Kaixuan Wei

Kaixuan Wei
Princeton University | PU · Department of Computer Science

Master of Science

About

16
Publications
5,217
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
234
Citations

Publications

Publications (16)
Conference Paper
Full-text available
Removing undesirable reflections from a single image captured through a glass window is of practical importance to visual computing systems. Although state-of-the-art methods can obtain decent results in certain situations, performance declines significantly when tackling more general real-world cases. These failures stem from the intrinsic difficu...
Preprint
Full-text available
Plug-and-play (PnP) is a non-convex framework that combines ADMM or other proximal algorithms with advanced denoiser priors. Recently, PnP has achieved great empirical success, especially with the integration of deep learning-based denoisers. However, a key problem of PnP based approaches is that they require manual parameter tweaking. It is necess...
Article
Full-text available
In this article, we propose an alternating directional 3-D quasi-recurrent neural network for hyperspectral image (HSI) denoising, which can effectively embed the domain knowledge--structural spatiospectral correlation and global correlation along spectrum (GCS). Specifically, 3-D convolution is utilized to extract structural spatiospectral correla...
Preprint
Full-text available
Lacking rich and realistic data, learned single image denoising algorithms generalize poorly to real raw images that do not resemble the data used for training. Although the problem can be alleviated by the heteroscedastic Gaussian model for noise synthesis, the noise sources caused by digital camera electronics are still largely overlooked, despit...
Preprint
Full-text available
Deep-learning-based hyperspectral image (HSI) restoration methods have gained great popularity for their remarkable performance but often demand expensive network retraining whenever the specifics of task changes. In this paper, we propose to restore HSIs in a unified approach with an effective plug-and-play method, which can jointly retain the fle...
Article
Compressive imaging aims to recover a latent image from under-sampled measurements, suffering from a serious ill-posed inverse problem. Recently, deep neural networks have been applied to this problem with superior results, owing to the learned advanced image priors. These approaches, however, require training separate models for different imaging...
Article
Deep-learning-based hyperspectral image (HSI) restoration methods have gained great popularity for their remarkable performance but often demand expensive network retraining whenever the specifics of task changes. In this paper, we propose to restore HSIs in a unified approach with an effective plug-and-play method, which can jointly retain the fle...
Article
Full-text available
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model...
Preprint
Full-text available
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model...
Preprint
Recovering an underlying image from under-sampled measurements, Compressive Sensing Imaging (CSI) is a challenging problem and has many practical applications. Recently, deep neural networks have been applied to this problem with promising results, owing to its implicitly learned prior to alleviate the ill-poseness of CSI. However, existing neural...
Preprint
Plug-and-Play (PnP) is a non-convex framework that combines proximal algorithms, for example alternating direction method of multipliers (ADMM), with advanced denoiser priors. Over the past few years, great empirical success has been obtained by PnP algorithms, especially for the ones integrated with deep learning-based denoisers. However, a crucia...
Preprint
Full-text available
In this paper, we propose an alternating directional 3D quasi-recurrent neural network for hyperspectral image (HSI) denoising, which can effectively embed the domain knowledge -- structural spatio-spectral correlation and global correlation along spectrum. Specifically, 3D convolution is utilized to extract structural spatio-spectral correlation i...
Preprint
Full-text available
Removing undesirable reflections from a single image captured through a glass window is of practical importance to visual computing systems. Although state-of-the-art methods can obtain decent results in certain situations, performance declines significantly when tackling more general real-world cases. These failures stem from the intrinsic difficu...
Conference Paper
In this paper, we describe the Perceptual Image Restoration and Manipulation (PIRM) workshop challenge on spectral image super-resolution, motivate its structure and conclude on results obtained by the participants. The challenge is one of the first of its kind, aiming at leveraging modern machine learning techniques to achieve spectral image super...

Network

Cited By