 

N f ∑ 

j=1 

σ pt 
j 

G 

pt 
j 
( r pt 

i 
) + 

N b ∑ 

j=1 

σ pan 
j 

G 

pan 
j 

( r pt 
i 

) 

= φR ( r pt 
i 

) , i = 1 , 2 , . . . , N f (16) 

ere the notation r ≡ (x, y, z) , and r 
pt 
i 

represents the collocation 

oint located beneath the i th source point. 

At the collocation point r 
pan 
i 

, which correspond to the center 

f the i th surface panel, σ pt and σ pan should fulfill the following 

eumann conditions: 

N f ∑ 

j=1 

σ p t 
j 

∂ 

∂n i 

G 

pt 
j 
( r pan 

i 
) + 

N b ∑ 

j=1 

σ pan 
j 

∂ 

∂n i 

G 

pan 
j 

( r pan 
i 

) 

= 

∂ 

∂n 

φR ( r pan 
i 

) , i = 1 , 2 , . . . , N b (17) 

i 

4 
here n i is the normal vector of the i th panel. As the colloca- 

ion point r 
pan 
j 

coincides with the jth panel, the term G 

pan 
j 

( r pan 
j 

) 

xhibits weak singularity. This singular integral can be accurately 

alculated using the analytical formula proposed by Hess and 

mith [32] . Specifically, for the induced normal velocity, the follow- 

ng formula can be applied: 

∂ 

∂n i 

G 

pan 
i 

( r pan 
i 

) = 2 π (18) 

Once the source strengths are determined, the vertical velocity 

an be calculated as: 

∂φR 

∂z 
= 

N f ∑ 

j=1 

σ pt 
j 

∂G 

pt 
j 

∂z 
+ 

N b ∑ 

j=1 

σ pan 
j 

∂G 

pan 
j 

∂z 
(19) 

It can be observed that the Green’s functions for Eqs. (14) and 

15) exhibit a decay as the distance increases. When the field point 

nd source are far apart, the induced velocity potential from the 

ource can be neglected. Consequently, we confine the placement 

f sources within the coupling region and presume that φR sat- 

sfies the Dirichlet condition of φR ( x , ζ ) = 0 outside the coupling 

egion automatically. This assumption results in a notable reduc- 

ion in the discretization required for solving Eq. (10) using BEM, 

hereby significantly enhancing computational efficiency. The ef- 

ectiveness of this assumption will be analyzed in detail in sub- 

equent sections. 

.2.3. High-order spectral method 

This paper employs the HOS method to efficiently solve the 

irichlet problem of Eq. (9) . The HOS method is a pseudo-spectral 

ethod that uses the Fast Fourier Transform (FFT) to efficiently 

olve the Dirichlet problem on nonlinear free surfaces. In this pa- 

er, only the formula for the HOS method is presented, with fur- 

her details and derivations being available in the works of [33,34] . 

In cases involving the surface-piercing body, there exists a hole 

n the free surface. Moreover, the distribution of collocation points 

ear the object is unstructured. To implement the HOS method, 

t is essential to first perform an interpolation of the free surface 

nd then patch the hole caused by the presence of the object. This 

rocedure eventually yields a virtual free surface represented by an 

quidistant grid as depicted in Fig. 4 . The colors on the free surface 

ndicate the Dirichlet condition of the velocity potential φH . It can 
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Fig. 4. The virtual free surface and the Dirichlet condition for φH . 
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e observed that although the free surface potential φS remains 

ndefined at the hole. Due to the transition function being 0 in 

his area, the Dirichlet condition can be explicitly defined as 0. 

Once the virtual free surface has been constructed and the 

oundary conditions in Eq. (9) have been established, one can ef- 

ectively solve for the velocity potential φH with the HOS method. 

n the HOS method, φH is considered as a superposition of basis 

unctions: 

H ( x , z) = Re 

(∑ 

i 
A i S i ( x , z) 

)
(20) 

here A is the amplitude of basis functions and S is the Fourier 

igenfunction satisfying Laplace’s equation and the deep-water 

ottom boundary condition: 

( x , z) = exp (| k | z + i k · x ) (21) 

here k ≡ (k x , k y ) is the wavenumber vector. 

The φH at z = ζ can be expressed in various orders utilizing 

erturbation and Taylor expansions: 

H ( x , z) = 

∞ ∑ 

i =1 

φ(i ) ( x , z) = 

∞ ∑ 

i =1 

( 

∞ ∑ 

j=0 

ζ j 

j! 

∂ j 

∂z j 
φ(i ) ( x , 0) 

) 

(22) 

Matching the orders of each term, the value of φ(i ) at z = 0 is

iven by the following equation: 

φ(1) ( x , 0) = T φS 

φ(m ) ( x , 0) = −
m −1 ∑ 

k =1 

ζ k 

k ! 

∂ k 

∂z k 

(
φ(m −k ) ( x , 0) 

)
, m > 1 (23) 

nd the surface vertical velocity ∂ φH /∂ z is finally written as: 

∂ 

∂z 
φH ( x , ζ ) = 

M ∑ 

k =1 

( 

ζ k −1 

(k − 1)! 

∂ k 

∂ z k 

M−k +1 ∑ 

m =1 

φ(m ) ( x , 0) 

) 

(24) 

here M is the truncation order of perturbation expansion, in this 

aper M is set to 3. 

.2.4. Further discussion 

The BEM can solve Dirichlet–Neumann problems with complex 

eometries, but is quite time-consuming. The HOS method can 

uickly solve Dirichlet problems on nonlinear free surfaces, but 

nly for uniform grids. The SCBEM aims to combine the advantages 

f both methods to simulate wave propagating in vast ocean with 
5 
omplex geometries at a small computational cost. It considers the 

otal velocity potential as a superposition of two fundamental so- 

utions: 

= φR + φH = 

∑ 

i 
σi G i + Re 

(∑ 

j 
A j S j 

)
(25) 

The concept behind SCBEM is to determine a distribution of σ
nd A that fulfills the boundary conditions stated in Eq. (8) . Here, 

is solved through the BEM approach, while A is obtained through 

he HOS approach. The Rankine source Green’s function for BEM, 

 i , exhibits singularity and locality. While the Fourier basis func- 

ion for HOS, S j , is global and does not contain any singularities. 

ecognizing the distinct descriptive capabilities of G i and S j , it is 

atural to propose a coupling scheme whereby G i describes the 

ear-field velocity potential while S j characterizes the far-field. By 

tilizing this approach, BEM can be relieved of its responsibility in 

he far-field area, resulting in significant reductions in computa- 

ional cost. 

The derivation of SCBEM introduces only one non-rigorous as- 

umption, namely that the distribution of source strength σ within 

he BEM domain satisfies the Dirichlet condition φR = 0 outside 

he BEM domain. This paper refers to the approach of first solv- 

ng the HOS part, followed by BEM to solve the residual within the 

oupling region as the Spectral–Green (S–G) approach. The S–G ap- 

roach is not only justified by the decay properties of the Green’s 

unction 1 /r, but also because the induced velocity potential out- 

ide the BEM domain can be mutually cancelled due to the source 

trength distribution within the BEM domain. Numerical simula- 

ions presented later in this paper demonstrate that the S–G ap- 

roach is sufficiently accurate in most cases. 

Similarly, the SCBEM can also begin by constructing the BVP 

ithin the BEM domain and solving it before employing the HOS 

ethod to solve for the residuals. Such Green–Spectral (G–S) ap- 

roach no longer assumes that the influence of the source strength 

istribution outside the BEM domain can be neglected, as in the 

–G approach. Rather, it assumes that the impact of HOS on the 

ody surface can be ignored, i.e., ∂ φH /∂ n = 0 in Eq. (10) . To ensure

athematical rigor, it is also feasible to iteratively solve for both 

he BEM domain and the HOS layer to obtain σ and A that pre- 

isely satisfy the boundary conditions throughout the entire com- 

utational domain. 

Although SCBEM is a fully nonlinear method, considering this 

ssue from the perspective of linear time-domain Green’s func- 

ions may enhance our understanding of the effective mechanism 

f SCBEM. The influence of the body surface can be regarded as 

 superposition of a series of impulse perturbations. Considering 

 impulse perturbation at t = 0 , the impact of this perturbation 

n the flow field can be expressed as the following time-domain 

reen’s function [35] : 

 (P, Q, t) = 

(
1 

r 
− 1 

r 1 

)
δ(t) 

+ 2 

∫ ∞ 

0 

√ 

gk e k (z+ ζ ) J 0 (kR ) sin 

(√ 

gk t 

)
dk (26) 

here P ≡ (x, y, z) and Q ≡ (ξ , η, ζ ) denote the field point and

ource point, respectively. r is the distance between P Q , and r 1 is 

he distance between the field point and the mirror source point 

bout the free surface. Eq. (26) consists of a impulsive term which 

ndicate the immediate influence of the pulse excitation, and a 

emory term accounts for the memory effect of the free surface. 

The impulsive term of the time-domain Green’s function 

emonstrate singularity solely at the source point Q . In SCBEM, 

he panels placed on the body surface facilitate the modeling of 

he 1 /r term, while the 1 /r 1 term is described by desingularized 

ource points and HOS basis functions. The impulsive terms in- 

uce zero velocity potential on the free surface, while the induced 
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Fig. 5. Temporal and spatial variation of the memory term in the time-domain 

Green’s function. 
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ertical velocity is ζ /r 3 , which exhibits rapid decay with distance 

ubed. Therefore, when the free surface outside the BEM domain 

s remote from the body surface, the influence of impulsive term 

an even be numerically neglected. 

Fig. 5 illustrates the influence of the memory term on the 

ree surface, where R denotes the horizontal distance between the 

ource point and the field point. At t = 0 , it can be observed that

he impulse-induced memory term has no effect on the free sur- 

ace. During the ensuing brief period, only the nearby free surface 

xperiences disturbance. As analyzed earlier regarding the impul- 

ive terms, we can deduce that the effect of a disturbance can 

e categorized into two parts: the impulsive part, which only has 

 significant impact on the near field and a negligible effect on 

he far-field; and the memory part, which manifests as waves that 

radually propagates outward with time. 

From this perspective, despite the fact that the fluid is incom- 

ressible, owing to the presence of the free surface, the entire sys- 

em does not exhibit significant long-range effects. Any disturbance 

ill transform into surface gravity waves, which can be considered 

s satisfying the convective equation and progressively propagat- 

ng according to the dispersion relationship. Therefore, regardless 

f the existence of solid surfaces, as long as SCBEM allows waves to 

ow into and out of the BEM domain undisturbed, hydrodynamic 

henomenon can be correctly simulated. 

.3. Wave generation and absorption 

Although SCBEM implements an HOS layer to simulate wide 

ater bodies distant from the body surface and models a computa- 

ion domain significantly larger than conventional BEM, the com- 

utation domain is ultimately limited. Without appropriate han- 

ling, scattered waves may approach the boundaries of the com- 

utation domain after long-time simulation and adversely affect 

he simulation. Two approaches, namely the periodic mode and the 

ave tank mode, are employed in this study to perform wave gen- 

ration and absorption. 

The periodic mode employs a relaxation method. We denote the 

elocity potential and wave elevation simulated by SCBEM as φS 
t 

nd ζt , respectively, and consider the nonlinear incident wave φS 
i 

nd ζi in the absence of the solid surface. After each time step 

alculation, the scattered waves generated by the presence of the 

bject are absorbed using a relaxation function: 

ζt = ζi + R (x, y )(ζt − ζi ) 

φS 
t = φS 

i + R (x, y )(φS 
t − φS 

i ) (27) 

ere R (x, y ) is a ramp function, written as: 

 (x, y ) = exp 

( 

−
(

2 x 

L x 

)12 

−
(

2 y 

L y 

)12 
) 

(28) 
6 
here L x , L y is the length of the SCBEM computational domain, and 

he coordinate origin is located at the center of the computational 

omain. In Eq. (27) , the φS 
i 

and ζi of the nonlinear incident wave 

eld is obtained from a pure HOS simulation without any struc- 

ures, which has the same computational domain and grid space 

s that of SCBEM. Specifically, at the initial time, the entire compu- 

ational domain is given with the wave elevation and velocity po- 

ential. Under periodic boundary conditions, waves propagate pe- 

iodically throughout the domain in the HOS simulation, thereby 

urnishing insights into incident waves in the absence of marine 

tructures. 

The wave tank mode behaves more like a physical wave tank, 

ith a wave-making zone upstream and a damping zone down- 

tream [36] . Both wave-making and wave-absorbing zones are well 

utside the coupling region. The incident waves are artificially cou- 

led in the wave-making zone, consistent with Eq. (27) . However, 

n the wave tank mode, R (x, y ) is only non-zero in the upstream

ave-making zone, written as: 

 (x, y ) = 1 − exp 

( 

−10 

(
8 x 

L x 
+ 3 

)10 
) 

(29) 

The section at the downstream end of the tank, measuring L x / 4 

n length, is designated as the wave-absorbing zone. Within this 

one, a dissipation term is added to Eq. (5) to absorb the waves: 

∂φS 

∂t 
= −νφS + 

1 + 

(∇ x ζ
)2 

2 

(
∂φ

∂z 

)2 

− gζ −
(∇ x φS 

)2 

2 

(30) 

here ν is the Rayleigh viscosity, representing the strength of 

he dissipation. The value of ν transitions gradually from 0 to 

 . 36 
√ 

g/L x within the wave-absorbing zone. It is commonly ac- 

epted that the efficacy of wave absorption is relatively insensitive 

y ν , with the length of the absorption zone being the primary de- 

erminant of wave absorption effectiveness [37] . Traditional meth- 

ds typically position the absorption zone within the BEM domain. 

owever, such strategy requires a delicate balance between com- 

utational complexity and absorption effectiveness. An absorption 

one that is too small may lead to insufficient wave absorption, 

hile an overly large absorption zone can increase the compu- 

ational burden. In contrast, the SCBEM situates the absorption 

one outside the BEM domain. This arrangement minimizes the 

iscretization within the BEM domain and ensures an adequate 

ength for wave absorption, thereby guaranteeing the effectiveness 

f wave absorption. 

.4. Numerical implementation 

In this study, the fourth-order Runge–Kutta method is em- 

loyed for the numerical integration of the system of equa- 

ions represented by Eq. (5) . The flowchart in Fig. 6 illustrates the 

omputation process for SCBEM. The algebraic system of the BEM 

omain is solved using a GMRES solver. The gradual transition of 

he boundary conditions to zero makes the iterative convergence 

traightforward, and hence, no preconditioner is used in the GM- 

ES solution process. 

To eliminate the saw-tooth instability that may occur during 

onlinear time-domain simulations, a seven-point filter is applied 

o the HOS layer at each timestep and radial basis function inter- 

olation with a smooth factor is applied to the collocation points 

o dissipate the high-frequency energy. 

The numerical model delineated previously is implemented by 

sing a mix of Fortran and C languages. To leverage the capabilities 

f the GPU, OpenCL kernels are employed to compute the influ- 

nce coefficients of the Rankine sources and speed up the matrix 

perations for the HOS calculation. Simulations are performed in 

ingle precision using an AMD 3700X processor and an Nvidia RTX 
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Given wave elevation ,

surface potential ,

and complete surface mesh

Patch the holes and interpolate

to obtain virtual free surface 

Cut the complete surface using 

to obtain the instantaneous wet surface 

Solve x  with HOS method

Update the free surface nodes

and wetted body panels for the BEM domain

GMRES iteration for solving the BEM source

strength distribution

Combine contributions of both HOS and BEM

to obtain vertical velocity x

Calculate time derivatives of

 and  with Eq. (5)

Fig. 6. Flowchart for computing temporal derivatives of the flow field using SCBEM. 
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060 graphics card. For a case consisting of approximately 250,0 0 0 

odes and 60 0 0 Rankine sources, the computational time for each 

ime step is approximately 0.3 s, with the elapsed time ratio be- 

ween the BEM domain and the HOS layer being roughly 40:1. 

. Numerical validation and discussion 

.1. Overview 

This section presents a comprehensive validation of the SCBEM. 

s analyzed in Section 2 , the effectiveness of the SCBEM is depen- 

ent on whether waves can propagate into and out of the BEM 

omain without interference. Thus, the first step towards valida- 

ion entails conducting numerical simulations of regular waves. 

y examining the errors in simulating regular waves with differ- 

nt wavelengths as they propagate and enter/exit the BEM do- 

ain, a comprehensive understanding of the SCBEM’s wave trans- 

ission capabilities can be gained. Subsequently, this section vali- 

ates SCBEM’s capability to simulate strong nonlinear phenomena 

uch as modulated wave trains and focused waves. Finally, this sec- 

ion replicates the wave run-up of a cylinder and compares it to 

enchmark experiments. 

The computational domain applied in this section is shown in 

ig. 7 , with the origin of the coordinate system located at the cen- 

er. Denoting the grid spacing as 1 unit length, the BEM domain, 

ositioned at the center, has a dimension of 72 × 72 and is en- 

eloped by a larger HOS layer with a size of 512 × 512 . The width

f the transition zone is 18. 

.2. Regular waves 

This subsection conducts a series of regular wave tests. The pur- 

ose of these tests is twofold: (1) To assess the efficacy of the 
7

CBEM in transmitting waves of varying wavelengths through a 

onvergence analysis of the parameter λ/l x , which represents the 

atio of the wavelength to the width of the transition zone. (2) 

o determine an appropriate range of wavelengths for conducting 

ubsequent simulations of nonlinear waves. 

The SCBEM can also be considered as a special type of NRBC 

dded to the BEM domain, which effectively prevents unreason- 

ble wave reflections at the boundary of the BEM domain. There- 

ore, this section also presents a comparison of the effectiveness 

etween the SCBEM and the wave damping method. Numerical 

imulations with wave damping method are performed using the 

raditional BEM. As shown in Fig. 8 , the width of the damping zone 

s consistent with that of the transition zone in the SCBEM, at 18 

nits. The wave-damping simulations adopt Eq. (30) to dissipate 

he waves in the damping zone. Following Boo [38] , ν is written 

s: 

= ν0 

(
x − x b 

l x 

)2 

(31) 

here l x = 18 is the length of the damping zone, x b = 18 is the

tart point of the damping zone. The constant ν0 is determined 

hrough artificial means to achieve optimal damping performance. 

Deep-water fifth-order Stokes waves are set as the incident 

aves [39] . For convenience, the grid spacing is set to 1m in this 

ubsection. The chosen wave steepness for the numerical simula- 

ions is kA = 0 . 01 , and the timestep selected is 1/36 of the wave

eriod. 

Fig. 9 compares the wave profiles at the midline of compu- 

ational domain, which are simulated by SCBEM and damping 

ethod, respectively. Both methods use the wave tank mode, as 
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Fig. 9. Wave profiles of different wavelengths simulated with the SCBEM and 

damping approaches. 
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escribed in Section 2.3 , to generate incident waves. And the wave- 

aking zones are positioned in the same manner for both meth- 

ds. In the SCBEM simulation, waves are created in the HOS layer 

utside the BEM domain, pass through the first transition zone 

 x ∈ [ −36 , −18] ) into the inner BEM domain, propagate 36m within

he BEM domain, then exit through the second transition zone 

 x ∈ [18 , 36] ) into the outside HOS layer. In the wave-damping sim-

lation, the waves kept propagating and reached the damping zone 

ocated at x ∈ [18 , 36] . The region x ∈ [18 , 36] in both methods

erved to prevent wave reflection at the truncated boundary ( x = 

6 ) of the BEM domain. Both methods produce good reflection- 

ree results for λ/l x < 1 , but the damping method fails to fully

issipate the waves for λ/l x > 1 , as shown in Fig. 9 (c) and (d).
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Fig. 10. Wave elevation at the

8 
he reflected waves disturbed the original incident waves, caus- 

ng deviation from the theoretical amplitude and phase, as also re- 

orted by Romate [10] . Unlike the conventional damping method, 

he SCBEM is capable of producing more accurate wave simula- 

ions, even when the wavelength exceeds the width of the tran- 

ition zone. This suggests that the SCBEM is applicable to a much 

ider range of wavelengths than the damping method. 

Fig. 10 illustrates the time history of the wave elevation at the 

enter of the BEM domain. Both the periodic and wave tank modes 

xhibit good accuracy for a wide range of wavelengths, from a 

hort wave with a wavelength of 8 grid units to a long wave with 

 wavelength of 64 grid units, and the waves generated by both 

ethods are consistent with the theoretical solution. This high- 

ights the accuracy and practicality of the SCBEM. 

Fig. 11 displays the wave profiles in the wave tank mode at 

ifferent times. The wave profiles progress from the start of the 

imulation to the steady state and are shown from top to bottom. 

hen λ = 8 , 16 , 32 , the BEM domain is effectively integrated with

he HOS layer. However, for λ = 64 , disturbances emerge in the 

ater surface, particularly at the truncated BEM boundaries. 

The relative error of a single probe is obtained by applying an 

FT to its steady-state time history of wave elevation and compar- 

ng the frequency components with the theoretical solution: 

rr = 

‖F(ζ (t)) − F( ̃  ζ (t)) ‖ 2 

‖F( ̃  ζ (t)) ‖ 2 

(32) 

here F denotes the FFT operator, ζ (t) is the wave elevation 

ecorded at the probe, and 

˜ ζ (t) is the theoretical wave elevation. 

We consider the fluid domain to have reached the steady state 

fter 50 periods. The next 20 periods are used for the error anal- 

sis. The errors are calculated at each of the 72 × 72 collocation 

oints and averaged to obtain the overall relative error for the 

hole BEM domain, as shown in Fig. 12 . The results show that 

he SCBEM produces accurate results (errors less than 5%) for most 

ases, even when the wavelength is several times greater than the 

ransition zone width. However, the error increases with the in- 

reasing wavelength. This is due to the steepness of the transition 
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Fig. 11. Wave profiles of different wavelengths (wave tank mode). 
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Fig. 12. Relative error of waves with different wavelengths. 
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unction with respect to large wavelength waves, which leads to 

 velocity potential that does not satisfy the Dirichlet condition 

R ( x , ζ ) = 0 outside the BEM domain. To maintain accuracy, the 

ave lengths in subsequent simulations are kept within λ/l x < 2 . 

.3. Modulated wave trains 

As pointed out by Zakharov [30] , the third-order nonlinearity 

ay lead to instabilities and energy transfer between wave com- 

onents. This modulational instability (also called the Benjamin–

eir instability) plays an important role in realistic sea waves and 

akes a significant contribution to wave breaking and spectrum 

volution [40,41] . To ensure that the SCBEM can properly model 

he nonlinear interactions between waves, modulated wave trains 

re simulated in the periodic mode. The initial conditions are con- 

istent with the study by Iafrati et al. [42] on wave breaking, where 

and φS are written as: 

ζ = A 0 cos (k 0 x ) + A 1 cos (k −x ) + A 1 cos (k + x ) 
S = A 0 

√ 

g/k 0 exp (k 0 ζ ) sin (k 0 x ) 

+ A 1 

√ 

g/k − exp (k −ζ ) sin (k −x ) 

+ A 1 

√ 

g/k + exp (k + ζ ) sin (k + x ) (33) 

here A 1 = 0 . 1 A 0 , k 0 is the wavenumber of the major component,

nd the wavenumber of the sidebands is k ± = k 0 ± �k , with �k =
 / 5 . 
0 

9 
The wavelength λ0 of the major component is 512 / 20 . And the 

nitial wave steepness ε 0 = k 0 A 0 is used to indicate the strength of 

he nonlinearity. Iafrati et al. [42] conducted simulations of wave 

volution from the beginning until just before breaking using BEM 

or ε 0 values ranging from 0.12 to 0.18, and then imported the po- 

ential results into a Navier–Stokes solver for further study of wave 

reaking. The time history of wave components calculated using 

he SCBEM is compared to Iafrati’s BEM results in Fig. 13 . As a re-

ult of modulational instability, the waves in the fluid domain are 

ot simply superimposed in a linear manner, with significant non- 

inear energy transfer occurring between the main component and 

he sidebands. The time histories obtained from the two methods 

how good agreement, demonstrating that the SCBEM not only al- 

ows for the BEM domain to receive and transmit regular waves, 

ut also simulates the nonlinear interactions between waves. 

Fig. 14 compares the wave profiles before wave breaking given 

n Iafrati et al. [42] with the wave profiles in the midline of the 

CBEM computational domain. The wave profiles obtained by the 

wo approaches are in good agreement. Although the length of the 

EM domain in the simulations ( 2 . 8 λ0 ) is shorter than the length

f a wave packet ( 5 λ0 ), the SCBEM uses a transition zone ( 0 . 7 λ0 )

o embed the truncated BEM computational domain within a larger 

ackground domain, enabling the modulational instability of the 

ave trains to be accurately simulated. The results show that with 

he SCBEM, it is possible to simulate nonlinear phenomena occur- 

ing in a much larger sea area with a small BEM computational 

omain. 

.4. Focused waves 

To further validate the ability of the SCBEM in simulating the 

nteraction of a large number of wave components, this subsection 

eproduces the unidirectional focused wave experiments of Johan- 

essen and Swan [43] . The experiments were conducted in a wave 

asin with a length of 11 m and a depth of 1.2 m. The wavemaker

reated wave components with equal amplitudes and frequency 

pacings, which formed a focused wave 5.5 m from the wavemaker 

ccording to linear theory. 

This subsection proceeds with the computational domain 

hown in Fig. 7 , but the grid spacing is set to 0.082 m. The simula-

ions are performed in wave tank mode; according to linear the- 

ry, the waves will be focused at the center of the wave tank, 

here x = 0 . For consistency with the experiment, the ramp func- 

ion of the wave tank mode is shifted so that the wave-making 

ection ends at x = −5 . 5 m. 

Fig. 15 presents the time histories of the wave elevation at 

he position of maximum crest elevation. The numerical results 
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re compared with case D in the experiments of Johannessen and 

wan [43] , which contain 28 components with frequencies ranging 

rom 53/64 Hz to 80/64 Hz at intervals of 1/64 Hz. The parameter 

 denotes the sum of the wave component amplitudes, which is 

lso the maximum crest elevation in linear theory. As can be seen 

n Fig. 15 , strong nonlinear effects occur during focusing, resulting 

n wave crests much higher than the linear prediction. The numer- 

cal results are in good agreement with the experiments, indicating 

hat the SCBEM is capable of simulating nonlinear interactions be- 

ween numerous wave components. 
10 
.5. Diffraction around a cylinder 

To validate the performance of the proposed method in simu- 

ating nonlinear wave–body interactions, wave diffraction around 

 truncated vertical cylinder is studied. This section numerically 

eplicate the benchmark experiments organized by the Ocean En- 

ineering Committee of the 27th International Towing Tank Con- 

erence [44] . 

The benchmark experiments were performed at MOERI using 

 truncated cylinder with a radius of 8 m and a draft of 24 m.
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o measure the time history of the wave elevation, several wave 

robes were placed around the cylinder, as shown in Fig. 16 . 

robes WPB1–WPB5 were placed uniformly at 45-degree intervals 

nd positioned 8.206 m from the cylinder’s center. Probes WPO1–

PO5 were located farther from the cylinder and placed at a dis- 

ance of 16m from the center. This section simulates a regular 

ave with a period of T = 9 s and a wave steepness of H/L = 1 / 16 ,

here the incident wave for the SCBEM simulation is generated 

sing the wave tank mode. 
Fig. 18. Wave pattern of th

11 
In numerical simulation, a cylinder is introduced at the center 

f the BEM domain, and the collocation points around it are re- 

ned, as illustrated in Fig. 17 . The simulation adopts a time step of 

t = T / 45 = 0 . 2 s, and it takes 18.1 s of wall time to simulate per

ave period after reaching a steady state. 

Fig. 18 presents a panoramic view of the entire computational 

omain and the wave pattern near the cylinder simulated by the 

roposed SCBEM. It can be seen that the SCBEM simulates a con- 

iderably large free surface area, with a length and width of over 

00 times the radius of the cylinder, which is closer to the physical 

eality of an unbounded ocean. In Fig. 18 (b), scattered wave pat- 

erns can be observed radiating outwards from the cylinder. These 

cattered waves successfully pass through the transition zone and 

nter the HOS layer outside the BEM domain, verifying the feasi- 

ility of the SCBEM. 

Fig. 19 shows the time history of wave elevation at wave probes 

fter reaching periodic steady state in the simulation. The SCBEM 

esults are compared with experimental data and the numerical re- 

ults using OpenFOAM by Sun et al. [45] . Both the proposed nu- 

erical method and the OpenFOAM simulation provide good pre- 

ictions that agree well with the experiment. This indicates that 

he SCBEM effectively allows scatter waves to propagate freely 
e SCBEM simulation. 
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utside the BEM domain without causing any undesired reflected 

aves that could disturb the flow field. 

. Conclusion 

A common challenge in ocean engineering is to accurately 

odel waves in an infinite ocean using a limited computational 

omain. Unlike traditional methods that rely on a wide damping 

one, the SCBEM does not alter the free surface conditions sur- 

ounding the BEM truncation boundaries. Instead, it modifies the 

VP by using a transition function. SCBEM splits the original BVP 

nto two parts: a near-field part solved by the BEM and a far-field 

art solved by the HOS. The SCBEM combines the benefits of BEM 

n modeling complex geometries and HOS in computational effi- 

iency. As a result, the simulated area can be enlarged with the 

xtension of the HOS layer while keeping the BEM domain un- 

hanged, leading to improved computational efficiency. 

To evaluate the accuracy of the SCBEM, simulations of regu- 

ar waves with varying wavelengths are carried out. The results of 

hese simulations show that the wave damping method is insuf- 

cient to prevent wave reflection at the truncation boundary for 

aves with wavelengths greater than the width of the damping 

one. Conversely, the SCBEM is able to maintain wave transmis- 

ion through the BEM truncation boundaries with minimal error, 

ven for waves with large wavelengths. The SCBEM is then tested 

n cases featuring strong nonlinearities, including modulated wave 

rains and focused waves. Despite the challenging nature of these 

ases, with modulated wave trains exceeding the length of the 

EM domain and focused waves containing numerous wave com- 

onents, the results obtained from the SCBEM simulations are in 

ood agreement with published literature, thereby confirming the 

ccuracy of the SCBEM in modeling nonlinear wave interactions. Fi- 

ally, the performance of the SCBEM in simulating hydrodynamic 

henomena in the presence of obstacles is validated through the 

imulation of wave diffraction around a cylinder. The results show 

onsistent agreement with previous nonlinear studies and experi- 

ents, indicating that the SCBEM offers a promising approach for 

imulating the nonlinear hydrodynamics of large-scale structures 

ith reduced computational effort. 

The methodology presented in this paper is focused on decom- 

osing the boundary conditions for infinite water depths. How- 

ver, similar strategies can also be adapted to deal with finite wa- 

er depths or varying sea bottom topographies. Furthermore, the 

olvers for the two separated BVPs do not need to be limited to 

OS and BEM. Alternative solutions, such as using the Boussinesq 

odel in place of HOS or a spatial-based method such as FVM to 

olve the near-field region, can also be employed. 
12 
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