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Preface

The explosion of new technologies in the post-genomic era is allowing the study of biolog-
ical systems on a genome-wide scale, at the main functional genomic levels: (epi)-genome,
transcriptome, proteome, endo- and exometabolome, and their interactions. At the same
time that these techniques are being applied and refined, the complexity of biological sys-
tems is being rediscovered (1) with thousands of components (e.g., genes, transcripts,
proteins, metabolites) participating in finely tuned metabolic and regulatory networks.
“Molecular pathways, rather than being linear, independent from or parallel to each other,
are instead incredibly intertwined and form very complex biological networks. Phenotypes
are probably more directly related to systems properties than they are to DNA and ‘genes’”
(Marc Vidal in (2)). The idea that multi-scale dynamic complex systems formed by inter-
acting macromolecules and metabolites, cells, organs, and organisms underlie some of the
most fundamental aspects of life was proposed by a few visionaries half a century ago (see
(3) and references therein). We are witnessing a powerful resurgence of this idea made
possible by the availability of genome sequences, ever improving gene annotations and
interactome network maps, the development of new informatic and imaging tools, and
the use of concepts from engineering and physics. Alongside other fundamental “great
ideas” as suggested by Paul Nurse (4), systems-level understanding (i.e., systems biology)
may materialize as one of the major ideas of post-genomic biology (2–4).

Systems biology aims at deciphering all of the genotype–phenotype relationships at the
levels of genes, transcripts (RNAs), peptides, proteins, metabolites, and environmental
factors participating in complex cellular networks. This should reveal the mechanisms and
principles governing the behavior of complex biological systems. Systems biology is not
so much concerned with inventories of working parts but, rather, with how those parts
interact to produce working units of biological organization whose properties are much
greater than the sum of their parts (3–5).

The purpose of this book is to present (a) an up-to-date view of the optimal character-
istics of the yeast Saccharomyces cerevisiae as a model eukaryote for systems biology studies
(6, 7), (b) a perspective on the latest experimental and computational techniques for sys-
tems biology studies, most of which were first designed for and validated in yeast, and
(c) selected examples of yeast systems biology studies and their applications in biotechnol-
ogy and medicine. The main molecular mechanisms, biological networks, and sub-cellular
organization are essentially conserved in all eukaryotes, being derived from a complex
common ancestor (8). Thus S. cerevisiae will continue to make a huge contribution to our
understanding of eukaryotic systems biology. New advanced post-genomic techniques are
opening the way to the characterization of the core of interactions, modules, architectures,
and network dynamics that are essential to all eukaryotes. Yeast systems biology experi-
ments under controlled conditions can uncover the complexity and interplay of biologi-
cal networks with their dynamics, basic principles of internal organization, and balanced
orchestrated functions between organelles in direct interaction with the environment as
well as the characterization of short- and long-term effects of perturbations and dysreg-
ulation of networks that may illuminate the origin of complex human diseases. These
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vi Preface

approaches can then be reproduced in systems biology studies of more complex organ-
isms, including higher eukaryotes and, ultimately, humans (2, 3).

This book comprises four sections: In Section I (Chapter 1), we present an up-to-
date view of the optimal characteristics of the yeast S. cerevisiae as a model eukaryote for
systems biology studies, with selected examples in biotechnology and medicine.

In Section II (Chapters 2–18), we present a perspective on the latest high-throughput
and molecular techniques and protocols.

In Section III (Chapters 19–27), we present a perspective on advanced computa-
tional, in silico, systems biology strategies, and studies for quantitative data analysis and
integration, as well as modeling approaches toward a holistic quantitative description of
the yeast cell as a model for the essential unit of eukaryotic life.

In Section IV (Chapter 28), relevant contributions of S. cerevisiae as a tool for mam-
malian studies are presented.

This book is intended for postgraduate students, post-doctoral researchers, and
experts in different fields with an interest in (a) comprehensive systems biology strate-
gies in well-defined model systems with specific objectives; (b) a better knowledge of the
latest post-genomic strategies at all “omic levels and computational approaches toward
analysis, integration, and modeling of biological systems, from single-celled organisms to
higher eukaryotes.”

New types of expertise and sustained collaborations between researchers from many
different fields both within biology and in the engineering, physical, and computational
sciences are essential to advance our knowledge of the exquisite complexity of eukaryotes
at the systems level (2–5) (Chapter 1). We thank all our authors and advisors; their deep
knowledge and expertise in different fields have proven invaluable in this essentially mul-
tidisciplinary effort. We are also grateful to our families for their support in enabling us to
complete this project.

Juan I. Castrillo
Stephen G. Oliver

References

1. Hayden, E. C. (2010) Human genome at ten: life is complicated. Nature 464, 664–667.
2. Heard, E., Tishkoff, S., Todd, J. A., et al., (2010) Ten years of genetics and genomics: what have we

achieved and where are we heading? Nat. Rev. Genet. 11, 723–733.
3. Vidal, M. (2009) A unifying view of 21st century systems biology. FEBS Lett. 583, 3891–3894.
4. Nurse, P. (2003) The great ideas of biology. Clin. Med. 3, 560–568.
5. Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.
6. Oliver, S. G. (1997) Yeast as a navigational aid in genome analysis. Microbiology 143, 1483–1487.
7. Castrillo, J. I., and Oliver, S. G. (2006) Metabolomics and systems biology in Saccharomyces cerevisiae.

In: Esser, K. (ed.), and Brown, A. J. P. (Vol. ed.), The Mycota XIII. Fungal Genomics (pp. 3–18).
Berlin: Springer.

8. Koonin, E. V. (2010) The incredible expanding ancestor of eukaryotes. Cell 140, 606–608.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SECTION I: YEAST SYSTEMS BIOLOGY

1. Yeast Systems Biology: The Challenge of Eukaryotic Complexity . . . . . . . . . 3
Juan I. Castrillo and Stephen G. Oliver

SECTION II: EXPERIMENTAL SYSTEMS BIOLOGY: HIGH-THROUGHPUT GENOME-WIDE

AND MOLECULAR STUDIES

2. Saccharomyces cerevisiae: Gene Annotation and Genome Variability, State
of the Art Through Comparative Genomics . . . . . . . . . . . . . . . . . . . . 31
Ed Louis

3. Genome-Wide Measurement of Histone H3 Replacement Dynamics in Yeast . . 41
Oliver J. Rando

4. Genome-Wide Approaches to Studying Yeast Chromatin Modifications . . . . . 61
Dustin E. Schones, Kairong Cui, and Suresh Cuddapah

5. Absolute and Relative Quantification of mRNA Expression (Transcript Analysis) . 73
Andrew Hayes, Bharat M. Rash, and Leo A.H. Zeef

6. Enrichment of Unstable Non-coding RNAs and Their Genome-Wide
Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Helen Neil and Alain Jacquier

7. Genome-Wide Transcriptome Analysis in Yeast Using High-Density
Tiling Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Lior David, Sandra Clauder-Münster, and Lars M. Steinmetz

8. RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Karl Waern, Ugrappa Nagalakshmi, and Michael Snyder

9. Polyadenylation State Microarray (PASTA) Analysis . . . . . . . . . . . . . . . 133
Traude H. Beilharz and Thomas Preiss

10. Enabling Technologies for Yeast Proteome Analysis . . . . . . . . . . . . . . . . 149
Johanna Rees and Kathryn Lilley

11. Protein Turnover Methods in Single-Celled Organisms: Dynamic SILAC . . . . 179
Amy J. Claydon and Robert J. Beynon

12. Protein–Protein Interactions and Networks: Forward and Reverse Edgetics . . . 197
Benoit Charloteaux, Quan Zhong, Matija Dreze, Michael E. Cusick,
David E. Hill, and Marc Vidal

vii



viii Contents

13. Use of Proteome Arrays to Globally Identify Substrates for E3
Ubiquitin Ligases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Avinash Persaud and Daniela Rotin

14. Fit-for-Purpose Quenching and Extraction Protocols for Metabolic
Profiling of Yeast Using Chromatography-Mass Spectrometry Platforms . . . . . 225
Catherine L. Winder and Warwick B. Dunn

15. The Automated Cell: Compound and Environment Screening System
(ACCESS) for Chemogenomic Screening . . . . . . . . . . . . . . . . . . . . . 239
Michael Proctor, Malene L. Urbanus, Eula L. Fung,
Daniel F. Jaramillo, Ronald W. Davis, Corey Nislow,
and Guri Giaever

16. Competition Experiments Coupled with High-Throughput Analyses for
Functional Genomics Studies in Yeast . . . . . . . . . . . . . . . . . . . . . . . 271
Daniela Delneri

17. Fluorescence Fluctuation Spectroscopy and Imaging Methods for
Examination of Dynamic Protein Interactions in Yeast . . . . . . . . . . . . . . 283
Brian D. Slaughter, Jay R. Unruh, and Rong Li

18. Nutritional Control of Cell Growth via TOR Signaling in Budding Yeast . . . . . 307
Yuehua Wei and X.F. Steven Zheng

SECTION III: COMPUTATIONAL SYSTEMS BIOLOGY: COMPUTATIONAL STUDIES

AND ANALYSES

19. Computational Yeast Systems Biology: A Case Study for the MAP
Kinase Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Edda Klipp

20. Standards, Tools, and Databases for the Analysis of Yeast ‘Omics Data . . . . . . 345
Axel Kowald and Christoph Wierling

21. A Computational Method to Search for DNA Structural Motifs in
Functional Genomic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Stephen C.J. Parker, Aaron Harlap, and Thomas D. Tullius

22. High-Throughput Analyses and Curation of Protein Interactions in Yeast . . . . 381
Shoshana J. Wodak, Jim Vlasblom, and Shuye Pu

23. Noise in Biological Systems: Pros, Cons, and Mechanisms of Control . . . . . . 407
Yitzhak Pilpel

24. Genome-Scale Integrative Data Analysis and Modeling of Dynamic
Processes in Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Jean-Marc Schwartz and Claire Gaugain

25. Genome-Scale Metabolic Models of Saccharomyces cerevisiae . . . . . . . . . . . 445
Intawat Nookaew, Roberto Olivares-Hernández, Sakarindr
Bhumiratana, and Jens Nielsen



Contents ix

26. Representation, Simulation, and Hypothesis Generation in Graph
and Logical Models of Biological Networks . . . . . . . . . . . . . . . . . . . . 465
Ken Whelan, Oliver Ray, and Ross D. King

27. Use of Genome-Scale Metabolic Models in Evolutionary Systems Biology . . . . 483
Balázs Papp, Balázs Szappanos, and Richard A. Notebaart

SECTION IV: YEAST SYSTEMS BIOLOGY IN PRACTICE: SACCHAROMYCES CEREVISIAE

AS A TOOL FOR MAMMALIAN STUDIES

28. Contributions of Saccharomyces cerevisiae to Understanding Mammalian
Gene Function and Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Nianshu Zhang and Elizabeth Bilsland

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



Contributors

TRAUDE H. BEILHARZ • Department of Biochemistry and Molecular Biology, Monash
University, Clayton, VIC, Australia

ROBERT J. BEYNON • Protein Function Group, Institute of Integrative Biology, University
of Liverpool, Liverpool, UK

SAKARINDR BHUMIRATANA • National Science and Technology Development Agency,
Ministry of Science and Technology, Pathumthani, Thailand

ELIZABETH BILSLAND • Department of Biochemistry, Cambridge Systems Biology Centre,
University of Cambridge, Cambridge, UK

JUAN I. CASTRILLO • Department of Biochemistry, Cambridge Systems Biology Centre,
University of Cambridge, Cambridge, CB2 1GA, UK

BENOIT CHARLOTEAUX • Department of Cancer Biology, Center for Cancer Systems
Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of
Genetics, Harvard Medical School, Boston, MA, USA

SANDRA CLAUDER-MÜNSTER • Genome Biology Unit, EMBL, Heidelberg, Germany
AMY J. CLAYDON • Protein Function Group, Institute of Integrative Biology, University of

Liverpool, Liverpool, UK
SURESH CUDDAPAH • Department of Environmental Medicine, New York University,

Tuxedo, NY, USA
KAIRONG CUI • Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD,

USA
MICHAEL E. CUSICK • Department of Cancer Biology, Center for Cancer Systems Biology

(CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics,
Harvard Medical School, Boston, MA, USA

LIOR DAVID • Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food,
and Environment, The Hebrew University of Jerusalem, Rehovot, Israel

RONALD W. DAVIS • Stanford Genome Technology Center, Palo Alto, CA, USA; Depart-
ment of Genetics, Stanford University, Palo Alto, CA, USA; Department of Biochemistry,
Stanford University, Palo Alto, CA, USA

DANIELA DELNERI • Faculty of Life Sciences, The University of Manchester, Manchester,
UK

MATIJA DREZE • Department of Cancer Biology, Center for Cancer Systems Biology
(CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics,
Harvard Medical School, Boston, MA, USA

WARWICK B. DUNN • School of Chemistry, Manchester Centre for Integrative Systems
Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester,
UK

EULA L. FUNG • Stanford Genome Technology Center, Palo Alto, CA, USA
CLAIRE GAUGAIN • University of Bordeaux, Bordeaux, France; Université Paul Sabatier,

CNRS, LMGM, Toulouse, France
GURI GIAEVER • Donnelly Centre for Cellular and Biomolecular Research, University

of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of

xi



xii Contributors

Toronto, Toronto, ON, Canada; Department of Pharmaceutical Sciences, University of
Toronto, Toronto, ON, Canada

AARON HARLAP • Newton South High School, Newton, MA, USA
ANDREW HAYES • Faculty of Life Sciences, The University of Manchester, Manchester, UK
DAVID E. HILL • Department of Cancer Biology, Center for Cancer Systems Biology

(CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics,
Harvard Medical School, Boston, MA, USA

ALAIN JACQUIER • Unité de Génétique des Interactions Macromoléculaires, Institut
Pasteur, CNRS, URA2171, Paris, France

DANIEL F. JARAMILLO • Stanford Genome Technology Center, Palo Alto, CA, USA
ROSS D. KING • Department of Computer Science, University of Aberystwyth, Ceredigion,

UK
EDDA KLIPP • Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
AXEL KOWALD • Humboldt University Berlin, Institute for Biology, Theoretical Biophysics,

10115 Berlin, Germany
RONG LI • Stowers Institute for Medical Research, Kansas City, MO, USA; Department

of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas
City, KS, USA

KATHRYN LILLEY • Cambridge Centre for Proteomics, Cambridge Systems Biology Centre,
University of Cambridge, Cambridge, UK

ED LOUIS • Institute of Genetics, Queens Medical Centre, University of Nottingham,
Nottingham, UK

UGRAPPA NAGALAKSHMI • Department of Molecular, Cellular, and Developmental
Biology, Yale University, New Haven, CT, USA

HELEN NEIL • Unité de Génétique des Interactions Macromoléculaires, Institut Pasteur,
CNRS, URA2171, Paris, France

JENS NIELSEN • Department of Chemical and Biological Engineering, Chalmers Univer-
sity of Technology, Gothenburg, Sweden

COREY NISLOW • Banting and Best Department of Medical Research, University of
Toronto, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, ON, Canada; Department of Molecular
Genetics, University of Toronto, Toronto, ON, Canada

INTAWAT NOOKAEW • Department of Chemical and Biological Engineering, Chalmers
University of Technology, Gothenburg, Sweden

RICHARD A. NOTEBAART • Centre for Molecular and Biomolecular Informatics
(NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands;
Centre for Systems Biology and Bioenergetics, Radboud University Nijmegen Medical
Centre, Nijmegen, The Netherlands

ROBERTO OLIVARES-HERNÁNDEZ • Department of Chemical and Biological Engineer-
ing, Chalmers University of Technology, Gothenburg, Sweden

STEPHEN G. OLIVER • Department of Biochemistry, Cambridge Systems Biology Centre,
University of Cambridge, Cambridge, CB2 1GA, UK

BALÁZS PAPP • Institute of Biochemistry, Biological Research Center of the Hungarian
Academy of Sciences, Szeged, Hungary; Department of Genetics, Cambridge Systems
Biology Centre, University of Cambridge, Cambridge, UK

STEPHEN C.J. PARKER • Bioinformatics Program, Boston University, Boston, MA, USA
AVINASH PERSAUD • Program in Cell Biology, The Hospital for Sick Children, Toronto,

ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada



Contributors xiii

YITZHAK PILPEL • Department of Molecular Genetics, Weizmann Institute of Science,
Rehovot, Israel

THOMAS PREISS • Genome Biology Department, The John Curtin School of Medical
Research, The Australian National University, Building 131, Garran Rd, Acton
(Canberra), ACT 0200, Australia

MICHAEL PROCTOR • Stanford Genome Technology Center, Palo Alto, CA, USA;
Department of Biochemistry, Stanford University, Palo Alto, CA, USA

SHUYE PU • Molecular Structure and Function Program, Hospital for Sick Children,
Toronto, ON, Canada

OLIVER J. RANDO • Department of Biochemistry and Molecular Pharmacology, University
of Massachusetts Medical School, Worcester, MA, USA

BHARAT M. RASH • Faculty of Life Sciences, The University of Manchester, Manchester,
UK

OLIVER RAY • Department of Computer Science, University of Bristol, Bristol, UK
JOHANNA REES • Cambridge Centre for Proteomics, Cambridge Systems Biology Centre,

University of Cambridge, Cambridge, UK
DANIELA ROTIN • Program in Cell Biology, The Hospital for Sick Children, Toronto, ON,

Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
DUSTIN E. SCHONES • City of Hope, Duarte, CA, USA
JEAN-MARC SCHWARTZ • Faculty of Life Sciences, University of Manchester, Manchester,

UK
BRIAN D. SLAUGHTER • Stowers Institute for Medical Research, Kansas City, MO, USA
MICHAEL SNYDER • Department of Molecular, Cellular, and Developmental Biology,

Yale University, New Haven, CT, USA; Department of Genetics, Stanford University
Medical School, Stanford, CA, USA

LARS M. STEINMETZ • Genome Biology Unit, EMBL, Heidelberg, Germany
BALÁZS SZAPPANOS • Institute of Biochemistry, Biological Research Center, Szeged,

Hungary
THOMAS D. TULLIUS • Bioinformatics Program, Department of Chemistry, Boston

University, Boston, MA, USA
JAY R. UNRUH • Stowers Institute for Medical Research, Kansas City, MO, USA
MALENE L. URBANUS • Banting and Best Department of Medical Research, University

of Toronto, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, Toronto, ON, Canada

MARC VIDAL • Department of Cancer Biology, Center for Cancer Systems Biology (CCSB),
Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Harvard
Medical School, Boston, MA, USA

JIM VLASBLOM • Molecular Structure and Function Program, Hospital for Sick Children,
Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON,
Canada

KARL WAERN • Department of Molecular, Cellular, and Developmental Biology, Yale
University, New Haven, CT, USA; Department of Genetics, Stanford University Medical
School, Stanford, CA, USA

YUEHUA WEI • Graduate Program in Cellular and Molecular Pharmacology, Depart-
ment of Pharmacology, Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson
Medical School, Piscataway, NJ, USA

KEN WHELAN • Department of Computer Science, University of Aberystwyth, Ceredigion,
UK



xiv Contributors

CHRISTOPH WIERLING • Max Planck Institute for Molecular Genetics, Berlin, Germany
CATHERINE L. WINDER • School of Chemistry, Manchester Centre for Integrative Systems

Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester,
UK

SHOSHANA J. WODAK • Molecular Structure and Function Program, Hospital for Sick
Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto,
Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto,
Toronto, ON, Canada

LEO A.H. ZEEF • Faculty of Life Sciences, The University of Manchester, Manchester, UK
NIANSHU ZHANG • Department of Biochemistry, Cambridge Systems Biology Centre,

University of Cambridge, Cambridge, UK
X.F. STEVEN ZHENG • Department of Pharmacology, Cancer Institute of New Jersey,

UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
QUAN ZHONG • Department of Cancer Biology, Center for Cancer Systems Biology

(CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics,
Harvard Medical School, Boston, MA, USA



Section I

Yeast Systems Biology



Chapter 1

Yeast Systems Biology: The Challenge of Eukaryotic
Complexity

Juan I. Castrillo and Stephen G. Oliver

Abstract

In this chapter, we present an up-to-date view of the optimal characteristics of the yeast Saccharomyces
cerevisiae as a model eukaryote for systems biology studies, with main molecular mechanisms, biological
networks, and sub-cellular organization essentially conserved in all eukaryotes, derived from a complex
common ancestor. The existence of advanced tools for molecular studies together with high-throughput
experimental and computational methods, most of them being implemented and validated in yeast, with
new ones being developed, is opening the way to the characterization of the core modular architecture
and complex networks essential to all eukaryotes. Selected examples of the latest discoveries in eukary-
ote complexity and systems biology studies using yeast as a reference model and their applications in
biotechnology and medicine are presented.

Key words: Yeast systems biology, eukaryotic complexity, interactions, modular architecture,
network biology, compartmentalization, multilevel control, yeast systems biology applications.

1. Introduction

Systems biology aims at understanding all of the genotype–
phenotype relationships at the levels of genes, transcripts (RNAs),
peptides, proteins, metabolites, and environmental factors partici-
pating in complex cellular networks. This should reveal the mech-
anisms and principles governing the behavior of complex biolog-
ical systems (1, 2). Systems biology is not so much concerned
with inventories of working parts (e.g., transcripts, proteins, and
metabolites) but, rather, with how those parts interact to pro-
duce working units of biological organization whose properties
are much greater than the sum of their parts. Here, it is important

J.I. Castrillo, S.G. Oliver (eds.), Yeast Systems Biology, Methods in Molecular Biology 759,
DOI 10.1007/978-1-61779-173-4_1, © Springer Science+Business Media, LLC 2011
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4 Castrillo and Oliver

to note that living systems are the products not of design but of
evolution through natural selection (3, 4). “Nothing makes sense
in biology except in the light of evolution” (5). Thus, the archi-
tecture and complexity of a biological system (e.g., single-celled,
free-living prokaryote or eukaryote; parasite–host or multicellu-
lar system) will always have to be contemplated in the light of
evolution (6, 7) (see below).

The main objective of systems biology is the construction
of quantitative mathematical/logical models by which to inter-
rogate and iteratively refine our knowledge of the workings of
living organisms. Systems biology addresses its task by combin-
ing integrative experimental and theoretical approaches. This out-
look is illustrated in Fig. 1.1 in the context of the iterative cycle
of knowledge (8). First, well-designed (e.g., hypothesis-driven)
high-throughput experimental studies at several “omic” levels
(e.g., epigenetic, genome, transcriptome and proteome levels,
and metabolome analyses), together with molecular studies, pro-
vide system-level sets of data (Fig. 1.1a). From here, compre-
hensive theoretical studies (bioinformatics, “in silico” computa-
tional methods), integrative data analysis, network studies, and
modeling approaches allow the generation of new knowledge and
design principles at a “system” level. This generates predictions,
some of which can be selected as new ideas/hypotheses capable of

Fig. 1.1. Systems biology. Integration of (a) global experimental and (b) theoretical in silico studies in the iterative cycle
of knowledge (8). Reproduced from (2), with kind permission of Springer Science and Business Media.
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being tested in further experimental studies (Fig. 1.1b). Hence,
systems biology operates in two main ways: (1) by deduction, by
perturbing the biological system in specifically designed experi-
ments, monitoring the responses, integrating the data and for-
mulating mathematical models able to reproduce this behavior;
and (2) in an inductive way, by perturbing the model, making
predictions as to what should happen in response to these pertur-
bations and testing them through new laboratory experiments.
The model is refined in the light of the new knowledge derived
from new experimental data and new (and more accurate) predic-
tions generated (see (2) and references therein).

The ultimate challenge in systems biology would be to inte-
grate all information for a biological system (e.g., a eukaryotic
cell) to unveil all biological networks, architecture, and the prin-
ciples responsible for its behavior, and to construct a global
dynamic model able to reliably predict it. The final goal will be
to translate this knowledge into direct applications in biotechnol-
ogy and medicine (e.g., elucidation of bottlenecks in recombinant
protein production; diagnostic methods and therapies to treat
complex diseases: biological imbalances, cancer, protein quality
control disorders and ageing, amongst others). For more com-
plete information on systems biology, its theoretical framework,
methodologies, and applications, the reader is referred to the lat-
est reviews and books on the subject (1, 2, 6, 7, 9–22).

Despite the limitations of existing high-throughput
techniques, the difficulty of obtaining information at all “omic”
levels (and their interactions), the existence of unidentified com-
ponents and mechanistic uncertainties, and the limitations at the
computational level, a number of integrative experimental studies
have proved successful in analyzing sub-cellular systems (23),
several prokaryotes such as Escherichia coli (17) and Mycoplasma
pneumoniae (24–27), and free-living eukaryotes such as the yeast
Saccharomyces cerevisiae (28–31). At this point, the optimal
characteristics of the yeast S. cerevisiae as a touchstone model in
the post-genomic era are positioning it at the leading edge of
advanced eukaryotic systems biology studies (2, 30, 32) (see also
next section).

The purpose of this chapter is to present an up-to-date view
of the optimal characteristics of the yeast S. cerevisiae as a model
eukaryote for systems biology studies. Its main molecular mech-
anisms, biological networks, and sub-cellular organization are
essentially conserved in all eukaryotes, being derived from a com-
plex common ancestor (33). The advance of technology is open-
ing the way to the characterization of the core of interactions,
modules, architectures, and network dynamics that are essential to
all eukaryotes. Examples of latest discoveries in eukaryotic com-
plexity, yeast systems biology studies, and their applications in
biotechnology and medicine are presented.
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2. Yeast Systems
Biology: The
Challenge of
Eukaryotic
Complexity

The explosion of new technologies in the post-genomic era is
allowing the study of biological systems on a genome-wide scale,
at the main functional genomic levels: (epi)-genome, transcrip-
tome, proteome, endo- and exometabolome, and their interac-
tions. At the same time that these techniques are being applied
and refined, the complexity of biological systems is being redis-
covered, with thousands of components (genes, transcripts, pro-
teins, and metabolites) participating in finely tuned metabolic and
regulatory networks (2, 29). These are beginning to reveal the
exquisite complexity and dynamic network architecture of the
eukaryotic cell.

2.1. The eukaryotic
Cell: Basic
Architecture and
Levels of Regulation

A schematic representation of the eukaryotic cell, comprising its
main levels of regulation at the (epi)-genome, transcriptome, pro-
teome and metabolome, and its interactions with the environ-
ment (sensing natural fluctuations in external conditions together
with those derived from interaction with other organisms; e.g.,
competition or cooperation) is presented in Fig. 1.2. This sys-
tem is intrinsically complex and involves the integration of mech-
anisms and networks in different compartments, at different levels
of regulation. These include, among others, environment-sensing
signal transduction pathways and regulatory networks; gene
expression reprogramming networks at the (epi)-genome, tran-
scriptional, and proteome levels (e.g., DNA–protein; protein–
protein, RNA–protein (ribonucleoprotein) networks); and main
metabolic networks (e.g., metabolite–protein/enzyme networks),
subject to multilevel, distributed control (2, 28, 29). The
integration of data from all these levels into models with predic-
tive and explanatory power constitutes one of the most daunt-
ing challenges in systems biology (2). Thus, studies on the
dynamics of transcriptional regulatory networks of S. cerevisiae
have revealed large topological changes depending on environ-
mental conditions, with transcription factors altering their sub-
cellular localization and interactions in response to stimuli, some
of them serving as permanent hubs but most acting transiently
in specific conditions only (34, 35). In this context, the utiliza-
tion of well-defined model systems, in properly designed experi-
ments under controlled conditions, with well-curated databases
and data repositories covering the best updated knowledge of
the biology of the system is of central importance, toward
the elucidation of essential principles of biological organization
(2, 32).
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Fig. 1.2. Eukaryotic cell. Levels of regulation. Schematic description of the main regulatory levels and networks sub-
jected to distributed, multilevel control (28, 29), in direct interaction with the environment (sub-cellular organelles, other
than the nucleus, are omitted for clarity). (a) Environment: the eukaryotic cell is not isolated, sensing fluctuations in exter-
nal conditions (e.g., concentrations of external compounds, pH, temperature) together with interactions with other organ-
isms (e.g., via external signals; competition or cooperation). (b) Signal transduction regulatory networks (e.g., protein–
protein networks; DNA–protein, protein–RNA (ribonucleoprotein), and metabolite–protein networks). (c) Gene expression
at the transcriptional level, resulting in a pool of mRNAs and regulatory RNAs (“transcriptome,” balance of synthesis and
degradation). (d) Gene expression at the translational level, translational regulation. (e) Main pool of enzymes and regu-
latory proteins (i.e. “proteome,” balance of synthesis and degradation), responsible for central regulatory and metabolic
networks. (f) and (g) Intracellular enzyme and metabolite concentrations (balance of uptake, intracellular synthesis, and
conversion) mainly responsible for in vivo regulation of metabolic fluxes and metabolic networks (e.g., allosteric/covalent
modification). Abbreviations: [Ei], pool of enzymes; (C) and (N), fluxes of assimilation of carbon and nitrogen sources,
respectively.

2.2. Yeast as a
Reference Model
for Systems Biology
Studies of the
Eukaryotic Cell

Saccharomyces cerevisiae is a species of budding yeast, a group
of unicellular fungi belonging to the phylum Ascomycetes. This
yeast is being used as a model eukaryote because the basic mecha-
nisms of DNA and chromosomal replication, cell division, gene
expression, translation, signal transduction and regulatory net-
works, metabolism, and sub-cellular organization are essentially
conserved between yeast and higher eukaryotes (32, 36–38).
The essential eukaryotic biochemistry, metabolic processes, and
the first complete map of central metabolic pathways were first
unveiled in S. cerevisiae (36, 39–41), and a wide knowledge of
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the genetics, biochemistry, functional genomics, and physiology
of this yeast is presently available (36–38, 42, 43).

Among the properties that make S. cerevisiae a particularly
suitable organism for biological studies are its generally regarded
as safe (GRAS) status, a free-living organism with rapid growth,
simple methods of cultivation under defined conditions, facile
replica plating, and mutant isolation. It is also a well-defined
genetic system with simple techniques of genetic manipulation.
The yeast S. cerevisiae was the first eukaryotic organism for
which the complete genome was sequenced (44) and for which
strategies for proper annotation, curation, and standards ini-
tiatives for maintenance of high-quality curated databases and
data repositories were implemented (e.g., Saccharomyces genome
database; http://www.yeastgenome.org; see also (2) and refer-
ences therein). Moreover, the majority of high-throughput post-
genomic technologies (including new generation sequencing and
latest proteomics techniques) were first developed and validated
in yeast (32, 45–51). Finally, in a major breakthrough at the
molecular level, RNA interference (RNAi), a major gene-silencing
regulatory pathway conserved in several eukaryotic species but
lost in S. cerevisiae, has been restored in this yeast, by reintro-
ducing Dicer and Argonaute proteins from other budding yeast
species and bringing the tool of RNAi to the study of bud-
ding yeasts and the tools of S. cerevisiae to the study of RNAi
(52, 53). The yeast S. cerevisiae is being used as a model organism
to study cell growth (29–31); cell cycle, checkpoints, and their
relation to cancer (54, 55); cell polarity (56); control of pre-
mRNA splicing (57, 58); eukaryotic translation initiation (59);
evolution (60, 61); ageing and extension of lifespan (62); protein
folding and chaperone networks (63, 64) and as a model to gain
insight into the molecular pathology of neurodegenerative dis-
eases (65, 66). All these advantages are positioning S. cerevisiae
at the forefront of the post-genomic era, as a touchstone model
for eukaryotic systems biology studies (see (32) and references
therein).

2.3. The Ancestral
Eukaryote and the
Evolution of
Complexity: Yeast as
a Reference Model
for the Study of
Essential Eukaryotic
Networks

The early evolution of eukaryotes and the characteristics of the
last common ancestor are of major interest for understand-
ing eukaryotic complexity. Comparing the genome sequences of
free-living organisms in different eukaryotic supergroups allows
predictions to be made about the genome of the last common
ancestor. In a relevant study, Fritz-Laylin and coworkers reported
the genome sequence of the free-living amoeboflagellate Nae-
gleria gruberi which revealed the surprising complexity of this
unicellular organism and, by inference, of the last common
eukaryotic ancestor (33, 67). The results agree with latest studies
inferring an exquisitely complex ancestor (68), with fully formed
eukaryote-specific functional systems and with more than 4,000

http://www.yeastgenome.org
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protein families (∼4,133 eukaryotic genes) involved in transla-
tion, replication, and other, eukaryote-specific, processes: com-
plex signaling; introns, pre-mRNA splicing, and RNA interfer-
ence machinery; multifunctional microtubule-based cytoskeleton;
anaerobic/aerobic metabolic versatility; and flagellar and amoe-
boid movement (33, 67, 68).

Specific lineages may then diverge from the complex common
ancestor by one of three pathways: (1) genome streamlining, in
which numerous genes are lost, the genomes shrink, and func-
tional redundancy decreases; (2) genome stasis, in which limited
amounts of genes are lost and gained at roughly the same rate via
duplication and other processes; and (3) genome expansion, in
which the rate of gene acquisition substantially exceeds the rate of
gene loss (33) (Fig. 1.3). From the studies of the Fritz-Laylin and
Wickstead groups (67, 68), the last common ancestor appears as
a complex organism, with no reason to believe that it was simpler
than extant free-living unicellular eukaryotes. Here, it is worth
noting that the 4,133 genes is a conservative estimate, because it
does not account for any loss of ancestral genes, which is likely to
be substantial (20–25% in some eukaryotic groups) (33).

The understanding of the processes that led to the emergence
of the complex eukaryotic ancestor itself is one of the most excit-
ing challenges in evolutionary biology (33). In this respect, the
elucidation of the main core of self-sustained mechanisms, biolog-
ical network architecture, and sub-cellular organization that have
been essentially conserved in single-celled eukaryotes will be of
paramount importance. This should preferably be performed with
extant, well-annotated, free-living unicellular organisms that may
be easily manipulated, with the main essential mechanisms and
regulatory networks conserved in all the eukarya. At this level,
the yeast S. cerevisiae, with a genome of ∼6,000 genes, its essen-
tial complexity and all the favorable characteristics detailed previ-
ously, appears as an optimal reference model, helped by compar-
isons with other organisms (e.g., Schizosaccharomyces pombe and
other yeast species), for systems biology studies toward the eluci-
dation of this functional core which is shared by all eukaryotes.

2.4. New Eukaryotic
Complexity Unveiled
in Yeast and Higher
Eukaryotes: A New
Era of Discoveries

As S. cerevisiae is an optimum reference model, the question
arises as to whether the present technologies are able to detect
and quantify all biological components (with their functions, sub-
localization, and interactions) with sufficient accuracy and com-
pleteness to allow a comprehensive understanding of biological
networks and their dynamics. More importantly, are the latest
techniques and integrative strategies revealing new mechanisms
or design principles, i.e. is there still room for big discoveries
in biology to be made using yeast? The main purpose of this
section is to show that the incorporation of advanced molecu-
lar and post-genomic techniques is indeed revealing new levels
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Fig. 1.3. Eukaryotic evolution from the eukaryotic common ancestor. The five eukaryotic supergroups – Excavates,
Rhizaria, Unikonts, Chromalveolates and Plantae – are shown to diverge directly from the last common ancestor (black
circle; 4,133 genes). Branch lengths are arbitrary. Number of putative ancestral genes present in selected major clades
(e.g., Unikonts, including Metazoa) indicated separately. Reprinted from Cell 140 (5), Koonin, E. V., The incredible expand-
ing ancestor of eukaryotes, pages 606–608 (33). Copyright (2010), with permission from Elsevier.

of hidden complexity in eukaryotes. The more we know, the
more the complexity, which presages an exciting era of new
discoveries. First and foremost, the incorporation of advanced
next-generation sequencing (NGS) technologies, most of them
developed and validated in yeast, for genome-wide studies at the
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(epi)-genome, transcriptome, DNA–protein, and RNA–protein
interactions levels, is constituting the main revolution in post-
genomic biology, with enormous potential to generate high-
throughput data unveiling the dynamics of biological networks
at a systems level (69–73). Selected examples of advanced post-
genomic technologies and the latest discoveries in eukaryotic biol-
ogy using S. cerevisiae as a main reference model are as follows:

(1) At the epigenome level: The Grunstein lab showed in
yeast that both histone acetylases (HATs) and deacetylases
(HDACs) are associated with active genes at levels which
correlated with each gene’s transcriptional activity (74),
with a similar pattern in human cells demonstrated by the
Zhao group (75). Moreover, most genome-wide histone
modification studies are being pioneered in yeast (76, 77).

(2) At the genome level: Technologies such as ChIP-chip and
ChIP-Seq (78, 79) are opening the way to the study
of DNA–protein interactions involved in DNA replica-
tion and transcriptional gene expression (see below). At
the replication level, studies in S. cerevisiae have revealed
novel mechanisms of replication origin recognition (80)
and that re-replication can induce the initial step of gene
amplification and may be a contributor to gene copy num-
ber changes in eukaryotes (81, 82).

(3) At the high-order, genome organization, level: A method
to globally capture intra- and inter-chromosomal inter-
actions, higher order structures and the first three-
dimensional (3D) model of a eukaryotic genome was
unveiled in yeast (83).

(4) At the transcriptional level: Using S. cerevisiae, Steinmetz’s
group studied the yeast transcriptome landscape and
generated a comprehensive genome-wide transcrip-
tional expression atlas of the mitotic cell cycle (84).
Moreover, budding yeast has been at the forefront of the
development and validation of deep-sequencing tech-
nologies such as massively parallel cDNA sequencing
(RNA-Seq), providing the first transcriptional landscape
of a eukaryotic genome (46). Despite the cost of deep-
sequencing technologies, the existence of bias in tiling
array studies due to cross-hybridization and noise effects
(85, 86) is favoring the use of next-generation sequenc-
ing (NGS) techniques. At the transcriptional level, several
protocols and data analysis strategies have been reported
for RNA-Seq, whose final results may vary, stressing the
importance of proper methods comparison. This was
addressed by Regev and coworkers in a recent study using
S. cerevisiae as a benchmark (87). They compared quality
metrics of libraries from seven strand-specific RNA-Seq
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methods, identifying leading protocols, and provided a
computational pipeline for assessment of future protocols
in other organisms (87). Saccharomyces cerevisiae is also
being used as an optimal platform for new advanced tech-
niques such as single-molecule sequencing for the analysis
of digital gene expression (smsDGE), resulting in the first
comprehensive quantification of the yeast transcriptome
by single-molecule sequencing (88), and by direct single-
molecule sequencing (direct RNA-Seq; i.e. without prior
conversion of RNA to cDNA) (89, 90). Single-molecule
sequencing methods are presently being refined in order
to apply them to higher eukaryotes (73) and new strate-
gies for analysis of RNA-Seq data are progressively being
developed (91, 92).

After all these efforts, the application of latest advanced
techniques is finally revealing the complex transcriptional
landscape in S. cerevisiae, thus shedding light on essen-
tial mechanisms present in higher eukaryotes, such as
pre-mRNA splicing (57, 58). For instance, the latest stud-
ies have provided insights into the origins of protein-
dependent eukaryotic spliceosomal introns (93), complex
RNA regulatory networks involving non-coding RNAs,
and cis- and trans- RNAi-independent transcriptional
gene-silencing mechanisms (94–98). Thus, in a recent
study, strand-specific RNA sequencing by Regev’s group
has revealed extensive regulated long antisense transcripts
in S. cerevisiae, conserved across yeast species (99). Deep-
sequencing techniques have also allowed the first genome-
wide measurement of RNA secondary structures in yeast,
opening the way to the study of importance of RNA struc-
ture in regulation (100).

Application of RNA-Seq and other advanced NGS
techniques in yeast and higher eukaryotes has led to major
discoveries that reveal the importance of the RNA regu-
latory world, with non-coding RNAs (RNAs not trans-
lated to polypeptide sequences) participating in complex
DNA–RNA and RNA–protein regulatory networks, at
the signal transduction, (epi)-genome, gene expression,
splicing, and other levels. This field is still in its infancy,
with exciting challenges ahead (101, 102). The impor-
tance of the RNA regulatory networks and their intricate
relationships with protein and metabolic networks will
remain a big challenge in systems biology. It is impor-
tant to remark that despite recent studies showing the
complex transcriptional landscape of RNA regulatory net-
works in higher eukaryotes, this may not be the only
characteristic underlying high complexity in Metazoa (33,
86). Complex RNA regulatory networks are not exclusive
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to higher eukaryotes and theoretically “simpler” organ-
isms (e.g., bacteria, single-celled eukaryotes, parasites, and
pathogens) have evolved their own complex RNA regula-
tory networks, in order to readily adapt and survive to fast
changes in their specific environments in direct interaction
with other organisms (24, 25, 33, 86). The complexity of
an organism will make sense only in the light of evolution
(3–5). This will be briefly discussed in the next section.

(5) At the proteome level: The combination of high-resolution
mass spectrometry, stable-isotope labeling by amino acids
in cell culture (SILAC) and computational proteomics
has allowed the first quantification of a eukaryotic pro-
teome, the yeast proteome, with a low bias against low-
abundance proteins. This has revealed a proteome made
up of 4,399 individual endogenous proteins in exponen-
tially growing yeast cells (103). More recently, the applica-
tion of a targeted proteomics approach based on selected
reaction monitoring (SRM) has enabled the detection
and quantitation of proteins expressed at concentration
below 50 copies/cell in total S. cerevisiae digests, thus
allowing consistent and fast measurement of proteins
spanning the entire abundance range (48–50). Together
with this, proteome–transcriptome correlation studies in
yeast have emphasized that there is no direct correla-
tion between protein and transcript levels, a direct conse-
quence of the widespread role of post-transcriptional reg-
ulation (e.g., differential localization of RNAs in nucleus,
cytosol and/or p-bodies, polyadenylation states, and level
of polysomal occupancy per transcript) during eukaryotic
cell growth (see (29, 31, 103) and references therein).
At the protein network level, methods for the characteri-
zation of protein–protein interaction networks, including
regulatory networks involved in sensing, signal transduc-
tion, gene expression reprogramming, proteostasis, and
the control of metabolic fluxes, were mainly discovered
first in yeast (36, 39, 40, 41). Recent developments are
discussed below.

(6) At the metabolome level: Saccharomyces cerevisiae has long
been the leading model organism for the development
of methods and experiments to understand eukaryotic
metabolic networks (36, 39, 40). For a review of most
relevant techniques and metabolomic approaches toward
a systems-level understanding of metabolism, the reader
can refer to the literature (2, 32, 104). As a refer-
ence, the first reconstruction of a eukaryotic genome-
scale metabolic network was performed in S. cerevisiae
(105), being progressively refined with incorporation of
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sub-cellular organelle compartmentalization toward a
consensus yeast metabolic network for systems biol-
ogy studies (106, 107) (http://www.comp-sys-bio.org/
yeastnet/). The latest version (v. 4.0; Dobson et al.,
in revision) included 2,342 reactions and 2,657 chemi-
cal species. More importantly, an increasing number of
studies are focusing on how changes in the extracellu-
lar metabolome (e.g., external environment and nutrient-
limiting conditions) result in changes in internal pools of
metabolites and patterns of cell growth (29, 31) and how
these relationships can be investigated with the help of
genome-scale models (108). Apart from this, in the post-
genomic era, considerable efforts are focusing on the rel-
evant role of metabolites in regulation, at the signaling,
(epi)-genetic, transcriptional, and post-transcriptional lev-
els (see (2) and references therein).

(7) At the DNA–protein networks level: Immunoprecipitation-
based methods, such as ChIP-chip and ChIP-Seq, provide
genome-wide information on DNA–protein interactions
and promoter occupancy for characterization of DNA–
protein transcriptional networks. However, they cannot
distinguish whether a transcription factor contacts DNA
directly or is tethered by means of another DNA-binding
protein and do not measure affinities (78, 79). In an
alternative approach, Fordyce and coworkers (109) used
a microfluidics-based system for de novo discovery and
quantitative biophysical characterization of DNA target
sequences and validated the technique by characteriz-
ing the binding of 28 yeast transcription factors, six of
which had proved intractable to previous approaches. The
use of a broad range of experimental conditions under
which transcription factors are likely to bind promot-
ers, and combining in vitro methods with advances in
whole-genome sequencing, should allow DNA–protein
transcriptional networks to be accurately identified and
modeled.

(8) At the RNA–protein (ribonucleoprotein, RNP) networks
level: A rapid affinity purification method for the efficient
isolation of the sub-complexes that dynamically orga-
nize RNP biogenesis pathways with minimum contamina-
tion has been developed in S. cerevisiae (110). The latest
studies indicate that RNA-binding proteins may interact
with several functionally related transcripts, suggesting an
extensive regulatory system (111).

(9) At the protein–protein networks level: The characterization
of all possible interactions and modular network struc-
ture of the yeast protein interactome includes methods

http://www.comp-sys-bio.org/yeastnet
http://www.comp-sys-bio.org/yeastnet
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for capture and analysis of strong and weak interactions
(e.g., pull-down methods and hold-up retention assays for
the analysis of weak interactions at equilibrium), direct
visualization, information from genetic interaction stud-
ies, and inference by application of specific algorithms
(112–119). The datasets generated are stored in well-
curated databases (e.g., Saccharomyces Genome Database
(SGD), http://www.yeastgenome.org/ and BioGRID,
http://thebiogrid.org/). The main results show a com-
plex, dynamic, modular protein–protein interactome with
changes in the sub-cellular localization of regulatory pro-
teins and their interactions (34, 35, 120). More impor-
tantly, the present advanced methods are providing com-
prehensive maps of fully functional regulatory networks,
such as the first global protein kinase and phosphatase
interaction (KPI) network in yeast (121). Other major
developments are the systems analysis of the mechanisms
underlying protein kinase specificity (122) and a first atlas
of protein–chaperone interactions in S. cerevisiae – reveal-
ing their role in protein folding and protein homeostasis
regulation in eukaryotes (123).

(10) At the proteome–metabolome interactions level: Metabolite
interactions with proteins are often considered to be con-
fined mainly to interactions with enzymes (e.g., as sub-
strates for their conversion through metabolic networks),
or as regulators of enzymatic activity (e.g., allosteric regu-
lation) (41). However, an increasing number of metabo-
lite interactions are being found to be responsible for
new regulatory mechanisms in eukaryotes and for cova-
lent modifications of proteins, including the biosynthesis
of glycoproteins and lipoproteins (2, 41). At this level,
recent studies toward a global analysis of the glycopro-
teome in S. cerevisiae are already revealing new roles for
protein glycosylation in eukaryotes (124).

(11) Finally, at the level of internal compartmentalization and
distribution of functions between specialized organelles (e.g.,
nucleus, cytosol, mitochondria, endoplasmic reticulum, and
vacuole): This relies on balanced orchestration of func-
tions, finely controlled localization and shuttling of reg-
ulators, and the interchange of components under differ-
ent conditions, an often overlooked level of regulation for
which limited information is yet available. In S. cerevisiae,
the latest studies have identified and characterized a novel
mitochondrial carrier for the interchange of citrate and
oxoglutarate between mitochondria and cytosol (125).
This information and more analysis on the role of com-
partmentalization such as Klitgord and coworkers’ analysis

http://www.yeastgenome.org/
http://thebiogrid.org/
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of S. cerevisiae as an “ecosystem of organelles” (126) will
need to be progressively incorporated into more refined
genome-scale metabolic models.

In all, most advanced studies in S. cerevisiae are showing new
levels of previously hidden complexity, which anticipate an excit-
ing era of discoveries, toward the elucidation of the main core
of biological networks essential to all eukarya. From here, it is
important to stress a number of facts that should not be over-
looked in yeast systems biology studies: (a) the need to define a
clear objective, with proper experimental design and protocols,
data analysis strategy, and expected results; (b) the reality of exis-
tence of unknowns and uncertainties in biology: components and
reactions still to be identified, localized, and/or properly anno-
tated (e.g., ATP-producing and -consuming reactions; NAD(P)
and NAD(P)H redox balances in different compartments); (c)
the possible existence of more than one function per gene, RNA,
protein, and/or metabolite. Thus, recent studies have shown that
metabolic enzymes play a role in the DNA damage response in
the nucleus (127, 128). (d) The correct use of yeast mutants
(e.g., auxotrophic and knockout mutants) and interpretation of
the results (129–132), and (e) the relevance of compartmental-
ization and distribution of functions between organelles in the
light of evolution (5, 126).

2.5. From Yeast to
Human: Toward
Principles Underlying
Evolution of
Eukaryotic
Complexity

One of the most important discoveries in the past few years
has been the confirmation of the existence of a hidden layer
of eukaryotic complexity, the “RNA regulatory world” (101,
102, 133, 134). Although the originally reported “pervasive”
transcription of the eukaryotic genome (135, 136) is presently
being questioned (85, 86, 137, 138), a new complex universe of
non-coding RNAs (e.g., small nucleolar RNAs, snoRNAs; small
interfering RNAs, siRNAs; microRNAs, miRNAs; piwi-associated
RNAs, piRNAs; and long non-coding RNAs), regulating gene
expression at different levels and participating in complex net-
works, has been reported. These are now the objects of intensive
investigation (139–144).

The discovery of particularly complex RNA regulatory net-
works in higher eukaryotes, at the most recent stages of evolution-
ary history (Fig. 1.4), some of them involved in differentiation,
multicellular development, and highly complex processes (e.g.,
nervous system function) (140, 144, 145), has led to the notion
that RNA regulatory networks are one of the most important fac-
tors underlying high complexity in eukaryotes (102, 146, 147).
Although RNA regulatory networks, together with the essen-
tial DNA–protein and protein–protein networks, may indeed
constitute a main contributor, the latest studies are unveiling a
more complex picture. Thus, complex RNA regulatory networks
are not exclusive to higher eukaryotes but have been reported
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Fig. 1.4. A simplified view of the biological history of the Earth. Reproduced from (102),
with permission from Company of Biologist Ltd.

also in simpler organisms (e.g., bacteria, single-celled eukaryotes,
parasites) (24, 25, 95, 99, 148, 149), and novel mechanisms
and regulatory networks, working in parallel or together with
RNA networks, are being reported underlying high complex-
ity in eukaryotes. Examples include the following: (a) short
eukaryotic transcripts initially considered to be non-coding RNAs

Fig. 1.5. The flow of genetic information in higher eukaryotes. Primary transcripts may
be (alternatively) spliced and further processed to produce a range of protein isoforms
and/or non-coding RNAs of various types, which are involved in complex networks of
structural, functional, and regulatory interactions. Reproduced from (102), with permis-
sion from Company of Biologist Ltd.
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encode small bioactive peptides controlling differentiation (150);
(b) expansion of the eukaryotic proteome by extensive alterna-
tive splicing (151) with more than 90% of genes undergoing
splicing in human tissue transcriptomes (152) and metabolite-
mediated control of alternative splicing (153); (c) the increasing
importance of complex RNA–protein (ribonucleoprotein, RNP)
networks (154, 155); and (d) proteolytic events controlling func-
tional switches from a nuclear to a cytosolic isoform involved in
cell differentiation processes (156).

Independent of all this, most advanced studies are showing
that RNA regulatory networks are involved in the regulation of
epigenetic reprogramming and alternative splicing events, reveal-
ing intricate relationships between RNP and protein–protein reg-
ulatory networks (139–141, 157–159) (Fig. 1.5). At this point,
systems biology studies using S. cerevisiae grown under controlled
conditions offer the potential to unveil the essential principles

Fig. 1.6. Evolution of complexity. Proposed schematic view of evolution of organisms and biological networks toward
eukaryotic complexity. The central position of the complex ancestral eukaryote (33) and its close relationship with
present unicellular eukaryotes (e.g., yeast) are shown (frame in bold). Evolution toward multicellular and higher eukary-
otes with more complex entwined networks is simplified. Abbreviations: DNAP, DNA-protein interactions/networks; RNP,
RNA-protein (ribonucleoprotein) interactions/networks; PP, protein-protein interactions/networks; RNP/PP/metabolite
interactions, ribonucleoprotein/protein-protein/metabolite interactions/networks. Additional DNA-RNA, RNA-RNA, RNA-
metabolite interactions, complex sub-cellular organization and interactions with other organisms are omitted for clarity.
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governing the relationships between RNA regulatory networks
and the other types of biology networks. The recent incorpora-
tion of RNA interference (RNAi) (52, 53) into the armory of
yeast researchers should enable the elucidation of the basic mech-
anisms involved in the interplay of RNAi pathways with essential
eukaryotic networks. All this will allow the characterization of the
main core of mechanisms and regulatory networks essentially con-
served in eukaryotes, from the last common eukaryotic ancestor
to extant single-celled organisms and humans (Fig. 1.6). This will
open the way, with the incorporation of selected model organ-
isms for system-level studies on differentiation and development
at multicellular, tissue, organ, and whole-body levels (e.g., Dic-
tyostelium discoideum, Caenorhabditis elegans, Drosophila, mouse,
stem cells, and human cell, tissue, and organ culture systems) (20,
160–164), to the elucidation of the main principles underlying
the evolution of complexity in higher eukaryotes. This, in turn,
will enable new advances in whole-body systems physiology (165)
and the development of direct applications (see next section).

3. Yeast Systems
Biology in
Practice

A final goal is to translate the new knowledge generated by
systems biology into direct applications. Each systems biology
project has the potential to advance progress toward some applied
objective (e.g., better characterization of biological networks
responsible for a specific disease). Here, the exquisite complex-
ity of eukaryotes should not be a deterrent but rather a stimulus
to overcome the challenges and contribute to new applications
for benefit of society. Yeast systems biology studies are already
making such an impact; selected examples are as follows:

(a) At the biotechnology and bioprocessing level: First, in the
food and beverage industry, new studies are being applied
to the improvement of Saccharomyces yeast strains (166)
to obtain systems-level information and new insights into
essential genome-wide responses for the characterization
of standard baking, brewing, and winemaking processes
(167–170). In the field of industrial biotechnology toward
the production of new compounds (e.g., heterologous
proteins), yeast systems biology approaches toward iden-
tification of main bottlenecks and networks involved are
enabling rational design of strains for the efficient pro-
duction of drugs (171–173). Thus, relevant examples
are the approaches taken toward strain development for
the production of artemisinin, an antimalarial drug in
S. cerevisiae (174), and the latest studies supporting the
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development of yeast-based therapeutic vaccines where
S. cerevisiae is engineered to express viral or tumor anti-
gens (175). The incorporation of new yeast systems biol-
ogy developments is already making an impact (176)
and will open the way to the production of new com-
pounds and the optimization of quality and productivity, as
well as the minimization of the costs, of biotechnological
processes.

(b) At the human disease/medicine level: The basic conserva-
tion of mechanisms and biological networks from yeast
to humans (e.g., the target-of-rapamycin (TOR) path-
way; DNA damage response; proteostatic networks) makes
yeast a good model for studies of mechanisms underlying
several human diseases. Conditions and mechanisms rele-
vant to human health being studied in yeast include can-
cer, genome stability, apoptosis, cell-cycle control, diseases
related to the malfunction of mitochondria, prion diseases,
cholesterol metabolism, diabetes, and a number of neu-
rodegenerative diseases (see (177) and references therein).
However, most complex human diseases are multifacto-
rial in nature, characterized by complex de-regulation of
biological networks which, if not counteracted by com-
pensatory mechanisms, lead to a cascade of downstream
effects that result in individual-specific phenotypes (dis-
eases) which are difficult to investigate – even with the lat-
est post-genomic techniques. Yeast systems biology offers
well-designed experiments toward the characterization of
short- and long-term effects of perturbations and dysregu-
lation of networks that may illuminate the origin of com-
plex diseases and open the way to early diagnosis. To reach
that goal, advances in the investigation and proper annota-
tion of the main core of regulatory networks (e.g., DNA–
protein, RNA–protein, and protein–protein networks) will
be of critical importance. Good examples of progress in
that direction are the first atlas of chaperone-protein inter-
actions in S. cerevisiae with direct implications to protein
folding in the cell (123), the latest studies on protein
homeostasis networks (178) and a first analysis of the main
metabolic imbalances associated with expression of toxic
mutant huntingtin in yeast, with their degree of conser-
vation in humans and mice (179). The application of inte-
grative systems biology studies to yeast strains expressing
proteins implicated in neurodegenerative diseases (180),
together with approaches in other animal models, may
constitute a valuable tool to unveil patterns and mech-
anisms underlying the onset of complex diseases. These
approaches may be combined with advanced systems biol-
ogy studies and genome-wide screens for drug and target
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discovery (181, 182), and for the dissection of effects of
specific drugs at different levels that are conserved between
yeast and humans (183–185) (see also Chapter 28 of this
volume).

4. Concluding
Remarks and
Future
Perspectives Eukaryotic life is rich in complexity (186) and yeast can help us to

rediscover and appreciate this, and guide us toward new discover-
ies. New holistic systems biology studies with the incorporation of
advanced post-genomic technologies have the potential to unveil
the exquisite complexity in the eukarya and the development of
new applications in biotechnology and medicine.

Yeast systems biology experiments under controlled condi-
tions can uncover the complexity and interplay of biological net-
works with their dynamics, and basic principles of internal orga-
nization and balanced orchestrated functions between organelles
in direct interaction with the environment. In order to realize the
full potential of yeast as a reference model in systems biology, the
high level of international collaboration between yeast research
groups seen in the yeast genome sequencing (44) (http://
www.yeastgenome.org) and functional genomic projects (187–
190) must be continued and even enhanced. To this end, the
Yeast Systems Biology Network (YSBN) (http://www.gmm.gu.
se/YSBN/), a global consortium of researchers working in Sys-
tems Biology of the yeast S. cerevisiae, and the International Soci-
ety for Systems Biology (ISSB) (http://www.issb.org) promote
interdisciplinary collaborations, projects, and initiatives between
top experts in the different fields. A relevant example is the UNI-
CELLSYS project (http://www.unicellsys.eu/), a systems biol-
ogy initiative with the overall objective of a quantitative under-
standing of control of cell growth and proliferation and other
fundamental characteristics of single-celled eukaryotes toward a
better understanding of the architecture and essential biology of
the eukaryotic cell. These joint initiatives and projects can be
reproduced in systems biology studies of more complex model
organisms, including higher eukaryotes and, ultimately, humans.
In this journey of new discoveries, the humble yeast S. cerevisiae
can accompany us along the path toward the elucidation of the
principles underlying the evolution of complexity, from single-
celled eukaryotes to humans (191).

http://www.yeastgenome.org
http://www.yeastgenome.org
http://www.gmm.gu.se/YSBN/
http://www.gmm.gu.se/YSBN/
http://www.issb.org
http://www.unicellsys.eu
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Chapter 2

Saccharomyces cerevisiae: Gene Annotation and Genome
Variability, State of the Art Through Comparative Genomics

Ed Louis

Abstract

In the early days of the yeast genome sequencing project, gene annotation was in its infancy and suffered
the problem of many false positive annotations as well as missed genes. The lack of other sequences for
comparison also prevented the annotation of conserved, functional sequences that were not coding. We
are now in an era of comparative genomics where many closely related as well as more distantly related
genomes are available for direct sequence and synteny comparisons allowing for more probable predic-
tions of genes and other functional sequences due to conservation. We also have a plethora of functional
genomics data which helps inform gene annotation for previously uncharacterised open reading frames
(ORFs)/genes. For Saccharomyces cerevisiae this has resulted in a continuous updating of the gene and
functional sequence annotations in the reference genome helping it retain its position as the best char-
acterized eukaryotic organism’s genome. A single reference genome for a species does not accurately
describe the species and this is quite clear in the case of S. cerevisiae where the reference strain is not
ideal for brewing or baking due to missing genes. Recent surveys of numerous isolates, from a variety
of sources, using a variety of technologies have revealed a great deal of variation amongst isolates with
genome sequence surveys providing information on novel genes, undetectable by other means. We now
have a better understanding of the extant variation in S. cerevisiae as a species as well as some idea of how
much we are missing from this understanding. As with gene annotation, comparative genomics enhances
the discovery and description of genome variation and is providing us with the tools for understanding
genome evolution, adaptation and selection, and underlying genetics of complex traits.

Key words: Gene annotation, comparative genomics, next generation sequencing, novel genes,
genetic variation.

1. Introduction

Gene annotation and genome variation are interrelated and each
can inform the other (see Fig. 2.1). To address the question
of “When is a gene not a gene?” for dealing with dubious
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Fig. 2.1. Gene annotation and genetic variation inform each other. It has become clear
that the increased number of genome sequences from different strains and species
of Saccharomyces has been very informative to gene annotation through comparative
genomics. This has led to a continuous evolution of the annotation of the reference S.
cerevisiae genome that has in turn led to the annotations of related genomes. Less well
appreciated is the role annotated genomes have played in our understanding of genetic
variation, in particular structural variation, due to insertions and deletions as well as
rearrangements such as translocations. Annotated genomes allow for quick and efficient
alignments, such as through the Yeast Gene Order Browser (see text), without the need
for multi-sequence alignments. Potential areas of interest are immediately obvious as
apparent synteny breakpoints or as duplicated regions.

open reading frames, comparative studies with several strains and
species can be a powerful tool, obviating the need for experimen-
tal determination of function. Similarly, gene annotations embed-
ded in a gene order or synteny browser can be used to determine
areas of genome variation, in terms of insertions, deletions, and
rearrangements. Finally, for uncharacterised yet conserved genes,
the cross referencing of the vast amount of functional genomic
data can inform and improve functional annotation.

2. Gene
Annotation

The reference genome, S288C, is constantly changing with
updates in both sequences and annotations (1). Many of
the updated gene annotations come from functional studies
but others come from informatic analysis of genome compar-
isons with functional follow-ups. These updates can be seen
for each annotated gene or sequence element at SGD (see
http://www.yeastgenome.org/cgi-bin/seqTools) and a global

http://www.yeastgenome.org/cgi-bin/seqTools
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picture of the updates can be found at http://www.yeastgenome.
org/cache/genomeSnapshot.html. The rate of change in annota-
tions is not really slowing down as there are still many functions
to be determined and many open reading frames still annotated
as dubious, as there is no corroborative evidence for them actually
being genes. New and improved annotation pipelines are in place
to improve functional annotations as more data becomes available
(2, 3).

Genome comparisons of related species have given the great-
est advance in gene annotation in recent years (4, 5), and numer-
ous ORFs are less likely to be real based on lack of conservation
(Fig. 2.1). The reduction of the original 6,200 ORFs by 15% is
in large part due to comparative genomics. On the flip side, small
ORFs, which did not pass the threshold for being annotated as
possible ORFs, are now properly annotated due to conservation
in related species (1), which is thought to be due to functional
constraints. This sequence conservation has also led to the anno-
tation of non-coding sequence elements, either presumed func-
tional elements or discovery of new elements including transcrip-
tion factor binding sites (4, 6, 7).

2.1. Gene Annotation
Informing Genome
Variation

Annotated genomes have been useful in comparative genomics,
particularly in determining ancestral structural states and the
sequence of gross chromosomal rearrangement events that lead
to the extant genome of Saccharomyces cerevisiae as well as its rel-
atives. The determination of the Whole Genome Duplication by
Wolfe and Shields (8) is a case in point, where genome dynam-
ics and variation over evolutionary time have been determined
using comparisons of annotated regions which have since devel-
oped into an annotated gene order browser (9, 10). Since then
the use of a gene order browser has become a standard tool for
analysis of genome variation between species.

Sometimes the use of such tools can lead to apparent incon-
sistencies between studies. When comparing the genomes of the
Saccharomyces sensu stricto species, it is clear that most of the
genome is syntenic and that there are only a few gross chromoso-
mal rearrangements. Mapping the breakpoints by physical means
can narrow down the sites of ancestral rearrangements within a
few kilo-base pairs. In the case of Saccharomyces bayanus, eight
breakpoints for four reciprocal translocations were determined
(11). When the same isolate was sequenced at low coverage and
the reads annotated where ORFs were found, a comparison to
the gene order browser for S. cerevisiae resulted in the deter-
mination of at least 45 breakpoints as ORFs were found in the
same clone whose homologues in S. cerevisiae were located far
apart, mostly on other chromosomes (12). A closer inspection
revealed that there was a lot of differential accumulation of diver-
gence in one or the other of a pair of gene duplicates after the

http://www.yeastgenome.org/cache/genomeSnapshot.html
http://www.yeastgenome.org/cache/genomeSnapshot.html
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whole genome duplication resulting in gene relics that were not
annotated (13). What looked like gross chromosomal rearrange-
ments in many cases was loss of open reading frames differentially
between duplicated segments in the two species and a sequence
comparison revealed that synteny was retained.

Gene annotation has improved but is still an evolving pro-
cess. Various projects for improving automated gene annotation
are underway at many places and these rely in a large part on
comparative genomics. It is likely that proper annotation will con-
tinue to require human intervention. The state of the art for func-
tional genome annotation in S. cerevisiae utilizes high-throughput
experimental data as well as computational predictions (2, 3).

2.2. Gene Annotation
Challenges

Some genome regions are particularly problematic, as they do not
assemble well, making annotations difficult if not impossible. In
particular, the subtelomeric regions generally are not included in
genome projects due to technical difficulties in cloning, sequenc-
ing, and eventual assembly. For S. cerevisiae this is of particular
importance as many of the genes responsible for important phe-
notypic variation, such as brewing, baking and general fermen-
tation properties, are located in the subtelomeres. The reference
genome for S. cerevisiae remains the only finished genome as its
subtelomeres were individually marked, cloned, and sequenced
during the genome project, an effort that cannot be done
efficiently for any other genomes. None of the other yeast strains
(14–16) (see also http://www.broadinstitute.org/annotation/
genome/saccharomyces_cerevisiae.3/Info.html) and species
(4, 6, 7) sequenced have assembled and therefore annotated
subtelomeres making it difficult to progress with many important
studies.

3. Genome
Variation

Genome variation has always been underlying studies in S. cere-
visiae but has not always been taken into account. For example,
studies using the reference genome as a template for experiments
on another strain may not result in interpretable data for regions
of the genomes that are different. In particular the subtelomeric
regions as mentioned above vary a great deal between strains and
therefore it is not possible to determine which chromosome end
or which copy of a gene is responsible for the data. This is illus-
trated in studies of meiotic double strand breaks, which are gen-
erally done in strain SK1, which varies greatly in its subtelomeres
from the reference genome (14, 17). The data from array-based
analyses therefore cannot be interpreted in these regions (18).

http://www.broadinstitute.org/annotation/genome/saccharomyces_cerevisiae.3/Info.html
http://www.broadinstitute.org/annotation/genome/saccharomyces_cerevisiae.3/Info.html
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Table 2.1
Techniques for assessing genetic variation

Technique Uses Disadvantages

Pulsed field gel
analysis

Gross chromosomal rearrangements
and chromosome length
polymorphisms

Low resolution, not high
throughput

AFLPs Phylo-geographic relationships of
closely related strains/species

Not good for distantly related
species due to loss of
homology with phylogenetic
distance

Microsatellites High-throughput assessment of
relatedness of strains using
multiple alleles at few loci

Low resolution in terms of
genome coverage, identical
alleles not necessarily identical
by descent

Microarrays –
ORFs/long oligos

High throughput, copy number
variation (CNV),
presence/absence of sequences

Cannot assess unknown
sequence, not good for SNP
variation

High-density
microarrays

High throughput, CNV,
presence/absence as well as
determination of sequence
variants (SNPs)

Cannot assess unknown
sequence

Whole genome
sequencing

Highest resolution, can assess novel
previously unknown sequence

Expensive, throughput depends
on ability to multiplex

We now have the capability of assessing variation amongst S. cere-
visiae strains and related species by a variety of means. Currently
in use are physical analysis of structural variation using pulsed
field gels and Southern analysis (11, 17, 19–22), amplified frag-
ment length polymorphisms (AFLPs) (23–25), microsatellite vari-
ation at several sites across the genome using PCR (26–28), pres-
ence/absence as well as SNP detection using microarrays (29–35)
and finally sequencing at either several loci (36–39) or the whole
genome (14) (see Table 2.1).

3.1. Genome
Variation by Pulsed
Field Gel
Electrophoresis

The use of pulsed field gel electrophoresis to separate large
DNA molecules has proven very useful in looking at structural
variation in yeast genomes: assessing variation amongst isolates
(17, 19, 21, 22), variation generated by genome instability (20),
or variation generated over evolutionary time (11, 17). The reso-
lution of pulsed field gels coupled with Southern analysis is quite
low; however, a great deal of effort is required to narrow down
breakpoints (11). It is also difficult to scale up to large numbers
of samples though 10 s to 100 s are possible (40).

3.2. Genome
Variation via AFLPs

A higher throughput method in use is amplified fragment length
polymorphisms which is a quick method of assessing relatedness
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amongst strain isolates (24, 25). This technique is invariably used
along with rDNA typing or other genetic characterization to gen-
erate a more informed and consistent picture of relationships.
One of the problems with the technique is it is difficult to know
what is actually being compared as these are randomly ampli-
fied fragments, and how much of the genome is being assessed.
Another difficulty is that the method is limited to close relatives as
increased phylogenetic distances reduce the likelihood that frag-
ments are comparable through homology (23).

3.3. Genome
Variation via
Microsatellites

One of the most efficient ways of determining general strain vari-
ation is by microsatellite analysis. The increased number of alle-
les available at these loci in part makes up for the lack of num-
ber of loci assessed. With only a few markers, large numbers
of strains can be genotyped (26–28). Phylogenetic relationships
can be inferred and some feel for diversity in the species can be
obtained. There are limitations to this approach. One is that only
a limited part of the genome is genotyped and in many studies not
even every chromosome is marked. This severely limits the use of
the genotype data for mapping genetic differences responsible for
various phenotypes for example. Another is that the allele state
at a microsatellite is not necessarily a good indicator of identity
by descent and therefore inferred phylogenetic relationships are
compromised. A particular copy number allele could have been
arrived at from different “mutational” changes from different alle-
les. Despite these problems, microsatellite genotyping remains a
quick and inexpensive way to assess diversity for large numbers of
strains.

3.4. Genome
Variation via
Microarray
Comparative Genome
hybridization

A better approach but less high throughput is the use of microar-
rays and comparative genome hybridization. For large probes
on arrays, the resolution can yield information on presence or
absence as well as copy number (30). This has generally worked
well for some studies but has its limitations. The main limita-
tion is that you cannot look for sequences that are not known.
These larger probe arrays are also not very useful for detect-
ing sequence divergence. This approach is particularly suited for
genome stability and/or composition studies with hybrids or con-
ditions resulting in aneuploidies where copy number changes are
important determinants. Unfortunately the microarrays cannot
provide information on location or structure accompanying copy
number changes. Complementary analysis with specific probes on
pulsed field gels can resolve location and structural differences.

Higher resolution can be obtained with high-density arrays
using short oligos that cover the whole known genome
(32, 34, 35). With appropriate analysis these can even detect sin-
gle SNP differences making them almost as good as sequencing
(29, 34, 35). Such arrays are more expensive and therefore may
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be prohibitive for large-scale studies but they provide a genome-
wide assessment of variation for SNPs, small- and large-scale dele-
tions as well as copy number to a limited extent. There is still the
problem of assaying only previously known sequences.

3.5. Genome
Variation via Whole
Genome Sequencing
(WGS)

By far the most effective assessment of genome variation
is whole genome sequencing. Here the issue is balancing
the cost with the value of completeness. Only sequencing
will reveal novel genes and sequences that were previously
unknown. Several individual S. cerevisiae strains have been
sequenced to near completeness using first generation Sanger
sequencing since the reference genome was completed (15,
16) and http://www.broadinstitute.org/annotation/genome/
saccharomyces_cerevisiae.3/Info.html. These have each provided
insights into genome variation such as novel genes, introgressions
from outside the species as well as frequencies and types of varia-
tion. Each of these was time consuming and costly and each suf-
fers from incompleteness of the subtelomeres as well as the large
tandem arrayed sequences such as the rDNAs. Although a great
deal of information can be gleaned from these sequences such
as some assessment of population structure, selection and adap-
tation, and human influence, the limited number of sequences
does not represent the species as a whole nor can it really describe
population structures which require many individuals within and
between to accurately determine.

One way to increase numbers of individuals without the cost
of whole genomes is to sequence a few genes from various loca-
tions in the genome. This has been used effectively to describe
population structures in Saccharomyces yeasts (36, 37, 39). This
type of analysis resolves some of the issues of population structure
but in many cases new questions arise.

Another approach to increase the numbers of individuals
without the cost of complete genomes is low level whole genome
shotgun sequence coverage that has proven very effective at deter-
mining population structure and resolving many issues about
selection and human influence (14). With the assumption that
there are populations of related individuals, it is possible to
determine global genome-wide phylogenetic relationships with-
out having the complete genomes. Although the difficult regions
of the genomes are still not resolved, some inferences concern-
ing regions such as subtelomeres and large tandem arrays can be
made. By surveying many strains at lower coverage, the discovery
of novel genes may be more efficient than complete sequences
of fewer strains as populations of related individuals will share
these novel genes. The combined sequence coverage within a
population reduces the chances of missing novel genes. Using
this approach, all six known gene families not in the reference
genome were found amongst 35 other S. cerevisiae strains as

http://www.broadinstitute.org/annotation/genome/saccharomyces_cerevisiae.3/Info.html
http://www.broadinstitute.org/annotation/genome/saccharomyces_cerevisiae.3/Info.html
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were the novel genes discovered in the individual near complete
genomes recently sequenced. In addition 38 new genes/gene
families were discovered (14). Despite most of these being in sub-
telomeric regions that were not assembled, the general composi-
tion of novel gene families, i.e. presence and distribution amongst
strains/populations could be made. Further complementary anal-
ysis with specific probes and pulsed field gels will help with the
structural analysis of these novel genes. Annotation of these genes
will have the same problems as any novel potential genes and
in this case comparative genomics would not be helpful, as the
regions are not assembled.

In addition to novel gene discovery, population genomic
sequence surveys provide evidence for sequence variation previ-
ously unknown. In the case of the rDNA array, it is generally
assumed that every copy within an array has the same sequence
though different strains can have different variant arrays. The
population genomic survey of several strains revealed that in addi-
tion to the SNPs that varied between arrays in different strains,
there were sequence differences between rDNA copies within
arrays with significant frequencies (41). Despite the low coverage
overall for the genomes in this survey, the coverage of rDNAs
was substantial due to their large copy number. This allowed
the determination of sequence variants with high accuracy both
between and within arrays. What is not possible from this analysis
is the determination of order of variants within an array.

The current state of the art for genome variation determi-
nation still includes microsatellite analysis (26–28), as well as
microarrays (32, 34, 35), where genotyping by arrays is becoming
quite sophisticated (29). The best determination, however, is still
whole genome sequencing without which much information on
variation is missing. Our current understanding of the population
structure of S. cerevisiae, with several well-delineated populations
and a large number of mosaic strains resulting from interbreeding
between these populations (14), could not have been determined
without population genomic sequencing.

4. Conclusions

Challenges and future prospects include the assembly and anno-
tation of complex regions of the genome. This includes repet-
itive regions such as the rDNA arrays, for which we have seen
some progress as described above, as well as subtelomeric regions,
which we have seen contain many of the genes and gene families
responsible for adaptive and phenotypic differences, yet are not
well characterized. Second generation sequencing with increased
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depth of coverage in short timeframes will be a major part of
the solution, yet brings with it the additional challenges of quan-
tity and quality of the sequence reads as well as the length of
reads available. These challenges in both gene annotation and
genome variation will only be met by combined approaches utiliz-
ing new sequencing technologies as well as new informatic tools
for assembly, comparison, and compilation/cross referencing of
diverse data sets.
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Chapter 3

Genome-Wide Measurement of Histone H3 Replacement
Dynamics in Yeast

Oliver J. Rando

Abstract

Chromatin plays critical roles in processes governed in different timescales – responses to environmen-
tal changes require rapid plasticity, while long-term stability through multiple cell generations requires
epigenetically heritable chromatin. Understanding the dynamic behavior of chromatin is of great interest
for fields ranging from transcriptional regulation through meiosis and gametogenesis. Here, we describe
a protocol for measuring histone replacement rates genome wide in the budding yeast Saccharomyces cere-
visiae. With suitable modifications, this protocol could be applied to other organisms, or to replacement
dynamics of other DNA-associated proteins.

Key words: Histone H3 replacement, Saccharomyces cerevisiae, budding yeast, epigenome,
epigenetics, chromatin.

1. Introduction

Chromatin plays critical roles in processes governed in different
timescales – responses to environmental changes require rapid
plasticity, while long-term stability through multiple cell gener-
ations requires epigenetically heritable chromatin. It is of great
interest, therefore, to understand the nature of dynamic chro-
matin states in living cells.

In bulk studies, histones are among the most stably bound
DNA-associated proteins. Nonetheless, a number of recent exper-
iments have identified loci where histones are evicted and replaced
by different histone molecules in the absence of genomic replica-
tion. Furthermore, during DNA replication, histones from the
mother chromosome transiently dissociate from the chromo-
some, raising the question of how chromatin states are stably
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maintained in the face of the perturbations encountered during
genomic replication. The converse question may also be asked –
even in the absence of genomic replication, how stable are chro-
matin states? While most studies paint a picture of stable chro-
matin states, is this a consequence of a static system in which the
same molecules persist, or a consequence of active maintenance
by dynamic processes? This question is central to understanding
the processes that modify chromatin state, and to understanding
the molecular nature of stably heritable chromatin states.

Histones provide a formidable barrier to the elongation of
RNA polymerase (1, 2). In yeast, passage of RNA polymerase dis-
places nucleosomes (assessed by H3 occupancy), which are rapidly
reassembled after transcription is shut down (3). In Drosophila,
RNA polymerase causes exchange of the canonical histone H3
(H3.1) for the “replication-independent” H3 variant H3.3, and
H3.3 continues to turn over as long as a coding region is being
actively transcribed (4–6). Single-gene and whole-genome stud-
ies in yeast have shown that H3 is removed from promoters upon
gene activation (7–11, 12). Reassembly of histones at the PHO5
promoter after shutdown of transcription occurs in trans, in the
sense that the histones that are reassembled on the promoter are
not the same histones that were removed during gene activation
(13). Intriguingly, H3 replacement is slow or unmeasurable over
silenced coding regions (14–17). H2A/H2B exchange is glob-
ally much more widespread than H3 exchange, though it too is
diminished over silenced loci.

Detailed understanding of high-resolution chromatin dynam-
ics requires a rapid assay for the determination of chromatin struc-
ture over genomic scales. Using genome-wide tiling microarrays
coupled with inducible expression of epitope-tagged histones,
the dynamics of replication-independent H3 exchange across the
yeast genome has been characterized (17, 18). These meth-
ods enable the rapid assay of global histone dynamics at single-
nucleosome resolution. Below, a protocol for the genome-wide
measurement of H3 replacement rates in budding yeast is pre-
sented.

2. Materials

2.1. Combined
Micrococcal
Nuclease and ChIP
(MNase-ChIP)

1. YPRaffinose medium (YPRaff): Yeast extract (1%,
w/v)/peptone (1%, w/v)/raffinose (2%, w/v) medium.

2. PBS buffer: Phosphate-buffered saline, pH 7.4.
3. Buffer L: 50 mM HEPES–KOH, pH 7.5, 140 mM NaCl,

1 mM EDTA, 1% (w/v) Triton X-100, 0.1% (w/v) sodium
deoxycholate.
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4. NP buffer: 0.5 mM Spermidine, 1 mM β-mercaptoethanol
(β-ME), 0.075% (w/v) Tergitol-type NP-40 detergent
(NP-40), 50 mM NaCl, 10 mM Tris–HCl pH 7.4, 5 mM
MgCl2, 1 mM CaCl2. Preparation of 5 mL of NP buffer
(made fresh on the day of the experiment): 10 μL of
250 mM spermidine, 3.5 μL of 1:10 (v/v) (diluted in
water) β-ME, 37.5 μL of 10% (w/v) NP-40. Bring up to 5
mL with NP buffer.

5. Buffer W1: Buffer L with 500 mM NaCl.
6. Buffer W2: 10 mM Tris–HCl, pH 8.0, 250 mM LiCl, 0.5%

(w/v) NP-40, 0.5% (w/v) sodium deoxycholate, 1 mM
EDTA.

7. Buffer Z: 1 M Sorbitol, 50 mM Tris–HCl, pH 7.4. Prepa-
ration of 1 L of buffer Z: 500 mL of 2 M sorbitol, 50 mL
of 1 M Tris–HCl, pH 7.4, 450 mL dH2O.

8. TE buffer: 10 mM Tris–HCl, pH 8.0, 1 mM EDTA.
9. (2×) Proteinase K solution: TE with 0.8 mg/mL glycogen,

2 mg/mL proteinase K.
10. Elution buffer: TE, pH 8.0, with 1% (w/v) SDS, 150 mM

NaCl, and 5 mM DTT (note: do not add the DTT until
just before use).

11. Zymolyase solution (10 mg/mL in buffer Z; lasts up to 2
weeks at 4◦C).

12. Micrococcal Nuclease (Worthington Biochem): Resus-
pended from lyophilized powder at 20 U/μL in Tris–
HCl, pH 7.4. Aliquot into tubes upon first use and store
at –80◦C.

13. Phenol/chloroform/isoamyl alcohol (PCI) (24:25:1)
(v/v).

14. Yellow (heavy) Phase Lock Gel (PLG) tubes (Manual Phase
Lock GelTM, PLG, 5Prime GmbH).

15. Protein A beads (Sigma).
16. Isopropanol (100%, v/v).
17. Sigma protease inhibitor cocktail.
18. NEB buffer 3 (New England Biolabs).
19. Calf intestinal phosphatase (CIP) (New England Biolabs,

#M0290S).
20. QIAGEN Min Elute Enzyme Cleanup Kit.

2.2. DNA Linear
Amplification

1. Calf intestinal phosphatase (CIP) (New England Biolabs).
2. 10× NEB buffer 3 (New England Biolabs).
3. TdT (NEB #M0252S or #M0252L).
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4. 5× TdT buffer: 1 M Potassium cacodylate, 125 mM Tris–
HCl, pH 6.6, 1.25 mg/mL BSA (Roche).

5. 8% Dideoxynucleotide tailing solution: 92 μM dTTP,
8 μM ddCTP (Invitrogen).

6. Ambion T7 Megascript Kit (Ambion, #1334).
7. DNA polymerase I Klenow fragment (New England

Biolabs).
8. NEB buffer 2 (New England Biolabs).
9. QIAGEN RNeasy Mini Kit.

10. β-Mercaptoethanol solution (14.2 M).

2.3. Amplified
Antisense RNA
(aRNA) Labeling
and Cleanup

1. 5 μg/μL Anchored oligodT (22 mer; Integrated DNA
Technology, IDT).

2. Cy3 and Cy5 dyes (Amersham): Dye comes dried and
should be resuspended in 11 μL of DMSO. This amount
of material is sufficient for three labeling runs. If entire
amount will not be used, make 3 μL aliquots. Dry
down in SpeedVac vacuum concentrator and store at
–20◦C.

3. (50×) aa-dUTP mixture: Dissolve 1 mg amino-allyl dUTP
(Sigma) with the following: 32.0 μL of 100 mM dATP
(12.5 mM, final), 32.0 μL of 100 mM dGTP (12.5 mM,
final), 32.0 μL of 100 mM dCTP (12.5 mM, final),
12.7 μL of 100 mM dTTP (5 mM, final), 19.3 μL
dH2O.

4. Superscript II (Invitrogen), with SSII buffer and DTT.
5. RNasin (Promega).
6. NaOH solution (1 M).
7. EDTA solution (0.5 M).
8. HEPES solution (1 M, pH 7.5).
9. Sodium bicarbonate solution (50 mM, pH 9.0).

10. QIAGEN Min Elute Enzyme Cleanup Kit (# 28204).

2.4. Microarray
Hybridization

1. Cot-1 DNA. Commercially available at 1 mg/mL. Prior to
hybridization, concentrate Cot-1 DNA from 1 to 10 μg/μL
in a SpeedVac vacuum concentrator.

2. Yeast tRNA (10 μg/μL).
3. PolyA RNA (10 μg/μL).
4. (20×) SSC solution: 0.3 M Trisodium citrate and 3.0 M

sodium chloride, pH 7.0.
5. 10% (w/v) Sodium dodecyl sulfate (SDS).
6. 1 M HEPES–KOH (pH 7.0).
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7. Microarrays and hybridization chambers (from microarray
suppliers such us Agilent, Nimblegen).

8. Axon GenePix scanner (Axon).

2.5. Yeast Strains
and Cultivation

The yeast strain required for this experiment carries an inducible
copy of an epitope-tagged histone H3. Specifically, we utilize a
strain carrying a plasmid with the GAL1-10 promoter driving
expression of both untagged H4 and an N-terminally Flag-tagged
H3. In our original published work (17), we used a strain that also
carried a constitutively expressed Myc-tagged H3, but in subse-
quent work we found the Myc tag to be unnecessary (19). We also
find it useful to delete the gene encoding the Bar1 protease that
degrades the alpha factor from the yeast strain to be used, thus
enabling G1 arrest by alpha factor treatment with much lower
concentrations of the factor.

A typical experiment involves growth of the yeast strain (car-
rying a deletion in a chromatin regulator of interest if desired) to
mid-exponential phase in YPRaffinose medium. Yeast are arrested
with alpha factor (we recommend carrying out a titration in your
strain background of interest) for 3 h (more for slow-growing
strains). Galactose is added to the medium to a final concentration
of 1% (w/v), and at varying times after galactose addition (15, 30,
45, 60, 90, 120, 150 min), mononucleosome-resolution ChIP
is carried out as described below. After amplification, Flag ChIP
is competitively hybridized against mononucleosomal “input” on
whole-genome tiling microarrays.

Below, we provide detailed protocols for four steps:
(1) Nucleosome-resolution ChIP (Section 3.1).
(2) Linear amplification (Section 3.2).
(3) Labeling for microarrays (Section 3.3).
(4) Hybridization to microarrays (Section 3.4).

3. Methods

3.1. Combined
Micrococcal
Nuclease and ChIP
Protocol
(MNase-ChIP)

Before doing MNase-ChIP, an MNase titration series is needed to
determine the proper amount of MNase enzyme to be used. For
this purpose, follow the protocol below as follows (starting from
day 1) stopping at the end of the MNase digestion and following
these steps:

1. Add 150 μL of STOP buffer (0.25 M EDTA, 5% (w/v)
SDS).

2. Proteinase K treatment overnight at 65◦C. You may use
extra-high concentrated proteinase K (20 mg/mL) with no
glycogen.
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3. Extract with phenol/chloroform/isoamyl alcohol (PCI)
reagent once using yellow (heavy) Phase Lock Gel (PLG)
tubes.

4. Precipitate with (0.1×) 3 M volume sodium acetate and 1
volume isopropanol.

5. Spin immediately for 10 min at maximum speed
(>12,000× g).

6. Wash the pellet in 70% (v/v) ethanol.
7. Resuspend in NEB buffer 3.
8. RNase treatment for 1 h at 37◦C.
9. Run gel to determine proper titration point.

3.1.1. Day 1 – Yeast
Culture

1. Inoculate starter culture with the cells of interest (full-size
colony). Do this 1–2 days in advance.

2. Inoculate 400–550 mL of YPRaffinose medium in a 2-L baf-
fled flask and grow culture shaking at 220 rpm at desired
temperature. Target concentration is 8–9 × 106 cells/mL.
This yields sufficient material for 4–6 immunoprecipitations
(IPs).

3.1.2. Day 2 –
Cross-linking and
MNase Digest

1. Early afternoon: Grow culture to the desired cell density,
arrest with alpha factor, and add galactose to a final con-
centration of 1% (w/v) for the desired amount of time. Add
formaldehyde to 1% (w/v) final concentration (see volumes
below) and shake (∼200 rpm) for 15 min.

Cell culture
volume (mL)

Formaldehyde
(mL) Glycine (mL)

400 10.7 20.5

450 12.0 23.0
500 13.2 25.3

550 14.8 27.5

2. To quench the formaldehyde, add 2.5 M glycine according
to the table above, shake while adding, and then shake or
let stand at room temperature for 5 min. Cells can now be
left on ice as long as necessary (for example, to collect more
samples from a time course experiment).

3. Transfer to 0.5- or 1-L centrifuge bottle and spin down at
>3,000× g for 5 min at 4◦C.

4. Wash once in 50 mL volume of Milli-Q water (ddH2O).
5. Resuspend the cell pellet (from the 400–550 mL culture)

in 39 mL buffer Z.
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6. Add 28 μL of 14.3 M β-ME (final concentration 10 mM)
and vortex cells to resuspend.

7. Add 1 mL of zymolyase solution and incubate at
28–30◦C, shaking, on tilted tube rack for 35–40 min (time
will depend on the assessment of spheroplasting efficiency –
see below).

8. Spin zymolyase-treated yeast (now spheroplasts) at
5,000× g for 10 min at 4◦C:
(a) During spin, if doing a titration, aliquot the MNase to

4–6 Eppendorf tubes per set. Pipette a dot of MNase
on the side of the tube (directly under lid hinge).
Suggested concentration range:
(i) BY4741: 1–10 μL for four aliquots. Alternatively,

increase number of aliquots with less amount of
enzyme.

(b) MNase can be subject to three freeze-thaw cycles
(–20◦C). Store at –20◦C after first freeze-thaw.

9. Aspirate the supernatant and resuspend each aliquot in a
total of (600 μL × # aliquots + 50 μL) NP buffer by
pipetting up and down several times. Cells will be sticky,
viscous, and thick. If cells do not stick together in chunks
but dissociate easily from each other, spheroplasting may
be incomplete.

10. Add 600 μL of cells to each Eppendorf with MNase. Add
the cells to the tubes directly on the spot of nuclease, and
try to be even and quick between tubes. Start with the most
diluted sample and use the same 1,000-μL tip to add to
each successive tube to minimize tip changing times.

11. As soon as all the cells have been added, start the timer,
close the tubes, invert them once to mix, and incubate at
37◦C (in water bath) for 20 min.

12. Stop the reaction after 20 min by transferring the tubes to
an ice bath (4◦C). This will halt the enzyme activity. Finally,
add 12 μL of 0.5 M EDTA (10 mM end concentration) per
600 μL aliquot to inactivate the enzyme.

3.1.3. Day 2 –
Immunoprecipitation

1. Prepare protein A beads. Each immunoprecipitation (IP)
aliquot takes two protein A bead aliquots, but one of the
aliquots will not be used until the following morning. If
preparing from a new vial, the beads are 5 mL of slurry in
a total volume of 6.3 mL, with the supernatant consisting
of 20% (v/v) ethanol. Add 3.7 mL of 20% ethanol to bring
up to 10 mL of 50% slurry. This is equivalent to adding 3
mL of water and 750 μL of 100% ethanol:
a. Pipette 700 μL of slurry per eight IP aliquots into a 1.5-

mL tube (enough for the preclear; you will need another
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700 μL for eight IP aliquots for the pull-down the fol-
lowing day).

b. Spin down at 3,000× g in microcentrifuge for 1 min.
c. Return the supernatant to stock buffer if slurry is thick,

otherwise discard.
d. Wash beads twice in buffer L.
e. Distribute the protein A beads equally to eight 1.5-mL

tubes (truncate a pipette tip with a razor blade and use
that for easier pipetting, though you may need to dial
down the volume, since the pipetman will now draw up
slightly more volume).

2. Pool the digested material and add the following to the
digestion products to simulate buffer L conditions. Impor-
tant: Add the salts before the detergents. Amounts below
are per 600 μL digestion aliquot; scale accordingly. One IP
aliquot will be ∼800 μL afterward.

Volume
(µL) Component

80 0.5 M HEPES–KOH, pH 7.5

22.4 5 M NaCl
6.4 12.5% (w/v) Sodium deoxycholate

80 10% (w/v) Triton X-100
8 Sigma protease inhibitor cocktail

3. Set aside at least 80 μL (∼5%) of pool as non-IP “input”;
needed also for gel verification of the MNase digest. This
should yield about 0.75–1 μg of DNA in the end.

4. Add adjusted digest product (∼800 μL per IP aliquot) to
one protein A bead aliquot (pre-equilibrated in buffer L)
and rotate at 4◦C on tube rotisserie for 1 h to remove pro-
teins that bind nonspecifically to the beads.

5. Spin for 30 s at 3,000× g at 4◦C (to avoid MNase reacti-
vation), and transfer the supernatant to another tube con-
taining the appropriate amount of antibody.

6. Incubate with rotation at 4◦C for 4 h overnight (up to
16 h).

7. Spin for 30 s at 3,000× g at 4◦C and transfer to a tube
containing another protein A bead aliquot.

8. Incubate with rotation at 4◦C for 1 h (longer is allowable
but not necessary).

9. Spin for 30 s at 3,000× g at 4◦C and for subsequent pel-
leting steps in washes.
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10. Wash beads successively with 1 mL of the following buffers,
for 5 min (on rotisserie at 4◦C) each, in the following
order: Buffer L (twice), W1 (twice), W2 (twice), and TE,
pH 8.0 (twice).

3.1.4. Day 2 – Elution 1. Incubate the beads in 125 μL of elution buffer at 65◦C for
10 min with frequent mixing (vortex for a few seconds every
3 min). Be sure to add the DTT in the elution buffer (to
5 mM final concentration) beforehand.

2. Pellet the beads by centrifugation at 10,000× g for 2 min
and keep the supernatant.

3. Repeat Steps 1 and 2 above and discard the protein A beads
when done.

3.1.5. Day 2 – Reverse
Cross-links

1. Add 0.5 volume of (2×) proteinase K solution to both the
ChIP input and the eluted samples. (ChIP input samples can
receive 10 μL of 20 mg/mL proteinase K instead.)

2. Overlay input and eluted samples with mineral oil (only if
volume is <150 μL) and incubate at 65◦C overnight.

3.1.6. Day 3 – Protein
Degradation and DNA
Purification

1. Cool the samples to room temperature and spin down
(> 12,000× g).

2. Extract with 1 volume phenol (once), then with 1 volume
chloroform/isoamyl alcohol (25:1) (once) using chloroform
only (24:25:1 PCI is also acceptable). For the first extraction
(all at room temperature), vortex for 10 s, transfer to Phase
Lock Gel tube, and then spin for 5 min at maximum speed
(>12,000g). For subsequent extractions, pipette volume up
and down to mix it. The volume will be approximately 400
μL at this stage. Use light (green) Phase Lock Gel tubes
for phenol and heavy (yellow) or light gel tubes for chloro-
form/isoamyl alcohol (extracting twice with 24:25:1 PCI is
also acceptable).

3. Add 0.1 volume of 3.0 M sodium acetate, pH 5.3, and 2.5
volumes of ice-cold 100% ethanol.

4. Allow DNA to precipitate overnight at –20◦C (to maximize
yield).

3.1.7. Day 4 – DNA
Purification

1. Pellet the DNA by centrifugation at 14,000× g for 15 min
at 4◦C.

2. Wash once with cold 70% (v/v) ethanol and spin at
14,000× g for 5 min at 4◦C.

3. Aspirate and allow the pellet to dry.
4. Resuspend the pellet in 29 μL of NEB buffer 3 with 0.5 μg

of DNase-free RNase A (0.5 mg/mL).
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5. Incubate at 37◦C for 1 h (can freeze at –20◦C at this point).
6. Add 0.75 μL of CIP and leave at 37◦C for 1 h. Scale up

volume (and enzyme) if more than 50 ng/μL is expected.
7. Clean up the reaction with QIAGEN MinElute Enzyme

Cleanup Kit, with elution volume of 20 μL.

3.2. DNA Linear
Amplification

While many amplification protocols have been successfully used
for ChIP material in genomic studies, it has been shown that
for material <500 bp, many extant protocols introduce biased
genomic representation. The protocol here is superior to other
tested protocols for material of this size, which of course includes
mononucleosomal DNA.

3.2.1. Calf Intestinal
Phosphatase Treatment
of Samples with
Terminal 3′ Phosphate
Groups

Reagent (for every 10 µL volume)
Volume
(µL) Final concentration

2.5 U CIP enzyme (NEB
#M0290S)

0.25 0.25 U/ μL

(10×) NEB buffer 3 1 (1×)
Template DNA (max. 500 ng per

10 μL)
8.75 Max. 50 ng/μL

Total 10

Each reaction can be scaled up to 100 μL per tube

1. Incubate at 37◦C for 1 h.
2. Clean up the reaction with the QIAGEN MinElute Kit (see

Section 3.2.6) Elute in 20 μL.

3.2.2. Tailing Reaction
with TdT Reagent

Volume
(µL) Final concentration

(5×) TdT buffer (see Note 1) 2 (1×)

8% Dideoxynucleotide tailing
solution (see Note 2)

0.5 5 μM dTTP (8%
ddCTP)

5 mM CoCl2 1.5 0.75 mM

Template DNA (max. 75 ng) (see
Note 3)

5 Max. 7.5 ng/μL

20 U TdT enzyme (add this at the
end) (see Note 4)

1 2 U/μL

Total 10

1. Add 1–2 drops of mineral oil to the top of the mixture, to
prevent evaporation loss during incubation.

2. Incubate at 37◦C for 20 min.
3. Stop the reaction by adding 2 μL (per 10 μL reaction vol-

ume) of 0.5 M EDTA, pH 8.0.
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4. Clean up the reaction with the QIAGEN MinElute Kit. If
started with 10 μL, it may be necessary to add 10 μL of
ddH2O to bring the volume up to 20 μL. Elute in 20 μL
volume.

3.2.3. Second-Strand
Synthesis with Klenow
Fragment Polymerase

Reagent
Volume
(µL)

Final
concentration

25 μM T7-A18B primer (see Note 5) 0.3 300 nM

(10×) NEB buffer 2 (see Note 6) 2.5 (1×)
5.0 mM dNTP mix (see Note 7) 1 200 μM

ddH2O 0.2
T-tailed DNA 20

Total 24

Important: Do not use mineral oil. Trace amounts of min-
eral oil appear to interfere with cleanup and in vitro transcription
(IVT).

Use the following program in a thermal cycler:
Start: 94◦C, 2 min to melt; ramp –1◦C/s to 35◦C, then hold

for 2 min to anneal.
Ramp –0.5◦C/s to 25◦C; hold for 45 s (pause here for as long

as needed, up to 6 min).
Add 1 μL of (5 U) Klenow DNA polymerase (NEB# M0210S)

during this time and spin down condensation on tube if nec-
essary; 37◦C, 90 min to extend. Keep at 4◦C to halt enzyme
activity until removal of reaction tubes out of the cycler.

Stop the reaction by adding 2.5 μL of 0.5 M EDTA, pH 8.0
(end concentration 50 mM).

Clean up the reaction with the QIAGEN MinElute Kit and
elute in 20 μL.

3.2.4. In Vitro
Transcription (IVT)

Double-stranded DNA (dsDNA) preparation: The in vitro tran-
scription (IVT) requires that the dsDNA be in 8 μL volume. Dry
down the eluate from 20 to 8 μL in a SpeedVac vacuum con-
centrator for 10–12 min (drying rate approximately 1 μL/min).

Reagent (from Ambion T7 Megascript Kit, #1334)
Volume
(µL)

75 mM NTP mix (A, G, C, and UTP) (see Note 8) 8

Reaction buffer (warm to RT first) (see Note 9) 2
Enzyme mix (RNase inhibitor and T7 RNA Pol) 2

Template dsDNA 8
Total 20
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Incubate at 37◦C overnight (5–20 h). Incubate in thermal
cycler with heated lid, or in air incubator, and in 0.2-mL RNase-
free PCR tubes to minimize vapor volume.

3.2.5. Amplified
Antisense RNA (aRNA)
Purification Using
QIAGEN RNeasy
Columns

Use the QIAGEN RNeasy Mini Kit (#74104) for this procedure.
You may eventually have to order additional buffer RPE if you
use the entire kit for this purpose.

Preparation of master mix:

Reagent
Volume
(µL)

β-ME (14.2 M stock solution) 3.5

RNase-free water 80
Buffer RLT (from QIAGEN RNeasy Mini Kit) 350

Total 433.5

1. Pre-aliquot the mix to 1.5-mL RNase-free tubes.
2. Transfer the contents of the IVT mix to the RNase/DNase-

free tube and vortex gently and briefly.
3. Add 250 μL of ethanol (95–100%, v/v) and mix well by

pipetting. Do not spin here.
If you have a QIAGEN vacuum manifold, skip to Step 8.
Without vacuum manifold:

4. Apply the sample (700 μL) to RNeasy mini spin column sit-
ting in a collection tube. Centrifuge for 15 s at ≥8,000× g.
Discard the flow-through.

5. Transfer RNeasy column to a new 2-mL collection tube
(supplied). Add 500 μL of buffer RPE (which must con-
tain ethanol) and centrifuge for 15 s at ≥8,000× g. Discard
the flow-through but reuse the tube.

6. Pipette 500 μL of buffer RPE (included with RNeasy
Kit) onto RNeasy column and centrifuge for 2 min at
>12,000× g.

7. Remove the flow-through and pipette another 500 μL
of buffer RPE onto column. Centrifuge for 2 min at
>12,000× g (this is an additional wash that is not in the
QIAGEN protocol which we have found necessary because
of guanidine isothiocyanate (GITC) contamination in the
eluted RNA). Skip to Step 12.

With vacuum manifold:
8. Apply the sample (700 μL) to RNeasy mini spin column,

attached to vacuum manifold. Apply vacuum to the mini
spin column.

9. Remove vacuum and pipette 500 μL of buffer RPE onto
RNeasy column. Apply vacuum.
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10. Repeat Step 9 and transfer columns to 2-mL collection
tubes (supplied). Spin for 1 min at >12,000× g.

11. Return columns to vacuum manifold and apply 500 μL of
buffer RPE. Apply vacuum.

12. Transfer columns back to the 2-mL tubes. Spin at
>12,000× g for 1 min to completely dry column.

13. Transfer RNeasy column into a new 1.5-mL collection tube
(supplied) and add 30 μL RNase-free water directly onto
membrane. Centrifuge for 1 min at ≥ 8,000× g to elute.
Repeat if expected yield is ≥ 30 μg.

14. Check RNA concentration and quality by measuring A260
and A260/A280.

3.2.6. QIAGEN MinElute
Kit Protocol

The MinElute kit removes free nucleotides below 40 nucleotides
(nt). Fragments between 40 and 70 nt might be removed but
with a lower efficiency:

1. In a sample of volume 20–100 μL, add 300 μL buffer ERC
and mix thoroughly. If the sample is in less than 20 μL, bring
up volume with ddH2O. If the sample is in more than 100
μL, split sample and do in parallel.

2. Add sodium acetate (pH 5.0) if the buffer color is orange or
purple (i.e., pH > 7.5). If the buffer is yellow, no additional
sodium acetate is necessary.

3. Apply sample to column. Spin for 1 min at >12,000× g in
microcentrifuge.

4. Discard the flow-through and add 750 μL buffer PE (which
must contain ethanol). Spin for 1 min at >12,000× g in
microcentrifuge.

5. Discard the flow-through. Spin for 1 min at >12,000× g in
microcentrifuge to dry the column.

6. Transfer the columns to fresh 1.5-mL tubes. Pipette 10–20
μL buffer EB or ddH2O directly onto column membranes.
Let stand for 1 min, then spin for 1 min at >12,000× g in
microcentrifuge to elute.

7. Note on elution volumes: When working with amounts less
than 100 ng of DNA, the 10 μL elution volume in QIAGEN
MinElute protocol may recover less than the 80% claimed
by QIAGEN. Increase elution volume to 15–20 μL and
dry the volume down if necessary. At the post-second-strand
synthesis step (Section 3.2.3), an elution volume of 20 μL
increases yields by 30–40% for a 50 ng sample.

8. Note on second-strand synthesis with limiting primer amounts:
Limiting amount of primer is highly advisable when ampli-
fying from very small amounts of starting material. Not only
will it decrease the amount of primer–dimer product, but
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also it may increase the yield of the desired amplification
product. The table below shows what single reaction vol-
umes have to be used for a specific amount of starting mate-
rial.

DNA
(ng)

T7 primer
(µL)a

NEB
buffer
2 (µL)

5 mM
dNTPs
(µL)

Water
(µL)

Tailed
DNA
(µL)

Klenow
(µL)

Total
volume
(µL)

>75 0.60
(25 μM)

5.0 2.0 20.4 20.0 2.0 50

50–75 0.30
(25 μM)

2.5 1.0 0.20 20.0 1.0 25

25 0.15
(25 μM)

2.5 1.0 0.35 20.0 1.0 25

10a 1.50
(1 μM)

1.0 0.4 0.20 6.5 0.4 10

5a 0.75
(1 μM)

1.0 0.4 0.95 6.5 0.4 10

2.5a 0.38
(1 μM)

1.0 0.4 1.32 6.5 0.4 10

aIf a thermal cycler without a heated lid is used, spin down tubes every 30 min during
the 37◦C incubation step.

Tailed DNA will have to be dried down in a vacuum cen-
trifuge to the indicated volume for reaction volumes with 10 μL
total volume.

3.3. Amplified
Antisense RNA
(aRNA) Labeling and
Cleanup

3.3.1. Reverse
Transcription to Prepare
aa-dUTP-Labeled cDNAs

(1) Combine 2 μg RNA and dH2O to a final volume of
14.5 μL.

(2) Add 1 μL of 5 μg/μL anchored oligodT (22 mer; Inte-
grated DNA Technology, IDT). Mix.

(3) Heat at 70◦C for 10 min. Snap cool on ice for 10 min.
(4) Quick spin to bring down condensation.
(5) At room temperature, add 14.5 μL of master mix, which

has been assembled just before use, adding enzymes at
the end.

Master mix:

6.0 μL (5×) SS II RT buffer

3.0 μL 0.1 M DTT
0.6 μL (50×) aa-dUTP mix (see below)

2.0 μL dH2O
1.9 μL SS II RT

1.0 μL RNasin
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(6) Pipette to mix.
(7) Incubate at 42◦C for 2 h.
(8) Incubate at 95◦C for 5 min. Snap cool on ice.
(9) Add 13 μL of 1 M NaOH and 1 μL of 0.5 M EDTA to

hydrolyze RNA. Mix, quick spin.
(10) Incubate at 67◦C for 15 min.
(11) Neutralize the reaction with 50 μL of 1 M HEPES, pH

7.5. Vortex. Quick spin.
(12) Purify the reaction over Zymo column to remove unin-

corporated nucleotides as follows.
(13) Add 1 mL of binding buffer to reaction. Mix. Load

half of this material onto the column. Spin for 10 s at
>12,000× g. Discard the flow-through.

(14) Add remainder of the reaction. Spin again for 10 s at
>12,000× g. Discard the flow-through.

(15) Add 200 μL of wash buffer to each column. Spin for 30 s
at >12,000× g.

(16) Add another 200 μL wash buffer to each column. Spin
for 1 min at >12,000× g. Discard the flow-through and
spin for 1 min at >12,000× g.

(17) Add 10 μL of 50 mM sodium bicarbonate, pH 9.0, to
the filter. Incubate for 5 min at room temperature. Spin
for 30 s at >12,000× g to elute cDNA.

(18) Couple aa-dUTP-incorporated cDNAs with dye by
adding the eluted material directly to 3 μL Cy5 dye
(Amersham) resuspended in DMSO. Incubate at room
temp. for 1 h overnight shielded from light.

3.3.2. Cleanup (1) Keep Cy5 and Cy3 separate for MinElute cleanup (QIA-
GEN Cat. #28004) to measure CyDye incorporation, if
desired. If using thin coverslips with small probe volume,
you may need to purify Cy3 and Cy5 together or use a
SpeedVac vacuum concentrator to reduce volume after
elution.

(2) Add 600 μL of buffer PB (binding buffer) to each sample.
(3) Assemble the MinElute column on the provided 2-mL

collection tubes.
(4) Add the entire 720 μL to a MinElute column.
(5) Centrifuge for 1 min at 10,000× g. Discard the flow-

through and reuse 2-mL tube.
(6) Add 750 μL of wash buffer PE to the column.
(7) Centrifuge at 10,000× g for 1 min. Discard the flow-

through and reuse 2-mL tube.



56 Rando

(8) Centrifuge again at >12,000× g for 1 min to remove
residual ethanol.

(9) Place column in a fresh 1.5-mL tube. Add 10 μL of dH2O
to elute.

(10) Allow elution buffer to stand for at least 2 min before
spinning.

(11) Centrifuge at >12,000× g for 1 min. Add 10 μL of H2O
to elute.

(12) Allow elution buffer to stand for at least 2 min before
spinning.

(13) Centrifuge at >12,000× g for 1 min.
(14) Measure how many microliters eluted for each sample

(still keep Cy5 and Cy3 separate) – should be around 18
μL for each column.

(15) Proceed to hybridization (below).

3.4. Microarray
Hybridization

3.4.1. Preparation of
Hybridization Mix

(1) Prepare Cot, polyA, and yeast tRNA mix:

10 μg/μL Cot1 human DNA (Gibco-BRL) 2 μL

10 μg/μL polyA RNA (Sigma, #P9403) 2 μL
10 μg/μL tRNA (Gibco-BRL, #15401-011) 2 μL

(2) Combine Cy5- and Cy3-labeled material from the labeling
step.

(3) Add Cot, polyA and yeast tRNA mix, (20×) SSC, and 10%
SDS to the combined Cy5 and Cy3 probe, as below∗:

Coverslip size
22 × 60 regular
thin coverslips

22 × 60 Erie
M-series lifter
slips

Total Hyb volume (μl) 35 55

Probe volume (μl) 28 36
Cot, polyA, tRNA mix 6 6

(20×) SSC (μl) 5.95 9.35
10% SDS (μl) 1.05 1.65

1 M (pH 7.0) HEPES–KOH 0.84 1.32

For other coverslip sizes, volumes can be adjusted
accordingly to maintain the same SSC, SDS, and HEPES
concentrations. However, the blocking mix (Cot, polyA,
and tRNA) should only be 6 μL in all cases.
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(4) Denature probe by heating at 95–100◦C for 2 min. Typ-
ically, this is done using a heat block set at 100◦C with
distilled water in the tube holders.

(5) Let probe sit in the dark, at room temperature, for 10 min.
(6) Spin probe at >12,000× g for 5 min at room temperature.

∗Avoid introducing bubbles. Do not vortex after adding SDS.
HEPES is recommended for all probes.

3.4.2. Apply
Hybridization Mixture
to Microarray

(1) While probe is sitting at room temperature, set up
hybridization chamber. Many different types of chamber
are available commercially. Open chamber on clean flat sur-
face and place microarray slide in the chamber with the
array side facing up.

(2) Optional: We have found that for some home-printed oligo
microarrays (which can often be dim), precipitation of
labeled probe can occur at room temperature, which leads
to a “pin-prick” morphology with precipitated probe filling
in the depressions created during the printing process. To
help mitigate this issue, it helps to place the hybridization
chamber on a heat block at 55–60◦C prior to addition of
probe solution.

(3) Once probe is spun down, carefully pipette probe solution
onto the microarray surface in one drop toward one end
of the array. Make sure not to create any bubbles during
pipetting and be careful not to touch microarray surface
with pipette tip. Leave ∼2 μL of probe in the tube.

(4) Carefully apply a coverslip by placing one edge of the cov-
erslip on the slide near the probe and slowly lowering the
other edge, using another coverslip as a lever and wedge to
lower it.

(5) Close chamber and immediately submerge in 65◦C water
bath. Be careful not to tilt the chamber. For safety pur-
poses, metal tongs may be used to place the hybridization
chamber in the water bath.

(6) If hybridizing multiple arrays, quickly move on to the next
one, as the probes should not sit at room temperature for
widely varying times (we try to get all probes onto slides
within ∼10–15 min of each other).

(7) Incubate chambers at 65◦C for 16–20 h.

3.4.3. Array Washing (1) Prepare dishes with the following solutions from stocks of
20× SSC, 10% SDS, and dH2O:
Wash 1 – (1×) SSC + 0.03% SDS
Wash 2 – (0.2×) SSC
Wash 3 – (0.05×) SSC
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Wash 1A Wash 1B Wash 2 Wash 3

(20×) SSC 20 mL 20 mL 4 mL 1 mL

10% SDS 1.2 mL 1.2 mL – –
dH2O 379 mL 379 mL 396 mL 399 mL

Temperature RT RT 37◦C RT

(2) Turn on Axon scanner from the connected black box,
located behind the monitor. Let the scanner warm up for
at least 15 min to allow the output time of the laser to sta-
bilize.

(3) Launch the GenePix Pro software and let it connect to the
scanner and the network hardware key.

(4) Remove one hybridization chamber from water bath. As
quickly as possible, wipe the chamber dry with paper towel,
open the chamber, remove the slide, and using your gloved
hand, tap the slide against the bottom of the wash 1A until
coverslip gently slides off the slide. Then transfer the slide
to a pre-submerged rack in wash 1B. Maintain slides in
wash 1B until all arrays have been transferred.

(5) Quickly move the rack from wash 1B to wash 2 (tilting
the rack back and further a couple of times to remove
excess wash solution). Plunge up and down several times
in wash 2. Incubate for 5 min with occasional plunging up
and down.

(6) Quickly move the rack from wash 2 to wash 3 (tilting
the rack back and further a couple of times to remove
excess wash solution). Plunge up and down several times
in wash 3. Incubate for 5 min with occasional plunging up
and down.

(7) As quickly as possible, move the rack of slides from wash
3 to place in Beckman tabletop centrifuge, with paper
towels under the rack, and spin at 500–600 rpm for 5 min.
Place microarrays in an opaque box and begin scanning
immediately. Typically, 4–5 arrays are washed at a time,
and if more than 5 were hybridized, then the next set of
4–5 should be washed as the last array is being scanned
from the first batch.

4. Notes

1. Do not use the NEB buffer 4 supplied with the NEB
enzyme: Use the cacodylate buffer (1 M potassium
cacodylate, 125 mM Tris–HCl, and 1.25 mg/mL BSA,
pH 6.6) supplied with the Roche enzyme.
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2. Ensure that the dNTP mixes do not go through more than
three freeze-thaw cycles. Additional freeze-thaw cycles will
further degrade the dNTPs and will reduce the efficiency of
the reaction.

3. Aim for∼1 pmol of template molecules. Tested range is 2.5–
75 ng DNA per 10 mL reaction volumes. Scale up the reac-
tion volume accordingly for higher starting amounts.

4. The use of the NEB enzyme, as indicated, is strongly recom-
mended. TdT enzyme from other sources may not perform
optimally. If using the Roche recombinant TdT, use double
volume of enzyme.

5. T7-A18B primer: (5′- GCATTAGCGGCCGCGAAATTAAT
ACGACTCACTATAGGGAG(A)18[B], where B refers to C,
G, or T). This should be obtained with HPLC, PAGE, or
equivalent purification.

If production of template-independent product is a sig-
nificant problem, scale down the reaction volume, while
keeping the reagent concentrations (except for the T-tailed
DNA) constant.

6. New England Biolabs (NEB) in early 2004 switched the
supplied buffer for Klenow enzyme from EcoPol buffer to
NEB buffer 2. This buffer should provide at least compara-
ble yields to the old buffer and may actually increase yields
up to ∼14%.

7. Ensure that the dNTP mixes do not go through more than
three freeze-thaw cycles. Additional freeze-thaw cycles will
degrade the dNTPs and will reduce the efficiency of the reac-
tion.

8. If new kit, combine NTPs into one tube, then aliquot back
out into the four tubes. In the first three freeze-thaw cycles,
yields drop approximately 10–15% after each cycle. If the
NTPs go through more than three freeze-thaw cycles, each
subsequent freeze-thaw cycle may drop the yield by as much
as 50%.

9. If you add cold buffer and dsDNA, you may risk precipita-
tion of your DNA. Also, if there is precipitate present, warm
buffer to 37◦C until the precipitate dissolves.
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Chapter 4

Genome-Wide Approaches to Studying Yeast Chromatin
Modifications

Dustin E. Schones, Kairong Cui, and Suresh Cuddapah

Abstract

The genomes of eukaryotic organisms are packaged into nuclei by wrapping DNA around proteins in a
structure known as chromatin. The most basic unit of chromatin, the nucleosome, consists of approx-
imately 146 bp of DNA wrapped around an octamer of histone proteins. The placement of nucleo-
somes relative to a gene can influence the regulation of the transcription of this gene. Furthermore,
the N-terminal tails of histone proteins are subjected to numerous post-translational modifications that
are also known to influence gene regulation. In recent years, a number of genome-scale approaches to
identify modifications to chromatin have been developed. Techniques combining chromatin immunopre-
cipitation (ChIP) with microarrays (ChIP-chip) and second-generation sequencing (ChIP-Seq) have led
to great advances in our understanding of how chromatin modifications contribute to gene regulation.
Many excellent protocols related to ChIP-chip have been published recently (Lieb, J. D. (2003) Genome-
wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray
hybridization. Methods Mol. Biol. 224, 99–109.). For this reason, we will focus our attention here on the
application of second-generation sequencing platforms to the study of chromatin modifications in yeast.
As these genome-scale experiments require both wet-lab and bioinformatic components to reach their
full potential, we will detail both the wet-lab protocols and bioinformatic steps necessary to fully conduct
genome-scale studies of chromatin modifications.

Key words: Chromatin, histone modifications, ChIP-Seq, nucleosomes, genomics, epigenomics.

1. Introduction

The last several years have witnessed the development of multiple
platforms for high-throughput, short read sequencing (referred
to here as second-generation sequencing).

These platforms allow researchers to easily probe molecu-
lar events on a genome scale. Some of the earliest uses of this
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technology involved examining chromatin modifications on a
genomic scale (1, 2). These studies combined standard molecular
protocols such as ChIP assays with second-generation sequenc-
ing to map histone modifications across genomes at nucleosome
resolution. We describe here the steps necessary to perform such
experiments, beginning with the isolation of yeast nuclei, continu-
ing to the techniques such as MNase digestion and ChIP as well as
preparing samples for sequencing with the Illumina/Solexa plat-
form. Lastly, we describe the basic bioinformatic tasks necessary
to complete such experiments. This protocol is specifically for
sequencing with the Illumina/Solexa platform, although a sim-
ilar protocol – prior to sequencing library preparation – could be
used for other platforms.

2. Materials

2.1. General 1. Phenol/chloroform (1:1) (v/v).
2. Chloroform solution (100%, v/v).
3. Sodium acetate (NaOAc) solution (3 M, pH 5.3).
4. 10% (w/v) Sodium dodecyl sulfate (SDS) solution.
5. Ribonuclease A (RNase A).
6. Proteinase K.
7. E-Gels (2% agarose, w/v) (Invitrogen).
8. QIAGEN Gel Extraction Kit (QIAGEN).
9. Ethanol (100%, v/v).

10. Glycerol (100%, v/v).
11. Sodium chloride (NaCl) solution (3 M).
12. Phosphate buffered saline (PBS) solution (1×): 137 mM

NaCl; 2.7 mM KCl; 4.3 mM Na2HPO4; 1.47 mM
KH2PO4. Adjust to a final pH of 7.4.

13. Tris–EDTA buffer, TE (1×), pH 7.4 (10 mM Tris–HCl,
1 mM EDTA).

14. Triton X-100 solution.

2.2. Spheroplast
Preparation

1. Sorbitol solution (1 M).
2. Spheroplast lysis solution: 1 M Sorbitol, 5 mM 2-

mercaptoethanol (add to sorbitol immediately before using).
3. Zymolyase 100T solution (20 mg/mL).

2.3. Isolation of
Nuclei

1. Dounce hand homogenizer.
2. Ficoll solution: 18% (w/v) Ficoll, 20 mM phosphate buffer,

pH 6.8, 1 mM MgCl2, 0.25 mM EGTA, 0.25 mM EDTA.
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2.4. Native Chromatin
Preparation by
MNase Digestion for
Nucleosome Mapping

1. MNase digestion buffer: 15 mM Tris–HCl, pH 7.5,
75 mM NaCl, 3 mM MgCl2, 1.5 mM CaCl2, 1 mM
2-mercaptoethanol.

2. MNase stop buffer: 10 mM Tris–HCl, pH 7.6, 0.5 M
EDTA.

2.5. Native Chromatin
Preparation by
MNase Digestion for
ChIP-Seq

1. RIPA buffer: 10 mM Tris–HCl, pH 7.6, 1 mM EDTA, 0.1%
(w/v) SDS, 0.1% (w/v) sodium deoxycholate, 1% (w/v) Tri-
ton X-100.

2. DNA END-Repair Kit (Epicentre Biotechnologies).

2.6. Chromatin
Immunoprecipitation

1. Dynabeads Protein A (Invitrogen).
2. RIPA buffer (see above).
3. LiCl wash buffer: 0.25 M LiCl, 1% (w/v) Nonidet P-40, 1%

(w/v) sodium deoxycholate, 1 mM EDTA, 10 mM Tris–
HCl, pH 8.1.

2.7. DNA END-Repair
and Solexa Library
Preparation

1. DNA END-Repair Kit (Epicentre Biotechnologies).
2. MinElute PCR Purification Kit (QIAGEN), including elu-

tion buffer (ER buffer): 10 mM Tris–HCl, pH 8.5.
3. Taq DNA polymerase and 10× Taq polymerase buffer.
4. T4 DNA ligase (400 U/μL) and 10× ligase buffer.
5. Illumina adapters, PCR primers, and enzyme mix.
6. Qubit spectrometer.

2.8. Computational
Infrastructure
Requirements

Raw data produced by second-generation sequencing machines
is on the scale of terabytes. Labs conducting such experiments
will need to have high-end analysis servers with large amounts of
RAM (at least 8 Gb) attached to large hard drive arrays (at least
5 Tb) with a fast connection.

3. Methods

3.1. Cell Culture Sections 3.1, 3.2, and 3.3 are adapted from (3):
1. Inoculate 5 mL of starter culture of an appropriate medium

overnight at 30◦C on a roller wheel or a shaker.
2. Dilute culture into 500 mL (see Note 1) of appropriate

medium and grow culture to OD600 = 0.8–1.0.
3. When the correct density is reached, collect cells by centrifu-

gation (e.g., 850×g for 5 min). Decant the medium and
place cells on ice. Wash cells once with cold water and once
with cold 1 M sorbitol.
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3.2. Spheroplast
Preparation

1. Resuspend the cells in 5 mL spheroplast lysis solution.
2. Add 2 mg of Zymolyase 100T per gram of cells (see Note

2). Incubate at 30◦C with gentle shaking for 20 min. Check
completion of the digestion by examining 5 μL of cells on a
glass slide with a light microscope (see Note 3).

3. Collect spheroplasts by centrifugation (e.g., 850×g for
5 min) and decant lysis solution.

4. Wash with cold 1 M sorbitol, collect by centrifugation, and
decant (see Note 4).

3.3. Isolation of
Nuclei

1. Resuspend spheroplasts in 7 mL Ficoll solution. Transfer
cells to a dounce hand homogenizer and lyse spheroplasts
with one stroke.

2. Aliquot 3 mL of spheroplasts in Ficoll solution to centrifuge
tubes and centrifuge for 30 min at 30,000×g at 4◦C.

3. Aspirate the cellular debris and Ficoll solution from nuclear
pellet. Pool the nuclear pellets together with 5 mL of MNase
digestion buffer. Centrifuge and decant.

4. Continue on to Section 3.4 for nucleosome map-
ping or Section 3.5 for chromatin immunoprecipitation
(ChIP).

3.4. Native Chromatin
Preparation by
MNase Digestion for
Nucleosome Mapping

To begin, isolate approximately 50 million nuclei as described in
Sections 3.1, 3.2, and 3.3:

1. Wash nuclei with 1 mL of MNase digestion buffer at
room temperature, split into eight separate 1-mL micro-
centrifuge tubes, adding 100 μL to each tube.

2. Digest the eight separate tubes with the following con-
centrations of MNase: 0.005, 0.01, 0.05, 0.1, 0.2, 0.5,
1.0 U, and no MNase as a control (see Note 5). After
adding MNase to the cells, incubate the tubes at 37◦C for
8 min.

3. Stop each reaction by adding MNase stop buffer to final
concentration of 10 mM of EDTA.

4. Add 10 μg of RNase A and incubate for 5 min at room
temperature. Add SDS to a final concentration of 1% (w/v)
and 5 μL of 20 mg/mL proteinase K. Incubate at 65◦C
overnight.

5. Purify DNA by 2× phenol–chloroform extraction fol-
lowed by 1× chloroform extraction to remove the residual
phenol.

6. Precipitate DNA by adding 0.1 vol. of 3 M sodium acetate,
pH 5.3, and 2.5 vol. of 100% ethanol.

7. Incubate at –20◦C for 30 min and spin down at max. speed
for 10 min.
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8. Wash once with 70% ethanol, dry the pellet, and resuspend
in 100 μL of 1× TE, pH 7.4.

9. Load the samples on a 2% agarose gel (see Note 6) and
excise the mononucleosome-sized DNA bands from each
MNase digestion. Combine the samples.

10. Purify the DNA and prepare sequencing library as
described in Section 3.7.

3.5. Native Chromatin
Preparation by
MNase Digestion for
ChIP-Seq

To begin, isolate approximately 50 million nuclei as described in
Sections 3.1, 3.2 , and 3.3:

1. Wash the cells with 1 mL MNase digestion buffer at room
temperature.

2. Add 0.2 U MNase and incubate the tubes at 37◦C for 8 min.
3. Stop the reaction by adding MNase stop buffer at a final

concentration of 10 mM EDTA.
4. Sonicate in ice water three times for 20 s (see Note 7).
5. Dialyze against 400 mL of RIPA buffer for 2 h at 4◦C.
6. Centrifuge for 10 min at 4◦C and transfer the supernatant

to a new tube, aliquoting 20 μL to check the size. Total
supernatant can be stored at –80◦C after adding glycerol to
a final concentration of 5% (w/v).

7. To check the chromatin size, add 10 μg of RNase A to
20 μL of supernatant and incubate for 5 min at room tem-
perature. Add SDS to a final concentration of 1% (w/v)
and 5 μL of 20 mg/mL proteinase K. Incubate at 65◦C
overnight. Purify the DNA by phenol–chloroform extrac-
tion and ethanol precipitation. Run on a 2% (w/v) agarose
gel (see Note 8).

3.6. Chromatin
Immunoprecipitation
(ChIP)

1. Add 40 μL of Dynabeads Protein A into each of two micro-
centrifuge tubes. Wash with 600 μL of 1× PBS. Place tubes
on magnetic stand and aspirate off PBS. Then add 100 μL
of 1× PBS and 4 μg of antibody or preimmune serum to
the beads. Rotate for 4–6 h at 4◦C.

2. Place the tubes on magnetic stand and remove the super-
natant. Wash the beads two times for 5 min with 200 μL
of 1× PBS to remove free immunoglobulin G molecules
(IgGs).

3. Place the tubes on magnetic stand and remove the super-
natant. Add 500 μL of chromatin extracts to the beads and
rotate at 4◦C overnight.

4. Perform the following washes, 10 min each wash:
Two times with 1 mL of RIPA buffer,
Two times with 1 mL of RIPA buffer + 0.3 M NaCl,
Two times with 1 mL of LiCl buffer,
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One time with 1 mL of 1× TE + 0.2% Triton X-100,
One time with 1 mL of 1× TE.

5. Resuspend the beads in 100 μL of 1× TE. Add 3 μL of
10% SDS and 5 μL of 20 mg/mL proteinase K. Incubate
overnight at 65◦C.

6. Vortex briefly, place the tube on magnetic stand, and transfer
the eluate to new tube. Resuspend the beads with 100 μL
of 1× TE + 0.5 M NaCl. Combine this new eluate with the
last. Perform extraction with 200 μL phenol–chloroform.
Add 2 μL of 20 mg/mL glycogen, 20 μL of 3 M NaOAc,
pH 5.3, and 500 μL of ethanol to the supernatant for pre-
cipitation of DNA.

7. Wash the pellet once with 70% (v/v) ethanol.
8. Resuspend the pellet in 50 μL of 1× TE. Use 2 μL of

diluted (1:5) DNA for real-time PCR confirmation. Before
continuing with sequencing library preparation, perform
real-time PCR to confirm that the ChIP has worked.

3.7. DNA END-Repair
and Solexa Library
Preparation

1. Repair DNA ends to generate blunt-ended DNA using Epi-
centre DNA END-Repair Kit. Starting with 1–34 μL DNA
(0.3 mg), add the following: 5 μL of 10× END-Repair
buffer, 5 μL of 2.5 mM each dNTP, 5 μL of 10 mM ATP.

2. Adjust the final volume to 49 μL by adding H2O.
3. Add 1 μL END-Repair enzyme mix.
4. Incubate at room temperature for 45 min, purify using

MinElute PCR Purification Kit or phenol–chloroform
extraction to precipitate DNA. Elute with or resuspend
DNA in 30 μL of 1× TE, pH 7.4.

5. Add “A” to 3′-ends: Starting with 30 μL DNA from above,
add 2 μL H2O, 5 μL of 10× Taq buffer, 10 μL of 1 mM
dATP, 3 μL of 5 U/μL Taq DNA polymerase.

6. Incubate at 70◦C for 30 min and purify using QIAGEN
MinElute PCR Purification Kit or phenol–chloroform
extraction. Elute with or resuspend in 10 μL of 1× TE,
pH 7.4.

7. Linker ligation: Starting with 10 μL DNA (300 ng), add
the following: 9.9 μL H2O, 2.5 μL of 10× T4 DNA ligase
buffer, 0.1 μL Adaptor oligo mix (see Note 9), 2.5 μL T4
DNA ligase (400 U/μL).

8. Incubate at 20–23◦C for 30 min and then at 16◦C
overnight. Purify using MinElute PCR Purification Kit and
protocol. Elute in 20–25 μL of elution buffer (EB).

9. Size selection with 2% E-Gel (Invitrogen): Load 20–30 μL
linker-ligated DNA onto a 2% E-Gel (see Note 10). Excise
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the gel at the 200–400-bp region (DNA will not be visi-
ble). Extract the DNA using MinElute Gel Extraction Kit.
Elute in ∼12 μL EB.

10. Amplify DNA using Illumina PCR primers and enzyme
mix: 10.5 μL of DNA, 12.5 μL of master mix, 1 μL of
PCR primer 1.0 (two times diluted with 1× TE, pH 7.4),
1 μL of PCR primer 2.0 (two times diluted with 1× TE,
pH 7.4).

11. Denature at 98◦C for 30 s, followed by 18 amplification
cycles (98◦C, 10 s; 65◦C, 30 s; 72◦C, 30 s).

12. After amplifying for 18 cycles, check 2.5 μL of product on
a 2% agarose gel. If the band is not clearly visible, perform
three more cycles and check again.

13. Purify amplified products: Load amplified DNA on 2%
agarose gel. Excise the band at the 200–400-bp region and
purify the DNA using QIAGEN Gel Extraction Kit. Mea-
sure the DNA concentration using Qubit spectrometer.

This DNA can now be used for cluster generation and
sequencing with Illumina’s platform.

3.8. Post-sequencing
Analysis

High-throughput sequencing experiments produce large
amounts of raw data and have significant bioinformatic needs at
every step. For the standard ChIP-Seq type experiment, the usual
steps after processing the raw data will consist of the following:
(1) aligning sequenced reads back to a reference genome, (2)
visualizing the results on a genome browser, (3) evaluating the
sequencing results, and (4) identifying enriched regions from the
background signal.

3.8.1. Aligning Reads to
a Reference Genome

Second-generation sequencing machines currently produce tens
of millions of reads per experiment, and the throughput is
increasing. Standard alignment algorithms were not designed for
such throughput. At the time of this writing, there are several
alignment algorithms that have been developed specifically for
second-generation sequencing data. These aligners are specifically
designed to map many short reads to a reference genome. Issues
to consider when aligning short reads to the genome include the
following:

1 – Incorporation of base-call quality – some aligners (such as
MAQ (4) and RMAP (5)) consider the quality of each indi-
vidual base when aligning to a reference genome.

2 – Ability to do gapped alignments – certain aligners (e.g.
SOAP (6)) are capable of doing gapped alignments; this is
useful when sequencing mRNA.

3 – Paired-end read capability – certain alignment algorithms,
such as MAQ, SOAP, and ELAND (7), can align mate-pair
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reads (Illumina author Anthony Cox, personal communica-
tion).

4 – Treatment of non-unique mapping reads – popular strate-
gies for the treatment of non-unique mapping reads include
the following: (a) ignoring all non-unique aligning reads, (b)
picking an alignment location at random when a read maps
to more than one locations, or (c) assigning “hits” to all pos-
sible locations that a read maps to, and normalizing by the
total number of hits. The optimal choice depends on the
experiment.

3.8.2. Visualizing
Results on a Genome
Browser

The most convenient way to visualize results from ChIP-Seq
experiments is to view the genomic coordinates of the aligned
reads in a genome browser. Popular genome browsers include the
UCSC Genome Browser (8), the Affymetrix Integrated Genome
Browser (9), Ensembl (10), and GeneTrack (11) (see Note 11).
An example of hypothetical ChIP-Seq data from Saccharomyces
cerevisiae as displayed in the UCSC Genome Browser is shown in
Fig. 4.1. While the individual reads can be viewed by strand as
shown in the Fig. 4.1a, a more useful representation when view-
ing large domains is to create “summary” tracks that count the
number of reads in a window as shown in Fig. 4.1b. Ideally, this
window size should be equal to the average chromatin fragment
size. The coordinates of read positions can be adjusted to repre-
sent the center of a given chromatin fragment prior to creating
summary tracks.

U
U
U
U
U
U
U
U

ChIP-Seq

ChIP-Seq

A

B

Fig. 4.1. Example of ChIP-Seq data displayed as custom tracks on the UCSC Genome Browser (aligned reads vs. “Sac-
charomyces Genome Database” DNA sequences). (a) Individual aligned reads can be viewed by strand. (b) A more useful
representation for viewing data in large domains is by creating summary tracks. See text for details.
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3.8.3. Estimating Quality
of ChIP-Seq Experiments

The quality of the chromatin immunoprecipitation experiment
should be checked prior to sequencing as detailed in Section 3.6.
In order to ensure that sequencing results are meaningful, it has
to be ensured that the amount of sequencing that has been per-
formed is sufficient. The profiling of certain histone modifications
that spread to large domains (e.g., H3K27me3) will require more
sequencing compared to histone modifications with more local-
ized patterns (e.g., H3K4me3). A saturation analysis can be per-
formed to determine if sufficient sequencing has been achieved
by sampling from the sequenced read library at successive levels
and finding enriched regions at each level. The point at which the
number of enriched regions plateaus as more reads are added to
the sequencing library is the saturation point.

3.8.4. Identifying
Enriched Regions

One of the most crucial steps of any ChIP-Seq experiment is
the identification of enriched regions, separating the positive sig-
nal from the background. One of the most common and simple
methods to do this is to first adjust all the read locations in the
genome to “center” them on their representative chromatin frag-
ment. If the chromatin fragments produced were mononucleo-
somes, this would involve shifting every read 75 bp in the direc-
tion that it is aligned to. One can then scan through the genome
with a window size equivalent to the chromatin fragment size
(e.g., 150 bp) and count the number of adjusted reads that map
to each window. By assuming a given background model of read
distribution throughout the genome (e.g., Poisson), one can cal-
culate the number of reads necessary in each window for a desired
level of statistical significance.

3.8.5. Nucleosome
Positioning
Determination from
Sequenced Reads

For profiling nucleosome positions with second-generation
sequencing, chromatin is digested with MNase, which preferen-
tially cuts in linker regions. The sequenced fragments will repre-
sent the borders of nucleosomes. To create nucleosome-scoring
profiles, slide a window along the genome and count all reads
aligning to the sense strand within ∼75 bp upstream and all reads
aligning to the antisense strand within ∼75 bp downstream of
the window. These scoring profiles can also be constructed for
histone modification ChIP-Seq data to find the positions of all
nucleosomes that contain a certain type of modification.

4. Notes

1. 500 mL is a good amount for nucleosome-mapping exper-
iments; 50 mL is enough for chromatin immunoprecipita-
tion.
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2. After Zymolyase digestion, keep cells on ice between each
step.

3. Add 0.5 μL of SDS to the slide and look for the appearance
of “ghost” cells that have lysed.

4. Spheroplasts are fragile, so be gentle when resuspend-
ing cells (i.e., pipet up and down instead of vortexing to
resuspend).

5. MNase concentrations should be standardized. This will
depend on the concentration/activity of the MNase.

6. When working with small amounts of DNA, it is difficult
to avoid contamination; we use Invitrogen E-Gels for this
step to minimize the risk of contamination.

7. Keep the tubes on ice for ∼1 min after each sonication to
prevent the lysate from heating up.

8. This procedure should produce primarily mononucleo-
somes. The MNase concentration and digestion time can
be adjusted to produce different fragment sizes.

9. For a more accurate measure, dilute Adaptor oligo mix
1:10 with H2O and then add 1 μL of dilution.

10. To avoid contamination, load only one sample per gel.
11. The choice of which genome browser to use is largely

dependent on the problem at hand. Lightweight browsers
such as the Affymetrix IGB or GeneTrack can be down-
loaded locally and run on standard lab desktops. The
UCSC Genome Browser is useful for uploading data as
“custom tracks,” but this becomes infeasible if a large num-
ber of data sets need to be analyzed together. Alternatively,
a local mirror of the UCSC Genome Browser can be set up.
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Chapter 5

Absolute and Relative Quantification of mRNA Expression
(Transcript Analysis)

Andrew Hayes, Bharat M. Rash, and Leo A.H. Zeef

Abstract

In this protocol, we describe a pipeline for transcript analysis in yeast via the quantification of
mRNA expression levels. In the first section, we consider the well-established, proprietary Affymetrix
GeneChip R© approach to generating transcriptomics data. In the next section, we concentrate on provid-
ing a detailed protocol for the validation of these data using quantitative reverse transcriptase-polymerase
chain reaction (qRT-PCR). The protocol provides suggested examples of hardware, software, and con-
sumables/reagents required to perform these experiments. There are of course many other options
available using alternative approaches (or indeed suppliers), but this protocol is intended to provide
an approach that is flexible, inexpensive, sensitive, and easy to use.

Key words: Transcriptome, transcript analysis, validation, qRT-PCR, microarray, mRNA profiling,
Saccharomyces cerevisiae.

1. Introduction

Quantification of mRNA expression levels has, historically, been
performed using a broad range of techniques and these have been
widely reviewed. Indeed the Saccharomyces Genome Database
(SGD) (1) currently curates some 837 records of publications
under the literature topic of “Genomic expression study.” Most of
these are microarray-based papers. Whilst emerging techniques,
most notably using next-generation sequencing (2–5), look set
to supersede these in the future – see Chapter 8 – the microar-
ray remains a powerful, amenable tool for transcript analysis. One
such technology platform (Affymetrix GeneChip) has been used
extensively, for yeast transcript analysis, since its inception in the
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1990s (6) and remains a useful tool in more recent, up-to-date
studies (7, 8). At the time of writing, the Affymetrix publication
repository (9) contains 616 articles searchable under the organ-
ism “yeast.”

A crucial aspect of this microarray approach however, and one
whose methodology is not so widely reported, is the need to val-
idate the results of these transcript analyses with an independent
technique.

In this chapter we consider the Affymetrix GeneChip microar-
ray protocol and then concentrate on providing a protocol to
validate the results from such experiments using the technique
of quantitative reverse transcriptase-polymerase chain reaction
(qRT-PCR).

Many different approaches to qRT-PCR are available, and
again these have been widely reviewed (10–12). Briefly though,
three main detection chemistries are routinely used and each has
its own merits and drawbacks (see Note 1 for more details).
Herein we describe a protocol using the SYBR Green approach
(13). SYBR R© Green I is a fluorogenic, minor-groove binding
dye whose fluorescence emission is enhanced upon binding to
double-stranded DNA. Thus, as the PCR product accumulates,
fluorescence increases. Whilst this approach lacks the specificity of
probe-based approaches, it has the advantages of being sensitive,
flexible, inexpensive, and easy to use.

2. Materials

2.1. Microarray
Analyses

1. Total RNA (minimum 100 ng per sample) from “experi-
mental” and “control” contexts (see Note 2).

2. GeneChip R© Yeast Genome 2.0 Array (Affymetrix, Inc.).
3. GeneChip R© 3′ In Vitro Transcription (IVT) Express Kit

(Affymetrix, Inc.).
4. GeneChip R© Hybridization, Wash, and Stain Kit

(Affymetrix, Inc.).
5. Veriti 96-Well Thermal Cycler (Applied Biosystems Ltd).
6. Fluidics Protocol Mini_euk2v3 (Affymetrix, Inc.).
7. GeneChip R© Scanner 3000 enabled for high-resolution

scanning (Affymetrix, Inc.).
8. Affymetrix GeneChip R© Command Console R© (AGCC)

Software.
9. GeneChip R© Fluidics Station 450 (Affymetrix, Inc.).

10. Hybridization Oven 645 (Affymetrix, Inc.).
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11. dChip software package (14).
12. Genomics Suite software (Partek, Inc.).

2.2. qRT-PCR 1. Total RNA (minimum 1 μg), ideally aliquots from the same
samples used for the microarray analyses.

2. Oligonucleotide PCR primers (nominally 20-mers).
3. MJResearch Chromo4 Real-Time PCR Machine (Bio-Rad

Laboratories, Inc.).
4. MJResearch Opticon Monitor analysis software v.3.1 (Bio-

Rad Laboratories, Inc.).
5. iScript One-Step RT-PCR Kit with SYBR Green, 200 μL ×

50 μL reactions (Bio-Rad Laboratories, Inc.).
6. Plates: Multiplate low-profile, 96-well, unskirted, white PCR

plates (Bio-Rad Laboratories, Inc.).
7. Sealers: Microseal “B” adhesive seals (Bio-Rad Laborato-

ries, Inc.) or optical, flat, ultraclear, eight-cap strips (Bio-Rad
Laboratories, Inc.).

3. Methods

3.1. Labeling and
Fragmentation

The Affymetrix GeneChip R© protocol is followed exactly accord-
ing to the manufacturer’s instruction using the 3′ In Vitro Tran-
scription (IVT) Express Kit. Briefly:

1. First-strand cDNA is synthesized by reverse transcription
(RT) via priming with an oligo(dT)-T7 primer to yield
complementary DNA (cDNA) containing a T7 promoter
sequence. Use 100 ng total RNA in <5 μL nuclease-free
water.

2. Second-strand cDNA synthesis converts this single-stranded
cDNA into double-stranded DNA (dsDNA) template for
transcription. RNase H and DNA polymerase simultane-
ously degrade the RNA and synthesize the second-strand
cDNA.

3. In vitro transcription (IVT). In this, the amplification step,
the labeling master mix is used to synthesize multiple copies
of biotinylated amplified RNA (aRNA) from the double-
stranded cDNA.

4. Unincorporated nucleotide triphosphates (NTPs), salts,
enzymes, and inorganic phosphate are removed from the
aRNA in the purification step. This enhances the stability
of the biotin-modified aRNA.
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5. The purified, labeled aRNA is then fragmented prior to
hybridization to the Yeast Genome 2.0 array. Use 5 μg frag-
mented and labeled aRNA to make the hybridization cock-
tail (total volume 100 μL).

3.2. Hybridization Hybridize for 16 h at 45◦C, rotate at 60 rpm in an Affymetrix
hybridization oven 645.

3.3. Washing and
Staining

Wash and stain the arrays using Fluidics Protocol Mini_euk2v3
on a GeneChip R© Fluidics Station 450 for Affymetrix GeneChip R©
Command Console R© Software (AGCC).

3.4. Scanning and
Analyses

1. Using a GeneChip R© Scanner 3000 enabled for high-
resolution scanning, the scanned image (.DAT) file is ana-
lyzed for probe intensities (see Note 3). The software then
generates a probe intensity level file (.CEL) upon which the
further analyses are continued. At this stage, it is advisable to
perform an optional, simple, quality control (QC) step on
these files using the dChip software package (14). Follow-
ing this, image processing and normalization then produce a
spreadsheet of expression values for each gene. The data are
commonly transformed into logarithmic scale (typically log
base 2) for further analyses.

It is easy to be overwhelmed by the wide variety of
microarray analysis tools currently available. However, if
one looks beyond the specific software packages and algo-
rithms, commonalities are apparent in the steps that need to
be taken during microarray analysis (15). For this task, we
favor the commercial package, Genomics Suite from Partek,
Inc., although many other open source software tools are
also available (most notably the Bioconductor package) (see
Note 4).

2. Quality assessment of the experiment: Perform a principal
component analysis (PCA) using Genomics Suite (or the
chosen software tool) to assess the performance of the exper-
iment (see Note 5).

3. Inference: A statistical test is performed on a gene-by-gene
basis to assess if differential expression has occurred. Using
fold change alone is not acceptable. A parametric test such
as the Student’s t-test or ANOVA can be used on the data in
logarithmic scale. Due to economic considerations, a typical
microarray experiment contains a smaller number of repli-
cates than is optimal. Variance shrinkage methods are useful
in making use of the parallel-testing nature of microarrays to
bolster statistics (16). The parallel-testing nature of microar-
rays leads to a different statistical problem when it comes
to choosing a set of genes that show differential expression
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(referred to as a genelist). Selecting a genelist “with p val-
ues less than 0.05” leads to a multiple-testing error and so a
false-discovery correction should be applied (17).

4. Genelist analysis: Once a set of statistically significant differ-
entially expressed genes have been identified, the next chal-
lenge is to organize the list of genes. Analyzing the genes
into classes, often based on gene ontology categories, is
helpful in this regard. An intermediate step of comparative
genomics may be required to make use of the information
available for the yeast model species. Prior to this, however,
it is at this stage that these results should be validated. Candi-
date genes (both up- and downregulated) should be selected
and their expression profiles validated using the following
protocol.

3.5. Primer Design
for qRT-PCR and
Optimization of PCR

1. Primer design: Oligonucleotide primers (nominally 20-mers)
should be designed to yield products between 70 and 200
base pairs (bp) from the selected “target” (T) genes with all
sets of primers having a similar tm. Many commercial options
are available for primer design but for Saccharomyces, we
favor the online OligoPerfectTM Designer service provided
by Invitrogen Corporation (18).

Also, an appropriate “reference” gene (R) should always
be incorporated into the experimental design. A com-
monly used example is the ACT1 gene (systematic name,
YFL039C) which encodes the single essential gene for actin
(19). Actin is a ubiquitous, conserved cytoskeletal element
critical for many cellular processes and the gene is often used
as a reference (see Note 6 for more details).

2. Optimize the PCR conditions:
Using genomic DNA as a template, the concentration of
each of the oligonucleotide primers should be optimized
such that all the primers are exhausted in the course of the
reactions.
A useful guideline would be to dilute the primers to give 100
pmol/μL as a stock solution. Take a 1:10 (v/v) dilution of
this to give 10 pmol/μL as working solution and use 2 μL
per reaction.

3. DNase treatment: For one-step reactions, take 1 μg of total
RNA, add 10 μL of 10× reaction buffer (RB), 2 units of
DNase I, and adjust the volume to 100 μL.

Incubate: 37◦C for 15–30 min.
Add 1 μL of 0.5 M EDTA.
Inactivate DNase I by heating at 75◦C for 10 min (see

Note 7).
Make up to 1.0 mL with nuclease-free or DEPC-treated

water.
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4. Set up reactions in the 96-well plates (see Note 8) as below
and use optimized cycling parameters:
• 2 μL Forward primer.
• 2 μL Reverse primer.
• 5 μL DNase-treated RNA (from previous step).
• 2 μL iScript RT (Bio-Rad).
• 25 μL SYBR mix (Bio-Rad).
• 14 μL Water.

Thermal cycling protocol:
• 45◦C for 1 h (RT step).
• 95◦C for 15 min (activation of Taq polymerase).
• 95◦C for 15 s.
• “X”◦C for 1 min (annealing temperature optimized from

3.5.2).
• 72◦C for 30 s.
• Plate read.
• Go to Step 3 for 40 times.
• Melting curve from 55◦C to 95◦C, every 0.2◦C hold for

1 s (see Note 9).

3.6. Data Analysis Quantification strategies: Two strategies are routinely used for
quantification: absolute and relative. In Note 10, we expand on
this concept, but for the purposes of this protocol, we concentrate
on the latter:

1. Establish the position of the cycle threshold (Ct) line. Using
the Opticon Monitor software, the position of the Ct line
is set by the operator. That is to say that position of the line
is manually adjusted until it sits in the linear portion of the
curve. It is useful to use the logarithmic view of the curves
to facilitate this. Also, the calibration curve can be useful to
inform the decision where to position the line. Outliers from
the standard curve may be selected/deselected to improve
the fit, and the slope of the standard curve should be as close
to –0.3 as possible.

2. Once the threshold has been set, then certain QC metrics
should be checked:
• The melt curve graph should show a single discrete peak

(Fig. 5.1).
• A large difference (several Cts) should be evident between

the +/– RT controls.
3. Finally, using the software, the Ct values for the target and

reference genes from the control and experimental samples
are calculated. A graphical representation of this is shown
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Fig. 5.2. Graphs of a representative qRT-PCR experiment. Expression profiles of two
genes, termed target (T) and reference (R), were compared under (a) control and (b)
experimental conditions. The Ct values are highlighted by the arrows and were used in
the subsequent worked example (Table 5.1).

in Fig. 5.2. The Ct values can then be exported as tab-
delimited ASCII files for the next phase of the analysis.

4. Differential expression calculation:
Using the Ct values obtained from the qRT-PCR experi-
ment, the change in relative expression levels is calculated
as follows:
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• Calculate mean of replicate (at least triplicate) Ct values.
• Calculate �Ct:

• �Ct[Control] = CtT − CtR [i]
• �Ct[Experimental] = CtT − CtR [ii]

• Calculate ��Ct:
• ��Ct = [i]− [ii] [iii]

• Fold change = 2(��Ct) = 2([iii]) (see Note 11).

A worked example of this procedure is illustrated in Table
5.1.

Using an independent assay technique in this manner allows
the investigator to validate the results obtained from the microar-
ray experiments.

It is also worth noting that standards are currently emerg-
ing for the reporting of qPCR experiments. The MIQE stan-
dards (20), analogous to the MIAME standards developed in
the microarray community, provide a framework to formalize
the reporting of the metadata pertaining to a qPCR experiment.
Compliance with these standards is likely to become a prerequisite
for publication and must be strongly recommended.

Table 5.1
Ct values obtained from the qRT-PCR experiment (illustrated in Fig. 5.2) and a
worked example to calculate the fold change in relative expression levels

Well
no. Condition Gene Ct

Mean
Ct

� Ct
[T–R]

�� Ct
[7.64–(–2.58)]

Fold change
[2(10.23)]a

A7 Control Target (T) 27.94

B7 Control Target (T) 27.23 27.32
C7 Control Target (T) 26.79

7.64
A4 Control Reference (R) 19.75

B4 Control Reference (R) 19.76 19.68
C4 Control Reference (R) 19.52

10.23 1198
A5 Experimental Target (T) 18.05

B5 Experimental Target (T) 17.45 17.70
C5 Experimental Target (T) 17.59

–2.58
A2 Experimental Reference (R) 20.40

B2 Experimental Reference (R) 20.17 20.28
C2 Experimental Reference (R) 20.27

aSee Note 11
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4. Notes

1. Detection chemistries: Essentially, three categories of detec-
tion chemistry are routinely used in qPCR:
• Hybridization probe-based methods which rely on

the sequence-specific detection of a desired PCR
product (e.g., TaqMan hydrolysis probes; Molecular
Beacons).
◦ Advantages: Specific, as products are detected only if

the probes hybridize to the appropriate amplification
products; readily amenable to multiplexing.
◦ Disadvantages: Cost, complexity, potential fragility of

probe synthesis, primer–dimers can adversely affect
amplification efficiency.

• Intercalating dyes which fluoresce upon light excitation
when bound to (any) double-stranded DNA (e.g., SYBR
Green I).
◦ Advantages: Very economical, sensitive, readily

amenable to verification by melt curve analyses, eas-
ily adaptable, and flexible.
◦ Disadvantages: Non-specific, detection level is a func-

tion of amplicon length.
• Fluorophores attached to primers (e.g., Lux, from Invit-

rogen; Plexor, from Promega):
◦ Advantages: Moderately inexpensive, readily

amenable to verification by melt curve analyses.
◦ Disadvantages: Only moderately specific (dependant

on the primers). Less flexible than using intercalating
dyes. Often tied to commercial design software.

2. Experimental design: Knowing the possible sources of error
is important. Since microarrays do not report absolute
quantification but only comparative hybridization, this
places great importance on the “control” to which the
“experimental” (or treated) sample must be compared.
Potential sources of difference between the treated sam-
ple and control, extraneous factors such as culture volumes
(when that is not the factor under investigation), or the
manner and time of harvesting, processing RNA samples,
or running arrays should be eliminated or at least brought
to a minimum. To have any confidence in differential
expression of genes being measured by microarray, repli-
cation should be performed and this should be biological
replication rather than technical (where the same RNA is
placed on two or more arrays). Pooling is an acceptable way
of improving statistical power without hugely increasing
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cost; however, replicates should still be performed. Pooling
destroys information about the variability of RNA expres-
sion between individuals, so verification of results must
be performed on unpooled samples (using qRT-PCR, for
example).

3. Quality control of microarrays: Following on from the need
to control extraneous factors emphasized in the previous
paragraph, when it comes to quality analysis, one seeks con-
sistency between the arrays. There may be particular tar-
get metrics that the microarray manufacturer recommends,
but in an experiment it is important to check that metrics
like median intensity, distribution of intensities, and back-
ground intensities are consistent. Small differences can be
compensated for by normalization methods as we shall see
in the next paragraph, but there is a limit to how effective
these corrections can be. Checks should be done for tech-
nical artifacts and spatial defects on the array such as blobs
and spot irregularities.

4. Image processing and normalization: For a given array type,
several methods may be available for estimation of the
amount of RNA from fluorescent array images, while trying
to minimize the extraneous variation that occurs owing to
technical artifacts. The Bioconductor package, based on the
R programming language, is an excellent open source and
open development software project, making these meth-
ods freely available (21). For example, the RMA method
of image processing and normalization which is commonly
used for analysis of Affymetrix arrays (22). Image process-
ing and normalization will produce a spreadsheet of expres-
sion values for each gene. The data are commonly trans-
formed into logarithmic scale (typically log base 2) for fur-
ther analysis.

5. Performing a principal component analysis (PCA) is a valu-
able way of assessing the performance of the experiment. If
replicates have been performed, then grouping of replicates
indicates that reliable differential expression has occurred
between the conditions studied. If on the other hand a ran-
dom distribution of the samples in PCA space is found,
then great caution needs to be exercised in the statisti-
cal analysis described in the next paragraph (when thou-
sands of genes are analyzed at once, there will always be
some genes that look differentially expressed in a statisti-
cally significant way due to random chance events). When
more than one factor is being studied, for example, muta-
tion and nutrient limitation, a PCA can indicate the relative
strengths of these effects on gene expression.
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6. It is crucially important to incorporate the relevant controls
in the experimental design. The terminology can become
confusing here. For example, different authors use the
terms “control” and “reference” interchangeably. To clarify
this, in this article we use the terms “control” and “experi-
mental” to refer to the conditions (or contexts) being com-
pared in the experiment. For example, this may refer to a
wild-type strain (control) vs. a mutant strain (experimen-
tal). Within each 96-well plate layout, we also need to
incorporate the relevant controls. Here, we refer to “tar-
get” and “reference” genes. The “target” gene (T) is the
gene whose expression level is being measured relative to
the “reference” gene (R). The reference gene is an mRNA
that is naturally present in each experimental and con-
trol sample and whose expression level must be invariant
throughout all conditions under investigation. Thus, using
such an invariant, endogenous reference allows quantifica-
tion of an mRNA target to be normalized for differences in
the amount of RNA in the reaction and correct for inter-
sample variations in assay efficiency.

Also, an exogenous active reference may be incorporated.
This may be a characterized RNA (or DNA) – often an in
vitro construct – spiked into each sample at a known con-
centration and serves to distinguish true target negatives
from PCR inhibition. Furthermore, it can serve to normal-
ize for variations in sample preparation efficiency or the RT
step in cDNA synthesis by reverse transcriptase. A passive
reference dye (usually ROX) may also be incorporated to
normalize for non-PCR-related fluctuations in fluorescence
signal.

For the reference gene, it is advisable to include a “no-
enzyme” negative control, by omitting the reverse tran-
scriptase. This gives an indication if any genomic DNA con-
tamination remained after the DNase I treatment.

Finally, a standard (or calibration) curve should be incor-
porated into the plate layout. We routinely use the ACT1
gene as a template, and a serial dilution spanning at least
five orders of magnitude.

7. If EDTA is not added, the RNA will undergo chemical scis-
sion when heated.

8. White 96-well plates (or strips) should be used for carrying
out the PCR. This is to prevent light scattering and conse-
quently cross talk between the wells during the plate reads.
Also, it is important to ensure that the seal of the wells
remains intact throughout the thermal cycling process.
Leakage is often a problem particularly with the Chromo4
system and the adhesive films described herein – if
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leakage does occur, when using the adhesive sealing film,
then optical, flat, ultraclear, eight-cap strips should be used
to alleviate the problem.

9. Melting curve (dissociation) analysis: SYBR Green I does
not bind to single-stranded DNA but binds to any double-
stranded DNA product. Consequently, its use necessitates
incorporating a melting curve analysis to assure specificity
of the results. The melting point (Tm) is defined as the
temperature at which 50% of the DNA is single stranded.
Several factors impact on this figure: length of the DNA;
nucleotide sequence; G:C content; and Watson–Crick pair-
ing. When DNA-binding dyes such as SYBR Green I are
used, as the fragment is heated, the DNA strands dissoci-
ate and the dye is released. This leads to a sudden decrease
in fluorescence when Tm is attained. This point is deter-
mined from the inflection point of the melting curve. Visu-
alization of this point is facilitated by plotting the negative
first derivative of the melting curve (Fig. 5.1). Melting
curve analysis can also be useful in mutation analysis as a
new mutation will impact on the peak area/profile or cre-
ate additional peaks. See (23) for details of melting curve
analysis.

10. The quantification strategy: Absolute vs. relative quantifica-
tion.
One of the two quantification strategies is generally used in
qRT-PCR:
• Absolute quantification relates the fluorescence inten-

sity to that of an input copy number using a calibra-
tion curve. The reliability of an absolute assay depends
explicitly on equivalence of the amplification efficiencies
(and the RT step) for both the target and the calibration
curve. A range of templates may be used for the calibra-
tion curve, for example, recombinant RNA/DNA; syn-
thetic oligonucleotide; purified PCR product (10, 24).

• Relative quantification measures the relative change in
mRNA expression levels. It is based on the expression
levels of a target gene vs. a reference (often referred
to as “housekeeping”) gene and in theory is usually
adequate to validate genome-wide expression profiling
experiments. Also, theoretically, these relative metrics
may be compared across multiple qRT-PCR experi-
ments. Strictly speaking, relative quantification experi-
ments do not require a calibration curve – although the
inclusion of this step does afford an additional aid in the
manual positioning of the threshold line. Mathematical
models are well established to calculate the expression of
a target gene in relation to an adequate reference gene
(25).
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11. The “fold-change” calculation assumes 100% efficiency of
the PCR. If this is not the case, then the actual efficiency
must be factored in to the final calculation (25).
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Chapter 6

Enrichment of Unstable Non-coding RNAs and Their
Genome-Wide Identification

Helen Neil and Alain Jacquier

Abstract

Cryptic unstable transcripts (CUTs) have been recently described as a major class of non-coding RNAs.
These transcripts are, however, extremely unstable in normal cells and their analyzes pose specific tech-
nical problems. In this chapter, after a brief introduction discussing general aspects associated with the
analysis of non-coding RNAs, we provide details of methods to enrich, map, and quantify this unconven-
tional class of transcripts.

Key words: Non-coding RNAs, CUTs, RNPs, affinity purification, 3′ Long-SAGE, deep
sequencing, RNA-Seq.

1. Introduction

The term “transcriptome” most often refers to the whole set of
messenger RNA (mRNA) molecules in a cell. However, this is
quite different from the whole set of transcripts that are actually
transcribed (whole transcriptome). Thus, for example, there are
many transcripts that are not translated into proteins, non-coding
RNAs (ncRNAs), with functional information, and involved in
relevant cellular functions and complexes (e.g., ribonucleopro-
teins). Together with this, it is important to note that the major-
ity of transcriptome studies usually measure the actual amount
of transcripts present in a cell at a specific steady state, a balance
between transcription and degradation rates. In the yeast Saccha-
romyces cerevisiae, the rate of mRNA degradation can vary by up
to two orders of magnitude (1) with some short-lived transcripts
difficult to detect in some cases. This shows that steady-state
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transcriptional studies may reflect only partially the rich complex-
ity of the whole transcriptome and the actual rates of transcript
synthesis.

The distinction between actual rates of transcription and RNA
levels becomes more relevant when it comes to the analysis of
ncRNAs. Indeed, while many ncRNAs such as small nucleolar
RNAs (snoRNAs) or transfer RNAs (tRNAs) are very stable, oth-
ers, such as the recently discovered “cryptic unstable transcripts”
(CUTs), have very short half-lives and are hardly detectable if not
stabilized by mutations impairing RNA degradation machineries
(2). In all, the latest studies are beginning to show a new picture
in which the complete set of sequences actually transcribed is sig-
nificantly wider than the originally annotated genomic features.
Global analyzes of ncRNAs pose some specific problems which
will be briefly discussed. After that, we will describe the technical
approaches used to analyze a particular class of unstable ncRNAs,
the cryptic unstable transcripts (CUTs).

1.1. Problems
Specific to
Non-coding RNA
Global analyzes

1.1.1. Non-coding RNAs
are Poorly Annotated

Messenger RNA (mRNA) coding genes are well annotated in
yeast thanks to a relatively limited number of introns and the
availability of a number of sequences of different species, allow-
ing comparative studies of conserved protein coding sequences
(3). The annotation of ncRNAs is more complex, even for ncR-
NAs belonging to well-described classes. With independence
of this, thanks to the use of a combination of bioinformatics
(4, 5) and genome-wide experimental studies (6), the majority of
stable ncRNAs have been annotated in yeast (see “Saccharomyces
Genome Database”: http://www.yeastgenome.org/).

Stable ncRNAs do not, however, represent all reported ncR-
NAs. For example, several concurrent (7) or antisense (8–11)
ncRNAs have been found implicated in the regulation of gene
transcription. These unstable ncRNAs are poorly annotated in
databases. In fact, in addition to those transcripts discovered
through the analysis of their regulatory functions, a multitude
of ncRNAs of yet unknown function have been discovered from
genome-wide transcriptome analyzes in yeast (12–15). Cryptic
unstable transcripts (CUTs), very short-lived PolII transcripts,
are likely to represent the major fraction of these ncRNAs
(2, 16–18). Because they are difficult to detect and highly het-
erogeneous, they have not yet been annotated in databases and
are not taken into account in common DNA microarrays. Their
global analysis requires the use of tiling arrays or RNA-Seq
approaches (see below).

1.1.2. Microarrays
and RNA-Seq

Many transcriptome analyzes focus on mRNAs and largely ignore
ncRNAs. Thus, many of the yeast microarrays that have been used
include a limited number of ncRNA probes. Specialized arrays
have been developed to study ncRNAs and in particular their

http://www.yeastgenome.org/
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maturation (19). Tiling arrays, though still significantly more
expensive, now favorably compete with these specialized arrays
in term of versatility and amount of information they can gather.
However, even the most sophisticated tiling arrays bear some lim-
itations: (i) they do not reach one nucleotide resolution; (ii) they
remain sensitive to variations of GC contents in the sequences
even after normalization with DNA hybridization (12); (iii) seg-
mentation algorithms used to define transcripts boundaries are
difficult to handle; (iv) they are unable to efficiently discriminate
overlapping transcripts.

In theory, exhaustive sequencing of complementary DNAs
(cDNAs) should provide the ultimate description of a tran-
scriptome. Such an effort has been performed with traditional
sequencing technologies for the S. cerevisiae mRNA transcrip-
tome (13), but the amount of work it requires made it unsuitable
to repeated analyzes. The emergence of new “deep-sequencing”
technologies is making these approaches accessible to more rou-
tine assays. These technologies are evolving so fast that the specific
techniques that we will describe here are likely to be outdated
very rapidly. Nevertheless, the overall principles should remain
similar. These new sequencing technologies are presently charac-
terized by the fact that they produce large numbers of sequence
reads but of relatively small to even very small lengths. At this
moment, there are mainly three main technologies available, the
Genome Sequencer FLX from 454 Life Sciences/Roche, the Illu-
mina Genome Analyzer, and the Applied Biosystems SOLiD.
While the first one produces, per run, about 400,000 sequence
reads of a few hundred nucleotides (200–400 nt), the last two
generate very large amounts (several tens of millions) of sequence
reads, but of very short lengths (a few tens of nucleotides).

The ability to read billions of base pairs per run opens
the possibility to characterize the entire yeast transcriptome by
deep cDNA sequencing with reasonable effort, an approach now
called RNA-Seq. In the most straightforward approach (14), yeast
poly(A) RNAs were converted to double-stranded cDNAs (by
oligo-dT and hexamer priming) that were essentially treated as
genomic DNA, giving rise to ∼30 million reads of 35 bp, out
of which 15.8 million mapped to unique genomic sequences.
About 91.5% of the yeast annotated ORFs were found to generate
tags above background, a number similar to the 90% percent-
age obtained from tiling arrays (12), indicating that both tech-
niques exhibited similar sensitivity. Although RNA-Seq was signif-
icantly more accurate in precisely defining both ends of transcripts
(attaining single nucleotide resolution), a major drawback of this
approach is that it did not allow direct RNA strandedness deter-
mination (transcript strandednesses were inferred indirectly by
looking for sequence tags associated to short non-coded adeno-
sine stretches that were interpreted as a signature of 3′ ends).
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In order to circumvent this limitation, the 3′ and 5′ Illumina-
PCR/sequencing primers can be directly and sequentially ligated
to fragmented RNAs and used to generate short double-stranded
cDNAs that are directly sequenced (20). The sequential ligation
of the 3′ and 5′ primers allows RNA strand determination and
the discrimination of transcripts overlapping on opposite strands.
Finally, previously described techniques, called 5′ and 3′ long
serial analysis of gene expression (5′ and 3′ Long-SAGE) (21),
were efficient approaches to provide a detailed description of tran-
scriptomes by defining the ends of transcripts genome wide and
at the nucleotide level. Their adaptation to deep sequencing tech-
nologies should boost their utility (see below).

1.1.3. Non-coding RNA
Enrichment

When performing global transcriptome analyzes, it is often advis-
able to enrich the analyzed RNA fraction for the type of tran-
scripts one is interested in. For example, tiling arrays analyzes
of mRNAs have been shown to provide much cleaner results (in
term of signal-over-noise ratio) when starting from a poly(A) frac-
tion than when starting from total RNA preparations (12). Like-
wise, genome-wide cDNA sequencing requires poly(A) enrich-
ment to avoid sequencing mostly ribosomal RNAs (rRNAs).
Unfortunately, a number of ncRNAs are not polyadenylated. It
is thus important to find an alternative way to enrich the RNAs
of interest, in particular to lower the amount of rRNA as much as
possible. Subtractive hybridization of the rRNA, as often used for
prokaryotic transcriptome analyzes, could in principle be used,
but, to our knowledge, its usage is infrequent in yeast. Because
many ncRNAs are short, size fractionation could be used, but
will unavoidably be associated with strong bias. Affinity purifi-
cation of ribonucleoprotein complexes (RNPs) is an alternative
route. While it will restrict the analysis of RNAs associated with
only a specific protein, it has been used with success to determine
the complete set of RNAs of a given class (6, 22, 23).

1.2. Analysis of an
RNA Fraction
Enriched for the CUTs

CUTs are widespread transcripts first described in yeast as very
unstable ncRNAs (2). They are relatively short (a few hundred
nucleotides) and highly heterogeneous at their 3′ ends, as a
result of their particular mode of transcription termination that
involves the Nrd1/Nab3/Sen1 complex (24, 25). In order to
study the potential function of this pervasive transcription, or its
“raison d’être,” we devised an approach to generate their com-
plete genomic map.

CUTs are polyadenylated by the TRAMP complex that tar-
gets these transcripts for rapid degradation by the nuclear exo-
some (2). In a strain deleted for Rrp6, a factor specific to
the nuclear exosome, and upon depletion of Trf4, the poly(A)
polymerase of TRAMP, CUTs accumulate in the nucleus as an
unpolyadenylated form. Because they are capped, they can be
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highly enriched from such a strain by co-purification with the
nuclear cap-binding complex. An RNA fraction highly enriched
in CUTs was thus obtained by extracting the RNAs associated
with Cpb20 (Cpb20/Cbc2 is one of the two subunits of the
nuclear cap-binding complex) purified by tandem affinity purifica-
tion (TAP) (26) from yeast cells deleted for RRP6, depleted for
Trf4, and harboring a TAP tagged version of the Cbp20 factor
(17).

Because CUTs were anticipated to overlap mRNAs, in both
sense and anti-sense directions, we wanted to use an approach
that would unambiguously discriminate overlapping transcripts.
Thus, in addition to hybridization on tiling arrays according to
an adapted protocol (12), we developed a robust 3′ Long-SAGE
approach adapted to the Genome Sequencer FLX from 454 Life
Sciences/Roche to precisely describe the heterogeneous 3′ ends
of CUTs. The use of the 3′ Long-SAGE approach turned out
to be indeed determinant to distinguish overlapping CUTs and
mRNA 5′-UTRs.

In this chapter, we will provide details of the procedure we
used to enrich the RNAs associated with Cpb20 adapted from
(26); a similar procedure that incorporates some potentially use-
ful modifications can be found in (23). Then, we will provide
the experimental details allowing the robust synthesis of 3′ Long-
SAGE tags in a format adapted to sequencing with the FLX/454
technology. Note that we will not describe in this chapter the rel-
evant bioinformatics steps necessary for the appropriate analyzes
of the sequencing output. These procedures, that can turn out to
be rate limiting in this type of project, are described in detail in
the supplementary material in (17).

2. Materials

2.1. Cell Culture 1. YPD broth (BD Difco).
2. Doxycycline (Sigma) is dissolved in H2O at 10 mg/mL,

stored at –20◦C and then added to cell cultures at a final
concentration of 10 μg/mL.

2.2. Tandem Affinity
Purification Adapted
to Preserve RNA
Integrity

1. Breaking buffer: 0.1 M Tris–HCl pH 8.0, 0.1 M NaCl,
2X protease inhibitor cocktail (Complete, Roche), 20 mM
ribonucleoside vanadyl complex (New England Biolabs)
and 300 U/mL rRNasin (Promega).

2. Cryogenic impact grinder supplied (Freezer Mill 6770,
Spex) with grinding beads (e.g., 425–600 μm acid-washed
glass beads, Sigma).
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3. Igepal R© CA-630 (Sigma).
4. Binding buffer: 20 mM Tris–HCl pH 7.4, 0.1 M NaCl,

and 0.1% (v/v) Igepal.
5. IgG SepharoseTM 6 Fast Flow (GE Healthcare).
6. DTT-binding buffer: binding buffer supplemented with

1 mM DTT.
7. AcTEVTM Protease (Invitrogen).
8. CaCl2-binding buffer: binding buffer supplemented with

2 mM CaCl2.
9. Calmodulin SepharoseTM 4B (GE Healthcare).

10. Elution buffer: 20 mM Tris–HCl pH 8, 50 mM NaCl and
5 mM EGTA.

11. Phenol–chloroform pH 5.2 premixed with isoamyl alcohol
(25:24:1) (v/v) (Amresco).

12. Glycogen RNA grade (20 μg/μL).
13. Ammonium acetate solution (7.5 M) mixed with absolute

ethanol at ratio 1:6 (v/v).

2.3. Polyadenylation
of Purified RNA

1. RNeasy columns (Qiagen).
2. Poly(A) Tailing Kit (Ambion), supplied with reagents.
3. Cordycepin 5′-triphosphate (3′-deoxyadenosine 5′-

triphosphate, Sigma).

2.4. 3′ Long-SAGE 1. SuperScript Double-Stranded cDNA Synthesis Kit (Invit-
rogen).

2. 5-Methyl 2′-deoxycytidine 5′-triphosphate (methyl-dCTP,
Roche).

3. [α-32P] dATP (3,000 Ci/mmol, Perkin Elmer).
4. 1X “First Strand” buffer: (50 mM Tris–HCl pH 8.3,

75 mM KCl, and 3 mM MgCl2), 10 μM DTT, 0.5 mM
dNTP mix (with methyl-dCTP replacing dCTP; see
Section 3.4).

5. 1X “Second Strand” buffer (20 mM Tris–HCl pH 6.9,
90 mM KCl, 4.6 mM MgCl2, 0.15 mM β-NAD+, and
10 mM (NH4)2SO4), 0.2 mM dNTP mix (with dCTP
instead of methyl-dCTP), 0.6 mM dCTP (see Section 3.4).

6. Escherichia coli DNA ligase (New England Biolabs).
7. E. coli DNA polymerase (New England Biolabs).
8. E. coli RNase H (New England Biolabs).
9. QIAquick PCR Purification Kit (Qiagen).

10. Dynabeads R© MyOneTM Streptavidin T1 magnetic beads
(Dynal), 1X binding and washing buffer (1X B&W: 10 mM
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Tris–HCl pH 7.5, 1 mM EDTA, and 2 M NaCl), and 2X
B&W buffer.

11. GsuI (5 U/μL, Fermentas) supplied with 10X B buffer.
12. T10N50E0.1 solution: 10 mM Tris–HCl pH 8, 50 mM

NaCl, and 0.1 mM EDTA pH 8.
13. T4 DNA ligase (2,000 U/μL, New England Biolabs) sup-

plied with 10X T4 DNA ligase buffer.
14. MmeI (2 U/μL, New England Biolabs) supplied with 10X

NEB4 buffer and S-adenosylmethionine (SAM).
15. Non-denaturing polyacrylamide gel: 8% (w/v) of 4X

acrylamide–2X bisacryl (mix 19:1, Eurobio), 1X Tris
borate EDTA (TBE), 5% (w/v) glycerol, 0.04% (w/v)
ammonium persulfate (APS), and 0.15% (w/v) N,N,N′,N′-
tetramethylethylenediamine (TEMED).

16. Gel extraction buffer: 0.3 M NaCl, 0.2 M Tris–HCl pH
7.5, 25 mM EDTA, and 2% (w/v) sodium dodecyl sulfate
(SDS).

17. BsaI (10 U/μL, New England Biolabs) supplied with 10X
NEB3 buffer.

18. NucleoSpin Extract II Kit (Macherey-Nagel).

3. Methods

The 3′ Long-SAGE technique allows, like the first described
SAGE technique (27), to obtain strand-specific tags that iden-
tify transcripts while their number reflects the relative abundance
of these transcripts. The 3′ Long-SAGE tags are characterized by
the fact that (i) they are longer (18 nt compared to 14 nt), facil-
itating the precise genomic location with fewer ambiguities and
(ii) they are located upstream of the poly(A) tail, thus defining
the termination sites at a single nucleotide resolution.

Different steps of the initially described protocol (21) were
modified to improve efficiency and the concatenation of the tags
was adapted to 454 pyro-sequencing with final products of about
150 bp containing four tags framed by defined linkers (tetratags).
The overview of the technique is described in Fig. 6.1. Note
that when this protocol was designed, the FLX/454 was the only
deep sequencing technology available. Presently, the use of the
Solexa/Illumina or SOLiD technologies might be more appro-
priate for tag sequencing. The oligonucleotide sequences used
here can be easily modified to adapt to these new technologies.
Because these technologies generate shorter reads, the concate-
nation steps could then be advantageously skipped.
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
poly-adenylated RNA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Gsu I

1st strand cDNA

B

2nd strand cDNA

TTTTTTTTTTTTTTTTgaggtcAGAGAGAGAG
AAAAAAAAAAAAAAAActccagGAGAGAGAGA

Double-stranded cDNA recovered with streptavidin beads

Gsu I digestion

   TTTTTTTTTTTTTTTTgaggtcAGAGAGAGAG
AA   AAAAAAAAAAAAAActccagGAGAGAGAGA

16/14 bp

AA

Ligation of cDNA with 
4 different Mme I linkers 

MmeI digestion = Monotags

Gsu I

+

- primer anchored and biotinylated
- radiolabeled

NVTTTTTTTTTTTTTTTTgaggtcAGAGAGAGAG

B

B

Gel purification

Ligation of monotags 
(A + C1 and B + C2) = Ditags

TCCGACTTXXXXXXXXXXXXXXXXXX
AGGCTGAAXXXXXXXXXXXXXXXX

QQQQQQQQQQQQQQQQAAGTCGGA
QQQQQQQQQQQQQQQQQQTTCAGCCT

TCCGACTTZZZZZZZZZZZZZZZZZZ
AGGCTGAAZZZZZZZZZZZZZZZZ

YYYYYYYYYYYYYYYYAAGTCGGA
YYYYYYYYYYYYYYYYYYTTCAGCCT

Ditags 
A-C1

Ditags 
B-C2

Bsa I

Bsa I
Bsa I digestion

Ligation of ditags (A-C1 + B-C2) = Tetratags

Linker 
A 

GTCGGA
TTCAGCCT

MmeI

Linker 
B 

GTCGGA
TTCAGCCT

MmeI

Linker 
C1 

GTCGGA
TTCAGCCT

Mme I

Linker 
C2 

GTCGGA
TTCAGCCT

Mme I

Tag 1 Tag 2 Tag 3 Tag 4

A C1/C2 B

20/18 bp

XXXXXXXXXXXXXXXXAAGTCGGA
XXXXXXXXXXXXXXXXXXTTCAGCCT

Mme I

A 
QQQQQQQQQQQQQQQQAAGTCGGA

QQQQQQQQQQQQQQQQQQTTCAGCCT

C1 

YYYYYYYYYYYYYYYYAAGTCGGA
YYYYYYYYYYYYYYYYYYTTCAGCCT

C2 
ZZZZZZZZZZZZZZZZAAGTCGGA

ZZZZZZZZZZZZZZZZZZTTCAGCCT

B

Mme I Mme I

Mme I

Fig. 6.1. Overview of the technique to synthesize 3′ Long-SAGE tags. The oligo-d(T) primer is 5′-biotinylated (circled B)
and contains a GsuI site (in lower case). After GsuI digestion, the overhung “AA” (in bold face) is released and indicates
the transcript orientation. The linkers A, B, C1, and C2 contain a MmeI site (in italics).
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3.1. Preparation of
Cell Extracts by
Cryogenic Grinding

In our case study, 6 L of yeast cells is grown in YPD at 25◦C
(temperature depends on the strain, usually 30◦C for a wild-type
strain) up to an OD600 of 0.07, at which point doxycycline is
added in order to repress the TRF4 gene that has been placed
under the control of tetracycline-sensitive transcription activator.
The culture is incubated for further 16 h at 25◦C to reach the
mid-log phase with OD600 about 0.6. The cells are collected by
centrifugation at 4◦C at 3,000×g in a high-capacity centrifuge,
washed in cold (4◦C) water, re-suspended in 12 mL of cold break-
ing buffer, and frozen in liquid nitrogen as drops that can be
stored at –80◦C until use.

The frozen cells are broken with a cryogenic impact grinder
(see Note 1). The equivalent of 3 mL of grinding beads under-
goes two cycles of 30 s of grinding, at a rate of 10 cycles per
second with a pause of 30 s between the two cycles. The powder
is recovered and it can be kept at –80◦C until use.

3.2. Tandem Affinity
Purification of
Ribonucleoprotein
Complexes (RNPs)

The frozen powder is thawed in a cold-water bath and centrifuged
in a Nalgene R© tube at 22,000×g for 45 min. The supernatant is
recovered in a 50 mL FalconTM conical tube and Igepal is added
to a final concentration of 0.1% (w/v).

The tandem affinity purification entails (1) incubation of the
extracts with IgG sepharose beads to allow binding to the IgG
domain. (2) After washing, the elution of the bound complexes
by incubation with TEV protease, which cleaves the protein at the
TEV recognition site. (3) The binding of the eluted complexes
to a calmodulin sepharose column via the calmodulin-binding
domain epitope. (4) After washing, since this binding is depen-
dent on the presence of calcium, the purified complex can be
eluted by addition of a calcium chelator (e.g., EGTA) (26).

In our protocol, 700 μL of IgG SepharoseTM suspension is
equilibrated in a 15 mL FalconTM conical tube by washing twice
with 10 mL of cold binding buffer. Centrifugation of the beads
must be performed at 100×g for 2 min at 4◦C. The beads are
then added to the total extract and binding is allowed during 2 h
at 4◦C on a rotating wheel at low speed. After centrifugation, the
beads are washed twice by incubation in 10 mL of binding buffer
for 10 min at 4◦C on a rotating wheel at low speed and once in
10 mL of DTT-binding buffer.

The beads are re-suspended in 600 μL of DTT-binding buffer
and 200 U of AcTEV protease is added to the suspension. The
reaction is incubated for 2 h at 16◦C on a rotating wheel at low
speed. The supernatant is recovered and the beads are washed
twice with 200 μL of cold binding buffer. Each supernatant is
recovered, pooled with the first one in a 2 mL Eppendorf tube,
and CaCl2 is added to a final concentration of 2 mM.
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450 μL of Calmodulin SepharoseTM suspension is equili-
brated in a 15 mL FalconTM conical tube by washing twice with
10 mL of cold CaCl2-binding buffer. Centrifugation of the beads
must be performed at 100×g for 2 min at 4◦C. The beads are
then added to the pooled supernatants and binding is allowed for
50 min at 4◦C on a rotating wheel at low speed. The beads are
recovered by centrifugation and washed three times with 1 mL
of cold CaCl2-binding buffer by inverting the tube several times.
Elution is performed by incubating the beads in 500 μL of elu-
tion buffer for 5 min at room temperature, twice.

Finally, the supernatants are pooled in a 2 mL Eppendorf tube
and treated with 1 mL of acidic phenol/chloroform: vortexed for
30 s and centrifuged for 5 min at 16,000×g at room temperature
and this treatment is performed twice. The aqueous phase is pre-
cipitated (see Note 2) and the pellet, containing the TAP-purified
RNA, is re-suspended in 50 μL of H2O.

3.3. In Vitro
Polyadenylation of
TAP-Purified RNA

The 3′ Long-SAGE procedure uses polyadenylated RNA. But in
our case, the CUTs were enriched from a strain depleted for the
poly(A) polymerase Trf4, component of the TRAMP complex
that polyadenylates RNAs for targeting to exosome degradation
(2), and are thus not polyadenylated. Thus, the RNAs from the
CUT fraction must first be submitted to an in vitro polyadeny-
lation step prior to be used in the 3′ Long-SAGE protocol. This
step is obviously not required when using naturally polyadeny-
lated RNAs such as mRNAs.

Purified RNA is first cleaned up using RNeasy columns (see
Note 3) as described in the manufacturer’s protocol and elution
is performed twice consecutively with 50 μL of H2O, pre-heated
to 65◦C to increase elution efficiency.

Polyadenylation is performed by incubating 1 μg of RNA
from the previous step in H2O at 65◦C for 10 min. If neces-
sary, the volume of eluted RNA can be reduced by centrifugation
in a speed vacuum. 1X E-PAP buffer, 2.5 mM MnCl2, and 1 mM
ATP are added on ice. Cordycepin is also added to the reaction
at 50 μM (see Note 4). Finally, 4 U of E. coli PAP (poly(A)-
polymerase) is added and the reaction is incubated for 1 h at
37◦C. The reaction is precipitated (see Note 2).

3.4. Synthesis of 3′
ong-SAGE Tags

The first cDNA strand is synthesized by incubating the RNA from
previous step, re-suspended in H2O to a final volume of 10 μL,
with 1 μg of oligo-d(T) primer (with a 5′-biotin and a GsuI site,
Table 6.1; see Note 5) for 10 min at 65◦C and then put on ice. 1X
“First Strand” buffer (50 mM Tris–HCl pH 8.3, 75 mM KCl, and
3 mM MgCl2), 10 mM DTT, 0.5 mM dNTP mix (with methyl-
dCTP replacing dCTP; see Note 6), 20 μCi [α-32P] dATP (see
Note 7), and 200 U of SuperScriptTM II RT are added to the
tube to a final volume of 20 μL and the reaction is incubated
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Table 6.1
Oligonucleotide sequences. GsuI site is in lower case, MmeI sites are italicized,
labels are in bold face and BsaI sites are underlined. The oligo-d(T) primer and
the linkers must be PAGE purified

Name Sequence

Oligo-d(T) primer 5′-(biotin)GAGAGAGAGActggagTTTTTTTTTTTTTTTTVN-3′

Linker A–a 5′-CCCGCCTCCCTCGCGCCATCAGCGTCGACTCCGACTT-3′
Linker A–b 5′-(phosphate)GTCGGAGTCGACGCTGATGGCGCGAGGGAGGC-3′

Linker B–a 5′-CCCGCCTTGCCAGCCCGCTCAGAGATCTCTCCGACTT-3′
Linker B–b 5′-(phosphate)GTCGGAGAGATCTCTGAGCGGGCTGGCAAGGC-3′

Linker C1–a 5′-CCCTCACTCAGGCTCTAGCTCATCTATCACACATGGTCTCGAG
TCCGACTT-3′

Linker C1–b 5′-(phosphate)GTCGGACTCGAGACCATGTGTGATAGATGAGCTAGAG
CCTGAGTGA-3′

Linker C2–a 5′-CCCTCACTCAGGCTCTAGCTCATCTATCACACATGGTCTCGGAC
TCCGACTT-3′

Linker C2–b 5′-(phosphate)GTCGGAGTCCGAGACCATGTGTGATAGATGAGCTAGA
GCCTGAGTGA-3′

Primer A 5′-GCCTCCCTCGCGCCATCAG-3′
Primer B 5′-GCCTTGCCAGCCCGCTCAG-3′

Primer C 5′-TCACTCAGGCTCTAGCTCATCTA-3′

for 1 h at 43◦C and put on ice. The second cDNA strand is syn-
thesized by adding to the previous reaction 1X “Second Strand”
buffer (20 mM Tris–HCl pH 6.9, 90 mM KCl, 4.6 mM MgCl2,
0.15 mM β-NAD+ and 10 mM (NH4)2SO4), 0.2 mM dNTP
mix (with dCTP instead of methyl-dCTP), 0.6 mM dCTP (see
Note 6), 10 U of E. coli DNA ligase, 40 U of E. coli DNA poly-
merase, 2 U of E. coli RNase H, and H2O to a final volume of
150 μL and incubating for 2 h at 16◦C. 10 U of T4 DNA poly-
merase is added to the reaction and the incubation is continued
for 5 min at 16◦C. 10 μL of EDTA 0.5 M is finally added to stop
the reaction. A volume/volume phenol/chloroform extraction is
performed and the aqueous phase is purified on a QIAquick col-
umn as described in the manufacturer’s protocol, except that elu-
tion is performed twice consecutively with 50 μL of elution buffer
pre-heated to 65◦C to enhance the efficiency of elution.

200 μL of Dynal (Dynabeads MyOne) magnetic beads is pre-
pared by washing three times in 200 μL of 1X B&W buffer with
a magnet, as described in the manufacturer’s protocol. 100 μL
of 2X B&W buffer is added to the 100 μL of elution from the
previous step, this 200 μL is added to the washed beads and incu-
bated on a rotating wheel for 30 min at room temperature. The
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beads are washed twice with 200 μL of 1X B&W buffer and twice
with 200 μL of 1X B buffer.

The GsuI digestion is performed by adding 30 U of enzyme
to the beads from the previous step re-suspended in 200 μL of 1X
B buffer. The reaction is incubated for 2 h at 30◦C and the beads
are maintained in suspension by occasionally flicking the tube.
The supernatant is recovered and a phenol/chloroform extraction
is performed, followed by a chloroform extraction. The aqueous
phase is precipitated (see Note 2) and the pellet is re-suspended
in 40 μL of H2O.

The four different linkers A, B, C1, and C2 (see Note 8) are
prepared independently by annealing 5 μg of primer “a” with
5 μg of its complementary primer “b” (Table 6.1). This mix of
primers is dried completely in a speed vacuum, re-suspended in
10 μL of T10N50E0.1 solution and incubated in a thermal cycler
with the following annealing program: 2 min at 95◦C, 2 min
at 75◦C, 2 min at 60◦C, 2 min at 50◦C, 2 min at 40◦C, and
2 min at 20◦C. The cDNA from the previous step, cut by GsuI, is
then shared to perform four independent ligations by incubating
10 μL of cDNA with 10 μL of annealed linker, 1X T4 DNA lig-
ase buffer, 4,000 U of T4 DNA ligase, and H2O to a final volume
of 30 μL, overnight at 16◦C. The four reactions are purified on
Qiaquick columns as described in the manufacturer’s protocol,
except that elution is performed twice consecutively with 50 μL
of elution buffer pre-heated to 65◦C.

Elutions from the previous step are digested with MmeI by
adding 50 μM SAM, 1X NEB4 buffer, 4 U of MmeI enzyme,
H2O to a final volume of 100 μL and incubating for 1 h 30 min
at 37◦C. 100 μL of H2O is added to the reactions and a phe-
nol/chloroform extraction is performed. The aqueous phases are
then precipitated (see Note 2) and the pellets are re-suspended
in 5 μL of H2O and 5 μL of 2X DNA loading buffer. The sam-
ples are loaded on a 8% (w/v) non-denaturing polyacrylamide gel
and the migration is performed in 1X TBE until the bromophe-
nol blue is about 10 cm from the top. The expected bands are
50 bp + 5 nt long for the monotags A and B, and 64 bp + 5 nt
long for the monotags C1 and C2 (Fig. 6.2). These bands are
recovered from the gel (Fig. 6.3; see Note 9) and then incu-
bated independently in 200 μL of gel extraction buffer overnight
at room temperature. The supernatants are recovered and a phe-
nol/chloroform extraction is performed. The aqueous phases are
precipitated (see Note 2) and the pellets are re-suspended in 8 μL
of H2O.

The pool of monotags A and B is ligated with the pool of
monotags C1 and C2, respectively, to produce A–C1 and B–C2
ditags (see Note 10). Two independent reactions are then per-
formed by incubating 8 μL of gel-purified monotags A with 8 μL
of gel-purified monotags C1 (and the same for B and C2), 1X T4
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CCCGCCTTGCCAGCCCGCTCAGAGATCTC TT AA GTCCGAGACCATGTGTGATAGATGAGCTAGAGCCTGAGTGA
CGGAACGGTCGGGCGAGTCTCTAGAG AA TT CAG GCTCTGGTACACACTATCTACTCGATCTCGGACTCACTCCC

TCCGAC
AGGCTG

Z(18)
Z(16)Y(18)

Y(16) GTCGG A
CAGCCT

CCCGCCTTGCCAGCCCGCTCAGAGATCTC TT
CGGAACGGTCGGGCGAGTCTCTAGAG AA

TCCGAC
AGGCTG

ZZZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZ

Primer B

Monotag B

Monotag C1 CCCTCACTCAGGCTCTAGCTCATCTATCACACATGGTCTCGAGTCCGAC TT
AGTGAGTCCGAGATCGAGTAGATAGTGTGTACCAGAGCTCAGGCTG AA

QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQ

Primer C1

Monotag C2 CCCTCACTCAGGCTCTAGCTCATCTATCACACATGGTCTCGGAC TT
AGTGAGTCCGAGATCGAGTAGATAGTGTGTACCAGAGCCTG AA

TCCGAC
AGGCTG

YYYYYYYYYYYYYYYYYY
YYYYYYYYYYYYYYYY

Primer C2

CCCGCCTCCCTCGCGCCATCAGCGTCGACTCCGACTT AAGTCG GACTCGAGACCATGTGTGATAGATGAGCTAGAGCCTGAGTGA
CGGAGGGAGCGCGGTAGTCGCAGCTGAGGCTGAA TTCAGCCTGA GCTCTGGTACACACTATCTACTCGATCTCGGACTCACTCCC

X(18)
X(16)Q(18)

Q(16)

Ditag A-C1

Ditag B-C2

CCCGCCTCCCTCGCGCCATCAGCGTCGACTCCGACTT
CGGAGGGAGCGCGGTAGTCGCAGCTGAGGCTGAA

XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

Primer A

Monotag A

Fig. 6.2. Design of the monotags and ditags. The locations of primers A, B, C1 and C2 in linkers A, B, C1 and C2,
respectively, are indicated and the MmeI sites are italicized. The labels in linkers A and B are in bold face. X, Z, Q, and
Y letters correspond to the 18/16 nt-long tags released after MmeI cleavage. The BsaI sites in linkers C1 and C2 are
underlined with the sequences distinguishing C1 and C2 delimited by a dotted line. The slash represents the cleavage
after BsaI digestion of ditags.

A or B

C1 or C2

Radioactive
dots 

Fig. 6.3. Gel purification of monotags. After MmeI digestion, the cDNAs are loaded on a
8% (w/v) non-denaturing polyacrylamide gel to purify the monotags thus released. Note
that the monotags A and B are shorter than C1 and C2. The radioactive marks, allowing
the recover of these products, are indicated.
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DNA ligase buffer, and 4,000 U of DNA ligase in a final volume
of 20 μL, overnight at 16◦C. A phenol/chloroform extraction is
performed, the aqueous phases are precipitated (see Note 2) and
the pellets are re-suspended in 5 μL of H2O and 5 μL of 2X
DNA loading buffer. The samples are loaded on a 8% (w/v) non-
denaturing polyacrylamide gel and the migration is performed in
1X TBE until the bromophenol blue is about 10 cm from the
top. The expected bands are 116 bp + 6 nt and 117 bp + 6
nt long for the heterogeneous A–C1 and B–C2 ditags, respec-
tively (see Note 11 and Fig. 6.2) and are recovered from the gel
(Fig. 6.4; see Notes 9–11). After incubation in gel extrac-
tion buffer, phenol/chloroform extraction, and precipitation (see
Note 2), the ditags are re-suspended in 20 μL of H2O.

The ditags A–C1 and B–C2 are PCR-amplified using primers
A and C and primers B and C, respectively (Table 6.1), and 1 μL
of a 1:10 (v/v) dilution of DNA matrix in a 50 μL final volume
reaction, twice for each. The following program is applied: 2 min
at 95◦C [30 s at 95◦C, 30 s at 49◦C, and 30 s at 72◦C] 20 times,
and 5 min at 72◦C. At the end of this step, Taq polymerase, dNTP
mix, and each primer are added again to the tube and a second
program is performed: [2 min at 95◦C, 1 min 30 s at 49◦C, and
5 min at 72◦C] once (see Note 12). The PCR products are then
purified on QIAquick columns as described in the manufacturer’s
protocol and elution is performed once with 50 μL of elution
buffer pre-heated to 65◦C.

The PCR products are digested with BsaI by incubating the
elution from previous step with 1X NEB3 buffer, 10 U of BsaI
enzyme, and H2O to a final volume of 20 μL for 1 h at 50◦C.
The reactions are precipitated (see Note 2) and the pellets are

Ditags C1-C1 or C2-C2

Monotags A or B

Monotags C1 or C2

Ditags A-C1 or B-C2

Ditags A-A or B-B

Fig. 6.4. Gel purification of ditags. After ligation of the monotags, the reactions are
loaded on a 8% (w/v) non-denaturing polyacrylamide gel to separate the different ditags
that are obtained, homogeneous (A–A, B–B, C1–C1 or C2–C2) and heterogeneous (A–C1
or B–C2). Note that a majority of tags remain as monotags.
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re-suspended in 20 μL of H2O. 20 μL of 2X DNA loading
buffer is added and the samples are loaded on a 3% (w/v) agarose
gel. The sizes of the expected bands are 116 and 117 bp for the
full-length amplified A–C1 and B–C2 ditags, 74 bp + 7 nt and
75 bp + 4 nt, respectively, and 38 bp + 4 nt for the digested
ditags (Fig. 6.2). The 74 and 75 bp long bands are excised
from the gel, purified on a NucleoSpin column, and eluted with
50 μL of elution buffer pre-heated to 65◦C.

The purified ditags from previous step are pooled in the same
tube and the volume is reduced in a speed vacuum. The liga-
tion of these ditags into tetratags A-C1-C2-B is performed by
adding 1X T4 DNA buffer, 4,000 U of T4 DNA ligase, and H2O
to a final volume of 50 μL, and incubating overnight at 25◦C.
The reactions are precipitated (see Note 2) and the pellets are re-
suspended in 10 μL of H2O. This 10 μL of tetratag matrix is
then PCR amplified using primers A and B (Table 6.1) with the
following program: 2 min at 95◦C [30 s at 95◦C, 30 s at 50◦C,
and 30 s at 72◦C] five times and 5 min at 72◦C. The reaction is
mixed with 2X DNA loading buffer and loaded on a 3% (w/v)
agarose gel. The band, with an expected size of 154 bp, is excised
from the gel, purified on a QIAquick column, and eluted with
50 μL of elution buffer pre-heated to 65◦C. These final products
can be directly used for 454 sequencing (specific adapters will be
ligated).

3.5. Assessment of
Transcript Integrity

When this technique was performed using an oligo-d(T)-enriched
RNA fraction (mRNA fraction), the distribution of the vast
majority of tags peaks around 150 nt downstream of the stop
codon of open reading frames (17), corresponding to the aver-
age size of the 3′ UTRs (14). This constitutes a good control
for the fact that the 3′ specificity of the SAGEs obtained by our
procedure was good. This 3′ end specificity relies on the first
cDNA synthesizing steps, which uses oligo-d(T) priming. In the
case of mRNAs, the poly(A) tail is added naturally, in vivo, prior
to RNA purification. If some limited degradation of the RNA
occurs during the purification procedure, this should thus not
affect the 3′ end specificity of the SAGE tags that are obtained
by the described procedure.

The situation is radically different for ncRNAs such as the
CUTs. Indeed, the purification is performed after incubation in
whole cell extracts, which maximizes the risks of experiencing
RNA degradation. Moreover, and most importantly, polyadeny-
lation is performed subsequently in vitro. The poly(A) tail thus
does not mark the natural 3′ end of these RNAs but rather the 3′
end of all forms after purification, including the partially degraded
ones. It is thus essential to have some means to evaluate to what
extent this might adversely affect the final description of these
transcripts. One way to assess the specificity and the quality of
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the determination of termination sites is to analyze the results
obtained for some well-reported ncRNAs. For example, the U1
small nuclear ribonucleoprotein (snRNP), which is known to bind
the nuclear cap binding complex, is indeed highly enriched in
our TAP experiment. More than 90% of the 3′ Long-SAGE tags
issued from this RNA correspond exactly to the natural 3′ end of
the U1 small nuclear RNA. However, U1 is partially protected
from degradation because it is embedded in ribonucleoprotein
particles. This control is thus not very demanding and we looked
for a more stringent control, such as the 3′ ends of RNAs not
expected to be protected from degradation. For example, such
RNA 3′ ends could be expected from the products of the Rnt1
RNA cleavages that represent intermediates of nuclear degrada-
tion or maturation pathways. Some of these were mapped in vitro
and in vivo for snoRNA precursors such as snR50 (28) or from
pre-mRNAs that are down-regulated by Rnt1 such as RPS22b
(29). As shown in Fig. 6.5, the expected cleavage pattern of Rnt1
at these sites is detected in our experiment. This indicates that, if
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Fig. 6.5. Rnt1 cleavage sites of the snR50 precursor (a) and the RPS22b pre-messenger
(b). Black triangles correspond to Rnt1 cleavage sites previously identified in vitro and
in vivo (28, 29) in comparison with the gray triangles corresponding to the 3′ ends we
identified by 3′ Long-SAGE (17). Their surface is proportional to the number of tags
mapping the corresponding sites. The 3′ ends expected for the cleavage sites were
identified in our experiment. Moreover, additional 3′ ends are observed within a dozen
nucleotides upstream of the expected cleavage sites. We could not distinguish if they
result from a partial in vivo degradation involving the compromised exosome or from an
in vitro degradation happening during the experiment. In any events, these results show
that intact RNAs are preserved and that, if some partial degradation occurs during the
enrichment steps, it must remain very limited.
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some RNA degradation occurs during the procedure, it must be
limited and does not preclude the identification of the authentic
ncRNA 3′ ends.

4. Notes

1. It is crucial to perform the grinding of cells in liquid nitro-
gen because it considerably prevents RNA degradation,
compared to French press lysis, even in the presence of
RNase inhibitors.

2. For precipitation, 1 μL of glycogen (20 μg/μL) is first
added to the RNA extract and mixed. Then, 3.5 volumes
of ammonium acetate/ethanol mix are added and mixed.
The tube is incubated overnight at –20◦C, or 30 min at
–80◦C, and centrifuged for 20 min at 16,000×g at 4◦C.
The pellet is washed with 1 mL of ethanol 70% (v/v) and
dried at room temperature.

3. Even after phenol extraction, precipitation, and ethanol
washing of the TAP-purified RNA, the polyadenylation
reaction may be inhibited by remaining contaminants (this
can be analyzed by Northern blot by checking the length of
a transcript). This can be caused, for example, by the pres-
ence of residual EGTA from the elution buffer which may
inhibit enzymatic reactions. A step in which RNA is first
cleaned up on specific RNA columns may be necessary.

4. Cordycepin (3′-deoxyadenosine) is added to the
polyadenylation reaction, with a ratio of 1:20 (v/v)
relative to ATP, in order to limit the final length of the
poly(A) tail.

5. The oligo-d(T) primer finishes by the nucleotides “VN,”
as an anchor at the 3′ end, allowing the primer to exactly
anneal at the beginning of the poly(A) tail. It also con-
tains a 5′ biotin in order to recover on beads, at an early
stage, only the cDNAs that are specifically produced from
the annealing of this primer. Finally, a GsuI site is located
upstream from 16 “T” meaning that after the cleavage by
GsuI, that occurs 18 and 16 nt downstream of the recog-
nition site, the poly(A) tail is completely removed from the
double-stranded cDNA, leaving the overhung “AA” as a
mark of transcript orientation and a platform to anneal the
linkers.

6. For the synthesis of the first-strand DNA, methyl-dCTP is
used instead of dCTP in order to protect the double-strand
cDNA from an ectopic GsuI digestion (GsuI is a
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methylation-sensitive enzyme). However, during the
second-strand synthesis, an excess of dCTP is added to
ensure that the complementary sequence of the linkers will
not be methylated to maintain a recognizable GsuI site.

7. The radioactive labeling of the cDNA is very convenient to
monitor and check each step of the protocol, particularly
the gel purifications.

8. The linkers A, B, C1, and C2 correspond to two comple-
mentary primers, “a” and “b,” that are annealed together.
The primer “b” is phosphorylated at the 5′ end to allow lig-
ation of the overhang “TT” from the primer “a” with the
overhang “AA” from the double-stranded cDNA released
after GsuI digestion. A MmeI site is also present for the
release of the 18 bp long tags. Finally, the linkers A and B
bear a label upstream of the MmeI site, corresponding to a
barcode sequence that can eventually allow to distinguish
the libraries after a batch sequencing.

9. The gel is left on one of the glass plates, covered with a
Saran wrap and radioactive marks are placed on it. These
marks correspond to white correction fluid in which a very
small amount of radioactive element is incorporated and we
make three dots arranged in triangle on a piece of colored
tape. After 20 min of contact with a phosphor screen, the
gel is scanned. The picture is printed on a transparency film
and this film is incised at the locations of the bands. The
film is then placed on the gel according to the dots and the
gel is cut with a scalpel according to the pattern to recover
the bands.

10. As described in Fig. 6.1, the final product of this exper-
iment results in four linker-associated tags concatenated
together with the unique configuration A-C1-C2-B. While
all the linkers have an equivalent structure, the linkers C1
and C2 also bear a BsaI site upstream of the MmeI site.
Because the BsaI recognition site is partially degenerated,
we could design two different BsaI sites for C1 and C2,
so that only C1 and C2 could ligate together, and not C1
together nor C2. Thus, the monotags A and C1 and the
monotags B and C2 are first ligated together depending on
the probability to find a complementary partner at the two
overhung nucleotides left after MmeI digestion. Then, after
BsaI digestion, these ditags are pooled for ligation and the
design of the BsaI sites allows obtaining only A-C1-C2-B
tetratags.

11. As explained in Note 10, the ditags result from the
compatibility of two overhung nucleotides. Therefore,
homogeneous ditags can be obtained (for instance, A–A
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and C1–C1) as well as heterogeneous ones (A–C1). It is
thus necessary to purify the desired products on gel and
this step is possible because the linkers are designed with
different sizes (see Fig. 6.4).

12. During the first PCR program, the primers get exhausted
quite rapidly, allowing the 117 nt single-stranded PCR
products to randomly anneal together at their homologous
linker sequences, located at the extremities, but not in the
central region. The heterogeneous duplexes thus produced
present a disturbed migration on agarose gel, preventing
the correct recovery after BsaI digestion. Therefore, a sec-
ond program with only one cycle is crucial to homogenize
the products.
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Chapter 7

Genome-Wide Transcriptome Analysis in Yeast Using
High-Density Tiling Arrays

Lior David, Sandra Clauder-Münster, and Lars M. Steinmetz

Abstract

In the last decade, it became clear that transcription goes far beyond that of protein-coding genes. Most
RNA molecules are transcribed from intergenic regions or introns and exhibit much variability in size,
expression level, secondary structure, and evolutionary conservation. While for several types of non-
coding RNAs some cellular functions have been reported, like for micro-RNAs and small nucleolar RNAs,
for most others no indications of function or regulation have so far been found. Therefore, the RNA pop-
ulation inside a cell is diverse and cryptic and, thus, demands powerful methods to study its composition,
abundance, and structure. DNA oligonucleotide microarrays have proven to be of great utility to study
transcription of genes in various organisms. Recently, due to advancement in microarray technology,
tiling microarrays that extend transcription measurement to genomic regions beyond protein-coding
genes were designed for several species. The Saccharomyces cerevisiae yeast tiling array contains overlap-
ping probes across the full genomic sequence, with consecutive probes starting every 8 bp on average
on each strand, enabling strand-specific measurement of transcription from a full eukaryotic genome.
Here, we describe the methods used to extract yeast RNA, convert it into first-strand cDNA, fragment,
and label it for hybridization to the tiling array. This protocol will enable researchers not only to study
which genes are expressed and to what levels, but also to identify non-coding RNAs and to study the
structure of transcripts including their untranslated regions, alternative start, stop, and processing sites.
This information will allow understanding their roles inside cells.

Key words: Tiling microarray, transcription, gene expression, gene structure, non-coding RNA,
whole-genome microarray, strand-specific transcription, cDNA, yeast.

1. Introduction

Genomes are blueprints that contain the necessary information
to develop and operate life forms in different environments. But
there is still much to learn about how this information is read and
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utilized to facilitate the concerted functions required for life. One
initial step in reading the genomic information is transcription,
the process that generates RNA molecules. Two general classes
of RNA molecules exist: messenger RNAs (mRNAs), which are
translated into proteins; and non-coding RNAs (ncRNAs), some
of which have regulatory and structural roles (1). Only since
recently have scientists realized that a much larger than expected
portion of eukaryotic genomes is transcribed (2–4). Thus, charac-
terizing the transcribed portion of the genome, namely the tran-
scriptome, aids significantly in identifying and annotating protein-
coding genes, as well as in enumerating ncRNA molecules, most
of which have (thus far) no known function in the biology of the
organism.

DNA microarrays are powerful tools for genome-wide analy-
ses. In their earlier versions, DNA microarrays contained only lim-
ited sets of probes to interrogate the expression of known genes
(5–9). With the emergence of fully sequenced genomes, microar-
ray designs included probes to interrogate also other regions such
as predicted genes, exons and promoters. Since the potential of
this technology to revolutionize the field of gene expression and
genomics became clear early on, there was an intensive effort to
improve the efficiency and utilization of DNA microarrays. One
desirable outcome of these developments was a reduction in fea-
ture size, namely of the area used for synthesis of a DNA probe
on the array. The reduction in feature size and the availability
of genome sequences eventually led to the development of tiling
arrays (2, 10–13).

Under the term tiling arrays, various densities of genomic
sequence coverage by the array probes exist. Particularly infor-
mative are tiling array designs in which an unbiased representa-
tion of the complete genome is achieved by overlapping sets of
probes. Fluorescently labeled complementary DNA (cDNA) or
cRNA target is then allowed to bind the array probes to determine
which and to what level different genomic regions are transcribed.
Although they have many advantages, tiling arrays also have sev-
eral shortcomings. First, they can be designed only for organisms
with a known genome sequence. Second, the choice in probe
sequences becomes limited as the genomic coverage of the array
increases, as probes will be determined by the genomic sequence.
Third, the microarray sensitivity, specificity, and dynamic range
(the ratio of the smallest to the largest fluorescent signal) make
it difficult to reliably measure the expression level of very low-
abundance RNAs and to distinguish between highly similar RNA
sequences such as those of duplicated genes. Finally, the number
of DNA probes that fit on a microarray is limited, putting con-
straints on the coverage of probes as a function of the genome
size, and thus on the resolution at which a given genome can be
analyzed by one microarray.
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However, tiling arrays present a significant advancement over
other array-based technologies as we have demonstrated in our
own applications of this method in yeast (13). The budding yeast,
Saccharomyces cerevisiae, has roughly a 12 Mbp genome size and,
thus, the current feature size technology allowed placing overlap-
ping probes across the whole genome rather than probes spaced
every fixed size interval with gaps in between. Moreover, since
transcription is strand specific, overlapping probes were tiled sep-
arately for each strand allowing strand-specific measurement of
transcription simultaneously from both strands at 8 bp resolu-
tion. Moreover, the tile of the second strand is offset by 4 bp
compared to the first strand allowing to measure double-stranded
target samples (like genomic DNA or double-stranded cDNA)
at 4 bp resolution. Having probes densely tiled on both strands
increases the likelihood that targets (whether single or double
stranded) will hybridize well, since each target can hybridize to
probes with different nucleotide composition. Thus, the benefit
of having many diverse probes measuring the same transcriptional
unit makes this design a highly sensitive and accurate platform for
transcriptome studies.

Transcripts in a genome could be long or short, constitutively
expressed or condition specific, isolated or overlapping other tran-
scripts, and expressed at high or low levels. The yeast tiling array
provides a sensitive platform to measure all of these transcript
classes, provided that the sample preparation is of appropriate
quality. To that end, we provide here a protocol that produces
first-strand cDNA for hybridization to measure transcription in
a strand-specific manner and minimize the processing steps that
might introduce bias in representation of transcripts. It is impor-
tant to note that standard protocols that had been applied previ-
ously to low-resolution microarrays did not suffice for application
to tiling arrays. The high resolution of the tiling array revealed
artifacts introduced during sample preparation that had gone
unnoticed before, but that did confound the previous microar-
ray data. Reverse transcription generates spurious second-strand
cDNA, even during a first-strand cDNA synthesis, and therefore
distorts the conversion step of RNA into cDNA (14). There-
fore we incorporated the use of actinomycin D, which specifically
inhibits DNA-dependent but not RNA-dependent DNA synthe-
sis, during cDNA synthesis to avoid artifacts of second-strand
synthesis. Altogether, the high-density coverage of the genome
with the careful sample preparation method allows to measure
not only transcripts levels but also structural features of tran-
scription, such as untranslated regions (UTRs), splicing, sense
and antisense transcription and more, providing a reliable and
detailed map of the full transcriptional landscape of a eukaryotic
genome.
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2. Materials

2.1. Extraction of
Total RNA from Yeast
Cells

1. Oak Ridge centrifugation tubes, PPCO (Nalgene).
2. Acid-washed glass beads (Sigma).
3. Phase Lock Gel 50 mL tubes, Heavy (Eppendorf).
4. SYBR Green II RNA gels stain (Molecular Probes).
5. Bead buffer (75 mM NH4OAc, 10 mM EDTA).
6. Phenol, acidic unbuffered water saturated (pH 4.3,

Applichem).
7. Phenol:chloroform:isoamylalcohol; 25:24:1 (v/v/v)

(Applichem).
8. Isopropanol solution (100%, v/v).
9. Ethanol solution (100%, v/v).

10. NH4OAc solution (7.5 M).
11. SDS (10%, w/v).
12. DEPC-treated (RNase-free) water.

2.2. Purification
of Poly(A) RNA

1. Oligotex mRNA maxi kit (Qiagen) (see Note 1).
2. DEPC water.

2.3. Residual
Genomic DNA
Digestion

1. TURBO DNA-free kit, (Ambion).

2.4. Synthesis
of First-Strand cDNA

1. Random Primers 3 μg/μL (Invitrogen).
2. Oligo(dT) 12–18 Primer, 0.5 μg/μL stock (Invitrogen).
3. dNTP + dUTP mix: dCTP, dATP, and dGTP each 10 mM;

dTTP 8 mM; dUTP 2 mM.
4. SuperScript II Reverse Transcriptase (Invitrogen).
5. RNase H (Epicentre).
6. RNase cocktail (Ambion).
7. Actinomycin D stock solution, 1.25 mg/mL (Sigma).

2.5. Purification
of First-Strand cDNA

1. Affymetrix GeneChip Sample Cleanup module (Affymetrix,
900371). A kit for 10 reactions is also available. Alterna-
tively, MinElute PCR Purification kit can be used (Qiagen).

2.6. Fragmentation
of the cDNA and
Labeling with Biotin

1. Affymetrix GeneChip WT Terminal labeling kit (Affymetrix,
900671). A kit for 10 reactions is also available.
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2.7. Target
Hybridization on the
Tiling Microarray

1. S. cerevisiae yeast tiling array (Affymetrix, PN 520055) (see
Note 2).

2. GeneChip hybridization, wash, and stain kit (Affymetrix,
900720).

3. GeneChip control oligoB2 (Affymetrix, 900301).

3. Methods

Genome-wide analysis of the yeast transcriptome in a given con-
dition: The following protocol includes extraction of RNA, syn-
thesis of first-strand cDNA, and processing it for hybridization
on the high-density tiling array. In our experience, the signal-
to-noise ratio obtained from hybridizing cDNA derived from
poly(A)-enriched RNA captures transcriptional information for
most RNAs under standard (e.g., exponential) growth conditions
(including mRNAs, ncRNAs, tRNAs, and rRNAs). The protocol
described below is mainly structured around preparation of such
samples. For some applications, researchers might want to look at
total RNA directly, thus we also describe the preparation of first-
strand cDNA from total RNA samples. The preparation of cDNA
directly from total RNA essentially skips the enrichment of the
poly(A) RNA step.

3.1. Extraction of
Total RNA from Yeast
Cells

1. Before starting: Warm a water bath up to 65◦C. Prepare a
high-speed centrifuge (e.g., Sorvall), assemble the appro-
priate rotor (e.g., SS-34) to use with the Oak Ridge tubes,
and set its temperature to 10◦C. Also prepare a refrigerated
centrifuge with a suitable rotor for 50 mL tubes to precipi-
tate the cells and spin the Phase lock Gel tubes. The extrac-
tion procedure is better carried out continuously from start
to end and in a timely manner.

2. Per sample prepare:
a. Oak Ridge tube with 5 g of glass beads, 1 mL of 10%

SDS and 12 mL of phenol. Place in the 65◦C water
bath.

b. A 15 mL tube with 10 mL of bead buffer. Place in the
65◦C water bath as well.

c. A 50 mL gel phase lock tube with 10 mL of phe-
nol:chloroform:isoamylalcohol.

d. Oak Ridge tube for precipitation with 24 mL of iso-
propanol and 800 μL of 7.5 M NH4OAc.

3. Harvest 100 mL culture with an OD600 of ∼1 by spinning
down the cells at room temperature (RT) and discarding
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the medium. This step can be easily carried out in two 50
mL plastic tubes per sample. Proceed directly to extract
total RNA or snap freeze the cell pellets in liquid N2 and
store at –80◦C for later use (see Note 3). The number of
cells to harvest from different conditions should be calcu-
lated to ensure a similar RNA yield (see Note 1). Lower the
temperature of the centrifuge to 4◦C.

4. Re-suspend cell pellets in 65◦C bead buffer (by vortex or
pipette) and transfer cell suspension into the pre-warmed
Oak Ridge tube that contains the glass beads, SDS, and
hot phenol. If the cells of one sample were collected in two
separate 50 mL tubes, use the same 10 mL bead buffer to
re-suspend both pellets and join them together into one
hot phenol Oak Ridge tube.

5. Vortex vigorously the sample for 1 min at maximum speed
to break the cells’ wall and incubate back at 65◦C for 1 min.
Repeat vortex/incubation cycles three more times. Incu-
bate for additional 5 min after which vortex for 1 min. Place
tubes for 5 min on ice.

6. Centrifuge the Oak Ridge tubes in an appropriate high-
speed rotor (e.g., SS34 for Sorvall) for 15 min, 12,000–
16,000×g, 10◦C. Transfer the top aqueous phase into the
phase lock 50 mL tube by pipetting gently. Avoid the white
interphase as much as possible. Lower the centrifuge tem-
perature to 4◦C.

7. Shake the phase lock gel tube vigorously to get a sus-
pension of the aqueous sample with the organic phe-
nol:chloroform:isoamylalcohol solution. Do not vortex.
Centrifuge the tubes for 10 min, 1,000–2,000×g, 4◦C.

8. Pour the top, gel separated, aqueous phase into the Oak
Ridge tube that contains isopropanol and NH4OAc. Shake
vigorously to mix. Centrifuge the tubes for 10 min at
maximum speed (12,000–16,000×g) at 4◦C to precipitate
the RNA.

9. Decant the liquid leaving the pellet adhered to the bot-
tom/side of the tube. Add 10 mL of 70% ethanol, shake
heavily to detach the pellet, and wash it. Centrifuge again
for 5 min, 12,000–16,000×g, 4◦C to precipitate the RNA.

10. Decant the 70% ethanol, leaving as few drops as possible.
Air-dry the pellet on ice. Add 500 μL DEPC water to dis-
solve the RNA (leave on ice until pellet is dissolved). Trans-
fer into a 1.5 mL Eppendorf tube.

11. Dilute a small aliquot 1:100–1:500 to determine the con-
centration and quality of the RNA sample (see Notes 4
and 5). You should get above 2 mg total RNA per sample.
The absorbance ratio of 260/280 nm should be around
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2.0 and that of 260/230 nm around 2.0 (the lower ratio
could indicate organic contaminations like phenol).

12. In addition, analyze 1 μL per sample on a 2% (w/v) agarose
gel (stained with SYBR Green II RNA gel stain or ethid-
ium bromide). The gel should show a light smear with two
bands for the high molecular weight ribosomal subunits
and three bands for the low molecular weight RNAs (see
Fig. 7.1a and Note 6). The quality of the extracted RNA
can also be determined on a dedicated instrument such as
the Bioanalyzer (Agilent technologies).

13. Store the total RNA samples at –80◦C or aliquot and con-
tinue to the next step.

3.2. Purification
of Poly(A) RNA

In the case of preparing total RNA for hybridization move directly
to Section 3.3. This step is carried out using the Oligotex mRNA
maxi kit in accordance with the manufacturer’s protocol (see
Note 1).

1. Before starting with the purification of the poly(A) fraction,
prepare the following: Set the heating block temperature to
70◦C. Place a 1.5 mL Eppendorf tube with DEPC water in
the 70◦C heating block for the elution step.

a b

Fig. 7.1. Total RNA samples and poly(A) enrichment. (a) Yeast total RNA samples sep-
arated on 2% (w/v) agarose gel. Note the bright distinct bands of the high molecular
weight ribosomal RNA (rRNA) and of the low weight RNAs that indicate the integrity of
the RNA sample. The poly(A) RNA molecules comprise the faint smear observed in the
background of each sample. (b) Poly(A) RNA after the enrichment step. Note the integrity
of the sample and the reduction in the rRNA quantity relative to the background smear
that contains the rest of the transcripts. Both gels use a 1 kb DNA ladder as a size
marker.
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2. Try starting with 2.5 mg of total RNA to ensure appro-
priate yield of poly(A)-enriched RNA. Make up the vol-
ume of the total RNA sample to 650 μL with DEPC
water. It is recommended not to use total RNA older than
2 weeks.

3. Pipette up and down to re-suspend the Oligotex beads in
their tube. Mix the OBB buffer well before use. Precipi-
tated salts can be dissolved at 37◦C. Add 650 μL of OBB
buffer to the RNA sample and 135 μL of re-suspended
Oligotex beads. If less RNA is used, less Oligotex bead sus-
pension can be used (see manufacture’s manual).

4. Flick the tube to mix the sample and incubate at 70◦C for
7–10 min to denature secondary structures of the RNA.

5. Flick the tube again and leave at room temperature for
10 min to anneal the RNA to the poly(T)-coated beads.

6. Mark and place a spin column into a collection tube.
7. Spin the sample for 2 min at full speed in a tabletop micro-

centrifuge (12,000–16,000×g) to precipitate the beads
with the RNA. Discard the liquid and re-suspend the beads
in 600 μL of buffer OW2 by pipetting. Load the sample
onto the spin column.

8. Centrifuge for 1 min at the full speed (12,000–16,000×g).
Discard the flow-through from the tube and place the spin
column back into the same collection tube.

9. Wash the sample again with 600 μL of buffer OW2 by
pipetting inside the spin column. Be careful not to punc-
ture the column membrane. Centrifuge for 1 min at full
speed (12,000–16,000×g).

10. Transfer the column into a new and labeled RNase-free
tube that is placed in the 70◦C heating block. To elute
the poly(A) RNA, add 50 μL of 70◦C DEPC water
into the column and re-suspend the resin by pipetting
while the tube is in the heating block. Centrifuge for 1 min
at full speed and repeat with another 50 μL of 70◦C DEPC
water. If multiple samples are processed in parallel, leave the
re-suspended ones in the 70◦C heating block until all are
ready for centrifugation.

11. Usually the yield of poly(A)-enriched RNA is 1–1.5% of the
total RNA (see Note 1). Determine the concentration and
purity of the sample by absorbance measurements.

3.3. Digestion
of Residual Genomic
DNA from the RNA
Sample

To avoid detection of residual genomic DNA in the hybridization,
a DNase treatment is applied prior to the cDNA synthesis step (see
Note 7). This protocol employs the reliable and easy to use Turbo
DNase kit that is quick and does not require heat inactivation or
purification of the sample from the protein at the end:
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1. Start the protocol with 10–30 μg of poly(A) RNA or 25 μg
of total RNA. The exact amount to begin with depends on
the level of residual DNA and the procedure should leave at
least 9 μg of pure poly(A) RNA or 20 μg of total RNA to
start the next step with. Before starting, set a heating block
to 37◦C.

2. Perform the DNase reaction in up to 110 μL total. To the
RNA sample, add 11 μL of (10X) buffer, 3 μL DNase, and
fill the reaction up to 110 μL with water. Incubate 30 min
at 37◦C. The volume and the reagent amounts can be scaled
down according to the amount of residual DNA and the
required volume for the next step.

3. Mix the inactivating suspension prior to use. Add 0.15 vol-
umes of the inactivation reagent. Inactivate the DNase for
2 min at RT. Flick the tube occasionally to keep the inacti-
vating reagent from precipitating.

4. Centrifuge for 2 min at full speed (12,000–16,000×g) in a
tabletop microcentrifuge and collect the sample by carefully
aspirating the liquid avoiding the pellet of the inactivating
reagent.

5. Determine the concentration of the sample. It is recom-
mended to load 0.1–0.2 μg on a 2% (w/v) agarose gel to
ensure the sample was not degraded prior to cDNA synthe-
sis (see Fig. 7.1b and Note 8).

3.4. Synthesis
of First-Strand cDNA

This step is performed slightly differently for poly(A) and total
RNA. Ideally start with 9 μg of poly(A) RNA or 20 μg of total
RNA. Sometimes it may be necessary to perform two reactions
per sample to ensure sufficient yield and this is generally recom-
mended for total RNA (see Note 1). If the volume of the DNA-
free sample is too big for the cDNA synthesis reaction, mix the
RNA with an equal volume of 100% ethanol and precipitate it by
centrifugation (>12,000×g). Dry and re-suspend the pellet in the
required volume of DEPC–water.

3.4.1. Synthesis
of First-Strand cDNA
from Poly(A) RNA

a. Set three heating blocks to 37, 42, and 70◦C. Alternatively,
the reaction can be carried out in a thermal cycler.

b. Dilute the oligo(dT) primer to 0.05 μg/μL.
c. Keep the RNA:random primer μg ratio at 1:0.5 and

RNA:oligo(dT) primer ratio at 1:0.01.
d. Take a 9 μg aliquot of DNA-free poly(A) RNA. Add 1.5

μL (4.5 μg) random primers and 1.8 μL (0.09 μg) diluted
oligo(dT) primer. Bring to 124 μL with water. Mix and
incubate at 70◦C for 10 min for denaturation. Return to ice.

e. Add 40 μL of (5X) first-strand buffer, 20 μL of 0.1 M DTT,
5 μL of dNTP + dUTP mix, 1 μL of Actinomycin D (final
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conc. of 6.25 μg/mL), and 10 μL of superscript II RT to a
final volume of 200 μL. Incubate at 42◦C for 60 min.

f. Inactivate the enzyme for 15 min at 70◦C.
g. To digest the RNA template molecules, add 3 μL of RNase

H and 3 μL of RNase cocktail. Incubate at 37◦C for 20 min.

3.4.2. Synthesis
of First-Strand cDNA
from Total RNA

a. The reaction is carried out in a thermal cycler in 0.2 mL PCR
tubes.

b. Dilute the oligo(dT) primer to 0.05 μg/μL.
c. Keep the RNA:random primer microgram ratio at 1:0.086

and RNA:oligo(dT) primer ratio at 1:0.0017.
d. Take a 20 μg aliquot of DNA-free total RNA. Add 0.6 μL

(1.8 μg) random primers and 0.68 μL (0.034 μg) diluted
oligo(dT) primer. Bring to 58.32 μL with water. Mix and
incubate at 70◦C for 10 min followed by 10 min at 25 and
4◦C on hold for denaturation and annealing, respectively.
Alternatively, return to ice instead of the 4◦C holding step.

e. Add 20 μL of (5X) first-strand buffer, 10 μL of 0.1 M DTT,
5 μL of dNTP + dUTP mix, 1.68 μL of actinomycin D
(final concentration of 20 μg/mL), and 10 μL of Super-
script II RT to a final volume of 105 μL.

f. Place the tube in a thermal cycler and run the following pro-
gram: 25◦C for 10 min; 37◦C for 30 min; 42◦C for 30 min,
and 70◦C for 10 min to inactivate the enzyme.

g. To digest the RNA template molecules, add 3 μL of RNase
H and 3 μL of RNase cocktail. Incubate at 37◦C for 20 min.

3.5. Purification
of First-Strand cDNA

This step uses the cleanup kit from Affymetrix.
1. Add 500 μL of binding buffer to the reaction and mix by

vortexing. The color should stay yellow similarly to the orig-
inal binding buffer color. If the color changed to pink add
2 μL of 3 M sodium acetate to adjust the pH for optimal
yield. Place a cleanup column in a 2 mL tube, load the sam-
ple, and spin for 1 min at >10,000×g in a tabletop micro-
centrifuge. Discard the flow-through.

2. If the cDNA synthesis was carried out in two separate reac-
tions per sample, combine each with 500 μL of binding
buffer, load the first part on the column, spin as above, and
discard the flow-through. Then load the other reaction on
the same column and spin again.

3. To wash the sample, add 750 μL of washing buffer and spin
for 1 min at >10,000×g. Discard the flow-through. To dry
the membrane after the wash, open the column cap and place
it on the rotor in a direction that will not allow the cap to
close during spinning. Spin with open caps for 5 min.
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4. Transfer the dry column into a clean labeled 1.5 mL tube. To
elute the clean cDNA apply 15 μL of elution buffer onto the
membrane. Allow 1 min to release the sample and spin for
1 min at maximum speed (12,000–16,000×g). Repeat the
elution into the same tube with additional 15 μL of elution
buffer.

5. Measure absorbance to estimate the quantity and concentra-
tion.

3.6. Fragmentation
of the cDNA and
Labeling with Biotin

This step uses the Affymetrix GeneChip WT Terminal labeling kit
(see Note 9). Reactions are performed in 0.2 mL PCR tubes in a
thermal cycler.

1. Start with an aliquot of 4.5 μg of clean cDNA obtained from
poly(A) RNA or 5.5 μg cDNA obtained from total RNA.
Add water to a total of 31.2 μL. In addition, aliquot 300 ng
from the original cDNA sample and save it on ice for later
use as a control for the fragmentation gel analysis.

2. Prepare a mix according to the number of reactions. Mix per
reaction contains: 10 μL of water, 4.8 μL of cDNA frag-
mentation buffer, 1.0 μL of UDG (10 U/μL), 1.0 μL APE
(1,000 U/μL). The total volume per reaction is 16.8 μL.

3. Combine 16.8 μL of the fragmentation mix with the 31.2
μL of the cDNA. Spin down. Place the reaction in a ther-
mal cycler and run the following program: 37◦C for 60 min,
93◦C for 2 min, and 4◦C for at least 2 min. Store on ice if
labeling will soon follow or in –20◦C if the labeling will be
carried out later.

4. Check the quality of the fragmentation by loading 3 μL of
the fragmented sample on a 2% (w/v) agarose gel alongside
with 300 ng of the saved untreated cDNA (see Fig. 7.2). Do
not continue the protocol if the intact cDNA was degraded
or if the sample was over- or under fragmented.

5. For terminal labeling of the fragmented cDNA use the 45
μL sample. Add 12 μL of (5X) TdT buffer, 2 μL of TdT,
and 1 μL of DNA labeling reagent (5 mM) to a total vol-
ume of 60 μL. Perform the following reaction on a thermal
cycler: 37◦C for 60 min, 70◦C for 10 min, and 4◦C for at
least 2 min.

3.7. Target
Hybridization on the
Tiling Microarray

These steps use the yeast tiling microarray (see Note 2), the
GeneChip Hybridization, Wash and Stain kit, and the GeneChip
control oligoB2 from Affymetrix. The hybridization, wash-
ing, staining, and scanning are carried out using Affymetrix
equipment.

1. Set a heating block to 99◦C or boil water. Turn on the
hybridization oven and set the temperature to 45◦C.
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Fig. 7.2. Complementary DNA (cDNA) sample and fragmentation quality analysis. Sepa-
ration of cDNA samples before (third lane from the left) and after fragmentation (second
lane) on a 2% (w/v) agarose gel. Equal amounts of samples from before- and after frag-
mentation were loaded side by side. As a reference, the lowest band of the left DNA
ladder is 25 bp and that of the right one is 100 bp in size. The cDNA sample was not
degraded as can be seen from the size of the smear that is similar to that of the poly(A)
RNA sample. Note that the cDNA was fragmented enough since all of it is smaller than
100 bp and not too much since the intensity remained similar to that of the sample
before the fragmentation.

2. Take out the packed microarrays from the 4◦C storage and
allow them to equilibrate to RT. Take the array out and
mark it by the sample name and date on the front label.
Place the microarray face down on a Kimwipe or a paper
towel to avoid scratching the glass.

3. For hybridization, to each sample of 60 μL add 5 μL of 3
nM oligoB2 to a final concentration of 0.05 nM, 150 μL
of (2X) hybridization mix, and 85 μL of water to a final
volume of 300 μL per sample. If more than one sample is
processed for hybridization, the hybridization mix should
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be prepared together for all and added individually to each
sample.

4. Place the sample in the 99◦C heating block (or in boiling
water) for 10 min to denature the cDNA. Place denatured
sample on ice until loading it on the microarray.

5. While denaturing, wet the microarray with 250 μL (1X)
pre-hybridization mix and place it in the 45◦C hybridiza-
tion oven at 60 rpm for pre-hybridization until the sample
is ready to load. The injection of liquid into the microarray
is carried out from the bottom hole on the back side by
puncturing the rubber septa with a small 10 μL tip. Before
injecting liquid into the chamber, the upper septa must be
punctured by another tip to allow a way out for the air.
To inject the liquid place a larger tip inside a small tip or
use a large tip with a narrow edge to avoid large punctures
in the septa. Injection of liquid into the microarray should
be done gently and slowly to avoid damage. Injecting 250
μL will leave a visible air bubble inside the chamber. Make
sure if this air bubble is free to rotate by turning and tap-
ping gently on the side of the microarray.

6. While the microarray is pre-hybridizing, take the sample
out from the ice and spin it at maximum speed in a tabletop
microcentrifuge for 5 min (12,000–16,000×g) to precipi-
tate any particles.

7. While the sample is spinning, get back the microarray, place
it on a Kimwipe and insert a small tip into the top septa.
Take the pre-hybridization buffer out from the microarray.
Aspirate 220 μL for poly(A) or 250 μL for total RNA-
derived cDNA slowly from the top part of the target sample
and inject it slowly into the microarray. Avoid the bottom
part of the sample and the possible pellet. Ensure that the
air bubble inside the microarray is free to rotate. Cover the
two septa with Microtube Tough Spots adhesive labels to
avoid leaks during hybridization. Place the microarray in
the 45◦C oven for 16 h at 60 rpm. Hybridizing 220 μL
out of the 300 μL sample corresponds to 3.3 μg cDNA
from poly(A) RNA. Hybridizing 250 μL out of the 300
μL sample corresponds to 4.58 μg cDNA from total RNA
per microarray. Freeze the rest of the target sample in
–20◦C.

8. Before the end of the hybridization step (16 h), turn the
Affymetrix fluidics station on and prime the required num-
ber of positions according to the number of arrays used.
Use wash buffers A and B of the kit. Make sure to place
enough buffers and water according to the number of
arrays processed.
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9. While running the priming protocol on the fluidics station,
get the microarray from the hybridization oven. Peel off
the Tough Spots, take the target sample out slowly from
the microarray and return the sample into the tube with
the frozen remaining sample. The sample can be hybridized
again so keep it at –80◦C at least until you see the scanning
results are of sufficient quality or keep it longer if needed.

10. Immediately after thoroughly emptying the microarray
from the target sample, refill the chamber slowly with wash
buffer A and perform the following manual washing steps:
Inject 220 μL and rotate the microarray 180◦ by hand for
three times allowing the bubble to rotate up and down.
Draw slowly the wash buffer A out and discard it. Repeat
this wash two more times. Removing the sample and per-
forming this manual wash step allow keeping the labeled
sample for possible use in the future instead of washing it
into the lines of the fluidics station. Note: The microarray
after the hybridization should not be kept without wash
buffer A, so fill up the microarray chamber with wash
A buffer before attaching it to the fluidics station espe-
cially when processing several microarrays in parallel. To
avoid trapping small air bubbles inside the chamber take
an excess of buffer (∼300 μL) and inject it slowly holding
the microarray in an upright position allowing all the air to
exit until the buffer flows out from the upper tip. Check
carefully that no tiny bubbles remained trapped. If there
is a bubble, draw half of the volume back out and fill the
chamber again in the same way.

11. Prepare three tubes per microarray with 600 μL of each
stain cocktail 1, stain cocktail 2, and array holding buffer.
Place each tube in its corresponding position on the fluidics
station. Upload and run the fluidics protocol FS450_0001
(if using fluidics station 450 or its matching protocol on
fluidics station 400). The last step of the protocol leaves a
filled microarray (with wash buffer A) ready to scan. Take
the microarray off the station and perform the shutdown
protocol if required.

12. Turn on the scanner ahead of time to warm it up. Before
scanning, clean the glass of the microarray using water
and Kimwipe. Check that no tiny air bubbles were trapped
behind the glass as those will obstruct the scanning. If you
find a bubble, take it out manually by replacing the wash
buffer A as in Step 10 above.

13. For scanning, the Tough Spots can be placed again on the
back of the microarray to protect from leaks inside the
scanner. Use the scanner according to the manufacturer
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instructions. For the yeast tiling array at least an Affymetrix
3000 7G scanner is required to scan at the right resolution.
The specific files that are supplied with the microarrays have
to be installed prior to the scan for the program to recog-
nize the array type (see Note 2). For a rough evaluation of
the results see Note 10.

4. Notes

1. Amounts of RNA – Lower amounts of RNA transcripts
are produced under some growth conditions or by certain
mutant strains. Thus, we recommend using the Oligotex
maxi kit that can process more than 1 mg of total RNA in
order to obtain sufficient amounts of poly(A) RNA. Under
more standard conditions the midi kit can be used to obtain
9 μg of poly(A) RNA. Similarly, the efficiency of cDNA
synthesis can vary by conditions and in some cases two syn-
thesis reactions per sample have to be carried out to obtain
4.5 μg of clean first-strand cDNA from poly(A) RNA or
5.5 μg cDNA from total RNA.

2. Yeast tiling microarray design – Affymetrix manufactures
two designs of S. cerevisiae tiling arrays, both of which are
commercially available. The authors use and recommend
the design (PN 520055) that tile a probe every 8 bp on
average separately for each strand on the same microarray.
The other design includes a tile of 5 bp but of one strand
only.

3. Although RNA samples can be stored at –80◦C after the
extraction, for quality reasons it is recommended to con-
tinue the poly(A) RNA enrichment protocol or DNase
treatment soon after the extraction and within a couple of
weeks at most.

4. RNA and cDNA quality – The key for accurate tran-
scriptome measurement is obtaining high-quality RNA.
The RNA extraction and poly(A) RNA enrichment steps
(Sections 3.1 and 3.2) should be carried out promptly and
in an RNase-free environment including the reagents and
equipment (e.g., gel buffer and box). Extracting RNA from
freshly harvested cells is recommended over using frozen
cell pellets.

5. It is recommended that the time from harvesting of the
cells to the first vortexing in the hot phenol tube should
not exceed 8 min to capture reliably the RNA repertoire.
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Therefore, because of the timely protocol, avoid processing
too many samples in parallel.

6. Gel analysis of the total RNA – This analysis should indicate
the quality of the sample. A heavy smear down the lane or
very bright bands at low molecular weight may be indica-
tive of RNA degradation or RNase contamination. Ideally
the high molecular weight ribosomal RNA bands should
be strong and distinct as they comprise most of the RNA in
the sample. Faint bands and brighter smear at a size lower
than the ribosomal RNA bands indicate degradation and
require repeating the extraction of the RNA sample.

7. Genomic DNA contamination – Some genomic DNA
could be extracted along with the RNA sample. To avoid
reading signals from the genomic DNA while measur-
ing the transcriptome, a DNase treatment is applied. The
DNase treatment could be carried out either after the
poly(A) RNA enrichment step (as described above) or after
the total RNA extraction. The later is necessary in the case
of measuring the transcriptome from total RNA samples
or recommended if multiple poly(A) RNA samples will be
prepared from the same total RNA sample. In any case, the
above protocol works well also if the poly(A) enrichment
step follows the DNase treatment rather than preceding it.

8. Gel analysis before cDNA synthesis – Regardless of whether
poly(A) enriched or total RNA samples are used for cDNA
synthesis, the quality of the sample should be confirmed
on a 2% (w/v) agarose gel right before the cDNA synthe-
sis step. In the case of DNase treatment after the poly(A)
RNA enrichment (as described above), it is recommended
to run an analysis gel only once after the DNase treatment.
But if the order of poly(A) enrichment and DNase treat-
ment is swapped the gel analysis should be carried out after
the poly(A) enrichment step before the cDNA synthesis. As
indicated in Fig. 7.1b, cDNA synthesis should be carried
out only if the RNA sample is not degraded.

9. Target labeling – If problems with the target cDNA label-
ing are suspected, the labeling efficiency can be tested
by a gel shift assay according to the GeneChip R© Whole
Transcript (WT) Sense Target Labeling Assay Manual from
Affymetrix.

10. A rough sanity check of the scan image – A quick quality
control check of the scan image can indicate the quality of
the data. Check for the checkerboard pattern of the borders
that was created by hybridizations of the synthetic oligoB2.
The intensity of the off (dark) features will indicate the
background signal. High contrast and sharp borders of the
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checkerboard pattern with high intensity of the oligoB2
probes indicate that the labeling, hybridization, washing,
staining, and scanning were good. If very low intensity
signal is found for the genomic probes compared to the
oligoB2 synthetic checkerboard probes, the sample prepa-
ration was poor suggesting over- or under-fragmentation
or too little material to begin with. Check also the over-
all picture for dim areas that indicate trapped air bubbles,
dust particles, or manufacturing defects. Some of the anal-
ysis algorithms will discard these dim regions automatically.
Check for the decrease between the perfect match and mis-
match probes that reflects the specificity of the hybridiza-
tion signal.
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Chapter 8

RNA Sequencing

Karl Waern, Ugrappa Nagalakshmi, and Michael Snyder

Abstract

This chapter describes the RNA sequencing (RNA-Seq) protocol, whereby RNA from yeast cells is pre-
pared for sequencing on an Illumina Genome Analyzer. The protocol can easily be altered to use RNA
from a different organism. This chapter covers RNA extraction, cDNA synthesis, cDNA fragmentation,
and Illumina cDNA library generation and contains some brief remarks on bioinformatic analysis.

Key words: RNA-Seq, RNA, transcriptome, transcription profiling, high-throughput sequencing.

1. Introduction

Defining the RNA content of a population of cells – their
‘transcriptome’ – has long been of interest to biologists. Cur-
rently, microarrays are the dominant high-throughput method of
doing so, but, as costs continue to come down, high-throughput
sequencing of the transcriptome will become the norm (1–3).
Already, RNA-Seq data can be substituted for microarray data,
while yielding additional information (4).

A limitation of RNA-Seq today is that not all protocols pro-
vide strand-specific data, i.e., it is not known from which DNA
strand a particular transcript originated. An increasing number of
protocols do not have this limitation, however (2, 5), but care
must be taken to validate each new protocol.

RNA-Seq has several advantages over microarrays. It is possi-
ble to annotate exons and introns precisely and identify transcript
ends. In addition, RNA-Seq is more sensitive than microarrays,
as evidenced by its higher dynamic range (1). Unlike arrays, fur-
ther sequencing can also be performed on a prepared sample to
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generate additional data if they are needed. Several reviews (6–9)
are available.

The following protocol describes RNA-Seq with RNA from
yeast cells being prepared for sequencing on an Illumina Genome
Analyzer following the protocol employed in (1). RNA extrac-
tion can easily be altered to use RNA from a different organism.
Preparing the cDNA for sequencing on platforms other than the
Illumina Genome Analyzer is also possible, but is a non-trivial
modification to the protocol.

This protocol describes how to perform high-throughput
sequencing on a cDNA library made from doubly poly-A-
enriched RNA. The steps in the protocol can be viewed
in outline in Fig. 8.1 and follow this general procedure:
RNA extraction, cDNA synthesis, cDNA fragmentation, Illu-
mina library generation, Illumina sequencing, and bioinformatic
analysis.

RNA Preparation
(steps 1–3)

cDNA Preparation
(steps 4–8)

Illumina Library
Preparation
(steps 9–25)

Sequencing

Bioinformatic Analysis

Extract total RNA from sample cells

Perform double poly-A enrichment

Synthesize double-stranded cDNA

Fragment cDNA

End-repair cDNA

Add overhanging A base

Ligate sequencing adapters

Extract 150-350bp fragments

PCR amplification

Extract 150-350bp fragments

Illumina sequencing (core facility)

Bioinformatic Analysis

Fig. 8.1. Flowchart of the RNA-Seq protocol.
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2. Materials

1. RiboPureTM-Yeast Kit (Applied Biosystems).
2. MicroPoly(A)PuristTM Kit (Applied Biosystems).
3. SuperScript R© Double-Stranded cDNA Synthesis Kit (Invit-

rogen).
4. Random Primers (Invitrogen).
5. DNase I (New England Biolabs).
6. QIAquick PCR Purification Kit (Qiagen).
7. QIAquick Gel Extraction Kit (Qiagen).
8. MinElute PCR Purification Kit (Qiagen).
9. End-ItTM DNA End-Repair Kit (Epicentre).

10. Klenow Fragment (3′–5′ exo-) (New England Biolabs).
11. dATP (New England Biolabs).
12. LigaFast Rapid DNA Ligation System (Promega Corpora-

tion).
13. Genomic Adapter Oligo Mix (Illumina).
14. PhusionTM High-Fidelity PCR Master Mix (New England

Biolabs).
15. PCR Primer 1.1 and PCR Primer 2.1 (Illumina).

3. Methods

1. Follow the manufacturer recommended protocol to extract
RNA from yeast grown under your specified conditions
using the RiboPureTM-Yeast Kit. For best results, start with
close to the recommended maximum of 3×108 yeast cells
(see Note 1).

2. To remove the ribosomal RNA, follow the manufacturer
recommended protocol for the MicroPoly(A)PuristTM Kit.
Start with Step B.2b, i.e., there is no need to ethanol pre-
cipitate the total RNA obtained at Step 1. The protocol
can be terminated after Step E.1., i.e., there is no need to
ethanol precipitate the RNA at this stage.

3. Repeat the above step to perform one further round of
poly-A enrichment. As above, start at Step B.2b and ter-
minate at Step E.1.
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4. Follow the manufacturer recommended protocol to syn-
thesize double-stranded cDNA from 10 μL or 200 ng of
the poly-A-enriched RNA obtained in Step 3. The Random
Primers can be used as the 100 pmol/μL primer called for
in the cDNA synthesis protocol. The procedure can be ter-
minated after Step 3 on page 3, i.e., there is no need to
ethanol precipitate the cDNA at this step (see Note 2).

5. Perform a QIAquick PCR Purification Kit cleanup on
the cDNA from Step 4. Follow the manufacturer recom-
mended protocol, but elute in a final volume of 35 μL of
Buffer EB.

6. Mix the following: 8 μL of water, 1 μL of DNase I buffer,
and 1 μL of DNase I. Add 2 μL of that mixture to the
35 μL of cDNA obtained in Step 5.

7. Incubate for 10 min at 37◦C. Terminate the reaction by
incubating for 10 min at 95◦C (see Note 3).

8. Perform a QIAquick PCR Purification Kit cleanup. Elute
in a final volume of 35 μL of Buffer EB.

9. Add the following, from the End-ItTM DNA End-Repair
Kit, to the fragmented cDNA from Step 8: 5 μL End-
Repair Buffer, 5 μL dNTP mix, 5 μL ATP, 1 μL End-
Repair Enzyme Mix.

10. Incubate for 45 min at room temperature.
11. Perform a QIAquick PCR Purification Kit cleanup. Elute

in a final volume of 35 μL of Buffer EB.
12. If not already made, prepare a 1 mM stock of dATP. If

the New England Biolabs’ 100 mM dATP was purchased,
this will require a 1:100 dilution in water or Buffer EB (see
Note 4).

13. Add the following to the products of Step 11: 1 μL
of Klenow Fragment, 5 μL NEBuffer 2 (supplied with
Klenow Fragment), and 10 μL of 1 mM dATP.

14. Incubate for 30 min at 37◦C.
15. Perform a MinElute PCR Purification Kit cleanup. Elute in

a final volume of 12 μL of Buffer EB.
16. Prepare a fresh 1:30 dilution of the Illumina Genomic

Adapter Oligo Mix in water. Do not reuse this dilution in
subsequent RNA-Seq experiments (see Note 5).

17. Add the following, from the LigaFast Rapid DNA Ligation
System kit, to the products of Step 15: 15 μL of DNA
ligase buffer, 2 μL of DNA ligase, and 1 μL of diluted
Adapter Oligo Mix.

18. Incubate for 15 min at room temperature.
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19. Perform agarose gel electrophoresis with a 2% (w/v)
agarose gel on the products of Step 18. Cut out a slice
with DNA of approximate length 150–350 base pairs (see
Note 6).

20. Perform a QIAquick Gel Extraction Kit cleanup. Elute in a
final volume of 25 μL of Buffer EB.

21. Prepare fresh 1:1 dilutions of the Illumina PCR Primers
1.1 and 2.1 in water. Do not reuse these dilutions in sub-
sequent RNA-Seq experiments.

22. Mix the following: 23 μL of product from Step 20, 25
μL PhusionTM High-Fidelity PCR Master Mix, 1 μL
of diluted PCR Primer 1.1, and 1 μL of diluted PCR
Primer 2.1.

23. Amplify on a thermal cycler, using the following protocol
(see Note 7):
1. 30 s at 98◦C
2. 10 s at 98◦C
3. 30 s at 65◦C
4. 30 s at 72◦C
5. Go to Step 2 fourteen times.
6. 5 min at 72◦C

24. Perform gel electrophoresis with a 2% (w/v) agarose gel
on the products of Step 23. Cut out a slice with DNA of
approximate length 150–350 base pairs (see Note 6).

25. Perform a QIAquick Gel Extraction Kit cleanup. Elute in
a final volume of 30 μL of Buffer EB. The DNA is now
ready for sequencing on an Illumina Genome Analyzer (see
Note 8).

26. Bioinformatic analysis (see Note 9).

4. Notes

1. RNA purification is highly straightforward. An RNA yield of
greater than 20 ng/μL at the end of the second round of
poly-A purification is desirable, as this permits starting the
cDNA synthesis with 200 ng or more of RNA, which yields
optimal results. However, good results have been obtained
with as little as 80 ng of starting material. The use of the
RiboPureTM-Yeast Kit makes this a yeast-specific protocol.
However, extracting total RNA before poly-A enriching with
the MicroPoly(A)PuristTM Kit is a general method, and
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RNA from any organism can be used as input at this stage.
Care should, of course, be taken when working with RNA,
but no extraordinary precautions are needed.

2. cDNA synthesis is, again, a straightforward matter of fol-
lowing a manufacturer recommended protocol. Oligo-dT
primers can be substituted for random hexamers, with the
tradeoff that there will be fewer reads at the 5′ ends of
transcripts, making those harder to map, but more poly-
adenylated reads, which help map 3′ ends (see Note 9).

3. cDNA fragmentation is a key step. As each sequenced read
is short, and originates at the end of a strand of cDNA, the
cDNA strands must be fragmented to ensure that the entire
transcriptome is sampled during sequencing. This requires
fragmenting the cDNAs to an appropriate length, approx-
imately 100–300 bp. The protocol in this chapter is opti-
mized for yeast, as in (1); if RNA from a different organ-
ism is used, where average transcript sizes differ, this step
may require further optimization. Also note that the DNase
I mixture used is very dilute. It is possible to use a more
concentrated mixture and adjust the incubation time down-
ward. A 10 min incubation allows enough margin of error
that multiple samples can be processed in parallel, however.
It bears pointing out that too long an incubation will destroy
the cDNA sample. All due care should be taken to ensure
that this step is done with no deviation from the protocol.

4. dATP is very sensitive to freeze–thaw cycles, so ensure that
the 1 mM dATP stocks have been subjected to as few freeze–
thaw cycles as possible. One suggestion is to prepare many
small (e.g., 50 μL) aliquots from the stock solution.

5. The optimal Genomic Adapter Oligo Mix (v/v) dilution to
make is somewhere between 1:10 and 1:50. 1:30 is recom-
mended as a good starting point if upward of 200 ng of RNA
was used to start with; a more diluted or more concentrated
cDNA sample may require a weaker or stronger Genomic
Adapter Oligo Mix. Upon the subsequent gel purification,
an adapter–adapter band should be visible at about 120 base
pairs; if this band looks excessively bright, too much adapter
is being used, and this will interfere with an optimal library
preparation.

6. At Step 19 it is normal to be unable to see any DNA. At
Step 24, however, a normally distributed smear from 150
to 350 base pairs should be visible if the library prepara-
tion has been successful. If starting quantities of RNA are
low, yields can be improved by using E-Gels R© (Invitrogen)
instead of agarose gels cast in the lab. The E-Gels R© are thin-
ner and result in substantially better recovery during the gel
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purification process. Two caveats exist: first, E-Gels R© take
a maximum of 20 μL of product, so MinElute PCR Purifi-
cation steps should be added between Steps 18 and 19, as
well as between Steps 23 and 24. While loading dye is not,
strictly speaking, necessary, eluting in 18 μL of Buffer EB
and adding 2 μL of loading dye helps visualize the DNA’s
progress in the gel. Second, E-Gels R© are difficult to open,
even with Invitrogen’s E-Gel R© Opener. A clamp, hammer,
and chisel provide an easier solution.

7. If library yields are low, the number of PCR cycles can be
increased. Increases of more than two cycles are not rec-
ommended, however, due to the risk of bias in amplified
sequences and subsequent potential loss of gene quantita-
tion accuracy.

8. In most labs, sequencing will at this point be done by a core
facility. Best results are to be expected if the final yield of
library after gel purification is greater than 15 ng/μL.

9. Currently, most labs use an in-house software suite to ana-
lyze RNA-Seq data, and, in lieu of using commercial soft-
ware such as Illumina’s Genome Studio, collaborating with
a bioinformatics group is recommended. Briefly, however,
the main bioinformatic analyses that can be performed are
as follows and were performed in this exact fashion in (1)
and (6).

To ascertain transcript abundance in the sample, the num-
ber of reads present mapping to 10–30 base pairs at the 3′
end of any given transcript can be counted. These values can
then be used to compare gene expression levels. If multi-
ple samples have been run, it is also necessary to normalize
by the total number of sequencing reads generated for each
sample; see e.g., (7).

In addition, further annotation can be obtained by look-
ing for gapped reads and poly-adenylated reads. Gapped
reads are candidates for intron-spanning reads, and, if multi-
ple reads have a gap across the same base pairs, that is strong
evidence for the presence of an intron. Poly-adenylated reads
are reads that have a non-genomic run of adenines, and these
mark the 3′ end of a transcript, i.e., where that RNA was
poly-adenylated. In addition, these poly-adenylated reads are
strand-specific and indicate which DNA strand an RNA tran-
script was produced from. This is because a transcript pro-
duced from the + strand will be sequenced so as to either
appear to come from the + strand with a poly-A tail or
appear to come from the – strand with a poly-T tail. A tran-
script produced from the – strand, on the other hand, will
appear to come from the – strand with a poly-A tail or from
the + strand with a poly-T tail.
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Lastly, searching for sudden drops in expression allows the
pinpointing of 5′ ends or of 3′ ends where poly-adenylated
reads were not detected. Searching for these sudden drops in
un-annotated regions can turn up potential novel transcripts,
as well.
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Chapter 9

Polyadenylation State Microarray (PASTA) Analysis

Traude H. Beilharz and Thomas Preiss

Abstract

Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization.
In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are
frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control
in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves
the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose,
followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach
and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to
monitor the procedure and independently verify the microarray data.

Key words: Poly(A) tail, polyadenylation, deadenylation, post-transcriptional regulation,
translational control, mRNA stability, polysome, microarray, transcriptome, proteome.

1. Introduction

Translation of mRNA is a highly controlled step in eukaryotic
gene expression with control being exerted en masse, for instance
in response to growth promoting or stress signals, or en détail for
transcripts carrying cis-acting regulatory elements that enable a
selective response (1). Often, these elements act through recruit-
ing specific factors that organize mRNAs into functionally related
subsets and may not only regulate their translation but also sta-
bility and localization (2, 3). During translation, the initiation
phase is most commonly the target of regulatory intervention
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(1, 4). The 3′ poly(A) tail of eukaryotic mRNA is implicated in
translation and its regulation, displaying synergy with the 5′ cap
structure to promote efficient initiation (5–9). This suggests that
mRNAs adopt a closed-loop configuration during translation (10,
11), and the two mRNA ends can be brought together through
bridging interactions of the factor eIF4G with cap-bound eIF4E
and the poly(A)-binding protein (12, 13). The closed-loop con-
cept has interesting implications for models of polysome function.
For instance, it would ensure that only intact mRNAs are trans-
lated and allow the redirection of terminating ribosomes to the 5′
end of the same mRNA template.
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Fig. 9.1. Schematic of poly(U) chromatography and methods to control the procedure. (a) mRNA is bound to poly(U)100
sepharose beads at 12◦C and then eluted by stepwise increases in temperature as detailed in the main text. (b) Each
elution fraction contains mRNA species of a defined poly(A) tail length range. (c) Bulk poly(A) tail length analysis is done
by 3′ end-labeling mRNAs with α-[32P]-pCp, digestion with RNases A and T1, and analysis of labeled poly(A) tracts by
denaturing PAGE (shown here in schematic). A 32P-5′ end-labeled 10(nt) DNA ladder is run along side for approximate
sizing. (d) The distribution of poly(A) tail lengths on individual mRNA species can be measured by the LM-PAT assay. To
approximate the size of a short-tailed mRNA, RT-PCR amplification from an aliquot of the same RNA is also done using
an anchor–(dT)12 primer (left lane) to generate a TVN-PAT product (on left). As a marker for maximal mRNA tail length an
LM-PAT product from cells lacking deadenylase enzymes is also run (labelled ‘Mutant’; see main text for details). Mock
gels with expected results for a short and a long-tailed mRNA are shown. PCR products are sized against a 100 bp DNA
ladder to determine the range of poly(A) lengths for each mRNA.
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Many known translational control paradigms target some
aspects of the molecular bridge between the two mRNA ends
(14–16); typically this involves a block to cap function and/or
the shortening of the mRNA poly(A) tail. Well-studied exam-
ples are not only the maternal mRNAs during oocyte matu-
ration but also mRNAs targeted by microRNAs (17–20). The
poly(A) tail length can thus be seen as an mRNA feature that
reports on the functional state of mRNAs. To further test this
concept, we developed the PASTA method (21), applied it to
the transcriptomes of budding and fission yeast, and revealed
a widespread interdependence between 3′-untranslated region-
mediated poly(A) tail length control, Pab1 binding, and mRNA
translation (22, 23). The PASTA approach is thus capable of
determining the scope of mRNA-specific polyadenylation state
control in a transcriptome under investigation and PASTA data
are a rich source for further study of gene-regulatory networks
and mechanisms. Given the correlation between polyadenylation
and translation states of mRNA, PASTA analysis could further-
more serve as a surrogate for the more established translation
state microarray analysis (TSAA), a combination of sucrose den-
sity gradient centrifugation to separate polysomal complexes with
microarray analysis of gradient fractions (24, 25). This may be
of particular interest in situations where an overlap in sedimen-
tation of polysomal complexes and aggregates that sequester
translationally repressed mRNA, such as processing bodies, is
suspected (e.g., (26)).

The general PASTA procedure begins with the isolation of
yeast total RNA by the hot acid phenol method and binding of
the adenylated species to poly(U)100 sepharose beads in suspen-
sion. This is done by heat denaturing the total RNA in the pres-
ence of poly(U)100 sepharose, followed by cooling, washing of
the beads, and batch elution by stepwise increases in temperature
(Fig. 9.1a, b). To test fractions for the degree of tail length sep-
aration, aliquots of the eluted RNA are labeled at the 3′ end with
α-[32P] pCp, followed by digestion of the mRNA body with
RNases T1 and A, leaving only stretches of poly(A) intact. These
poly(A) tracts can be resolved by denaturing PAGE (Fig. 9.1c).
Gene-specific poly(A) tail length distribution can be monitored by
the RT-PCR-based ligation-mediated poly(A)-test (LM-PAT), a
sensitive assay yielding PCR product sizes that reflect the poly(A)
tail lengths present on a given mRNA (Fig. 9.1d). It is used to
monitor the efficacy of the poly(U) chromatography step as well
as to verify tail lengths on candidate mRNAs. To generate the
PASTA data, we perform dual-color microarray analyses of the
poly(U) sepharose eluates (Fig. 9.2).
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Fig. 9.2. Microarray analysis of poly(U) chromatography fractions. (a) For low-resolution PASTA analyses, pools of elution
fractions are compared to each other by microarray (30, 35, and 45◦C [e.g., Cy5-labeled cDNA] versus 12 and 25◦C
[e.g., Cy3-labeled cDNA]). (b) For high-resolution PASTA analyses, each temperature eluate (e.g., reverse-transcribed
into Cy5-labeled cDNA) is compared against reference mRNA eluted in a single step at 45◦C (e.g., as Cy3-labeled cDNA)
on separate dual-color microarrays. (c) To generate a relative value of poly(A) tail length from high-resolution PASTA data,
ratios of each mRNA from the five elution fractions can be transformed into percentages of mRNA for each fraction. The
percentage of each fraction was multiplied by arbitrary weights of 0.1, 0.2, 0.3, 0.4, and 0.5 for the respective fractions
1 to 5 and summated so that all mRNAs receive a relative poly(A) tail length measure between 10 and 50 [arbitrary
units; the approach is detailed in (23)]. The graph shows a plot of this measure (N = 5,698) against the spot ratio for
the corresponding mRNA in a pool comparison experiment. The Spearman rank correlation coefficient for this data was
(r = 0.6921, p < 0.0001). (d) Global correlation between mRNA characteristics in S. cerevisiae. Solid lines represent
positive and dashed lines inverse correlations. Data in C and D taken from (22) and references therein.

2. Materials

2.1. Equipment 1. Clinical bench-top centrifuge capable of spinning 15 mL
tubes (Eppendorf model 5702).

2. Rotating wheel (Ratek RSM6).
3. Bench-top microcentrifuges, operating either at ambient

temperature (23◦C) or cooled (4◦C) (Eppendorf models
5415 D and 5415).

4. NanoDrop 2000 spectrophotometer (Thermo Scientific).
5. Standard equipment for running horizontal slab gels.
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6. Eppendorf Thermomixer Compact.
7. Disposable insulin syringes (Becton Dickinson, # 326719).
8. Bio-Rad Micro Bio-Spin 6 columns (# 732-6221).
9. Large format sequencing gel apparatus (≥20 cm in length).

10. Electrophoresis power supply with temperature probe
(Bio-Rad Power PAC 3000).

11. FLA-5100 fluorescent and radioisotopic imaging system
and MultiGauge software (Fujifilm, Tokyo, Japan).

2.2. Reagents 1. Poly(U)100 sepharose 4B (GE Healthcare, # 17-0610-01).
2. Molecular biology-grade water (Sigma-Aldrich).
3. Hydration buffer (HB): 0.1 M NaCl; 10 mM Tris–HCl at

pH 7.4.
4. Elution buffer (EB): 0.1 M NaCl, 0.01 M EDTA, 0.5 M

Tris–HCl at pH 7.4, 0.2 (w/v) SDS, 25% (v/v) molecular
biology-grade formamide (Sigma-Aldrich).

5. HSBB (high-salt binding buffer): 0.7 M NaCl, 0.01 M
EDTA, 0.5 M Tris–HCl at pH 7.4, 0.2% (w/v) sodium
lauryl sarcosine, 12.5% (v/v) formamide.

6. NaCl solution (5 M).
7. Pellet Paint co-precipitant (Novagen, # 69049-4).
8. Polynucleotide kinase (PNK, 10 U/μL) and correspond-

ing 10x buffer (New England Biolabs, # M020L).
9. 100 and 80% (v/v) molecular biology-grade ethanol.

10. Cytidine 3′-monophosphate (Cp, Sigma-Aldrich,
# C1133) made up to 3 mM in water.

11. [γ-32P]-ATP (3000 μCi/mmol, 10 mCi/mL, Perkin
Elmer, # NEG502A500UC).

12. T4 RNA ligase and supplied 10x buffer (Promega,
# M105A).

13. Dimethyl sulfoxide (DMSO, Sigma-Aldrich, # D2650).
14. Acetylated bovine serum albumin (BSA). The stock 100

μg/mL acetylated BSA supplied with restriction enzymes
from New England Biolabs is a convenient source.

15. RNase T1 100,000 U/mL (Roche, # 10109495001).
16. RNase A (10 mg/mL made up in water) (Roche,

# 109169).
17. 10x RNase Digest Buffer: 100 mM Tris–HCl, pH 7.5 and

3 M NaCl.
18. tRNA 10.5 mg/mL (Sigma-Aldrich, # 10109495001).
19. RNase stop solution: 2 mg/mL proteinase K (Roche,

# 745723), 130 mM EDTA, and 2.5% (w/v) SDS.
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20. Acid phenol, UltraPureTM Phenol:Water (3.75:1, v/v)
(Invitrogen, # 15594-047).

21. Chloroform: isoamylalcohol (24:1 v/v Fluka, # 2466).
22. Phase Lock Gel Heavy 1.5 mL tubes (5 Prime,

# 2302810).
23. SequaGel sequencing system kit (National Diagnostics,

# EC-840).
24. 2x formamide RNA loading dye made freshly prior to use as

follows: 250 μL formamide, 1 μL loading dyes (250x solu-
tion is 10 mg/mL bromophenol blue, 10 mg/mL xylene
cyanol, dissolved in methanol), 25 μL 10 × TBE, 5 μL
0.5 M EDTA.

25. 10 bp ladder (Promega, # G4471).
26. 100 μM stock solution of pd(T)12-18. This can be pre-

pared in house by mixing custom synthesized 5’ phospho-
rylated oligo nucleotides. We use a 1:1:1:1 mix of pd(T)12,
pd(T)14, pd(T)16 and pd(T)18 each disolved to 100 μM
prior to mixing.

27. Primers (made up to 100 μM in water and stored in
aliquots at –80◦C): anchor–(dT)12 primer (5′ GCGAGC
TCCGCGGCCGCGTTTTTTTTTTTT); anchor–(dT)12
VN primer (5′ GCGAGCTCCGCGGCCGCGTTTTTT
TTTTTTVN) where V stands for G, A, or C and N is any
nucleotide.

28. Superscript III (Invitrogen, # 18080044).
29. dNTPs, 10 mM each (Roche, # 1969064).
30. 10 mM ATP (Promega, # P1132).
31. T4 DNA ligase (New England Biolabs, # M0202L).
32. RNAseOUT (Invitrogen, # 10777-019).
33. Fast-start Taq (Roche, # 12032937001).
34. Agarose 1000 (Invitrogen, # 10975-035).
35. 100 bp DNA ladder (New England Biolabs, # N3231S).
36. Ethidium bromide 10 mg/mL (Sigma-Aldrich).

3. Methods

3.1. Fractionation of
mRNA by Poly(U)
Chromatography

Binding to poly(U) sepharose at low temperature, followed
by stepwise thermal elution can be used to fractionate cellular
mRNAs by the length of their poly(A) tail (Fig. 9.1a, b) (27, 28).
In our work (22, 23), we have employed a commercial sepharose
matrix that is coupled to poly(U)100 ligands, a length well suited
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to the fractionation of yeast mRNAs, as their poly(A) tails do not
exceed ∼70–90 adenosines in wild-type genetic backgrounds. It
should be possible to change the type of beads, length of poly(U)
ligand, or the source RNA material used, but this will require re-
tuning of the experimental procedure detailed below. Total RNA
of high quality and purity is required so that it retains integrity
throughout the lengthy manipulations at elevated temperature.
RNA can be rapidly prepared from yeast cells according to the hot
acid phenol method. Total RNA prepared by other methods or
from other sources should also be suitable, provided the resulting
RNA has OD260 nm/OD280 nm and OD260 nm/OD230 nm ratios
of >2. All solutions are prepared from RNase-free stocks in new or
RNase-free plastic or glassware. See Note 1 regarding the prepa-
ration of buffers.

1. Suspend ∼500 mg of dry poly(U)100 sepharose in 10 mL of
HB at room temperature in disposable 15 mL tubes. Hydra-
tion should be performed for at least 30 min at room tem-
perature or overnight at 4◦C using a rotating wheel to keep
the matrix in suspension. Prior to use wash a further three
times in 10 mL HB, each time collecting the beads by spin-
ning at 500×g for 5 min in a bench-top clinical centrifuge.

2. Transfer the equivalent of 150 μl settled wet gel volume per
binding/elution reaction to a 1.5 mL microfuge tube and
wash once with 1 mL of EB followed by 1 mL HSBB for
5 min at 70◦C in a thermomixer set at 1,100 rpm to keep
matrix in suspension. For all wash and elution steps, sedi-
ment matrix by spinning at 5,000×g for 30 s. Use dispos-
able insulin syringes to remove as much liquid as possible
from the matrix and to avoid bead loss (see Note 2).

3. Add 600 μl of HSBB and up to 100 μg of total yeast RNA
to the prepared poly(U)100 matrix. Denature the RNA in
the presence of beads for 5 min at 70◦C in a thermomixer at
1,100 rpm.

4. Subsequent binding and wash steps are performed in the
thermomixer (set to 1,100 rpm) in a cold room. Transfer
the microfuge tube to the thermomixer set at 55◦C, then
change setting to 12◦C and leave for 90 min (∼25 min of
ramp-down time and ∼65 min incubation at 12◦C).

5. After binding, the matrix is washed four times by addition of
1 mL ice-cold HSBB and incubation at 12◦C for 5 min in
the thermomixer. Between wash steps the matrix is collected
by centrifugation as in Step 2.

6. Each thermal elution step is performed by resuspending the
matrix in 600 μl EB at the specified temperature for 5 min in
the thermomixer (set to 1,100 rpm). See Note 3 for suitable
elution temperatures.
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7. Each elution fraction is transferred to a new 1.5 mL
microfuge tube and re-spun. 550 μL of the fraction is then
transferred (avoiding any carryover of beads) to a 2 mL
microfuge tube containing 1/10 vol of 5 M NaCl and co-
precipitant. The microfuge tubes are then filled with ice-cold
ethanol (∼1.4 mL), inverted to mix, and stored at –80◦C for
at least 1 h prior to collection of the RNA by centrifugation
for 10 min at 16,000×g in a cooled microcentrifuge. The
pellet is washed once with 80% (v/v) ethanol and air-dried.

8. The mRNA is resuspended in 22 μL water and desalted
using Micro Bio-Spin 6 columns according to the manufac-
turer’s instructions prior to any further enzymatic analyses.

3.2. Measurement of
mRNA Tail Length in
Bulk or for Individual
mRNAs

We routinely test whether the fractionation procedure efficiently
separates mRNA into pools with distinct poly(A) tail lengths,
prior to genome-wide composition analyses. To this end, we mon-
itor the adenylation state of bulk mRNAs as well as that of indi-
vidual mRNAs in each fraction.

3.2.1. Bulk Poly(A) Tail
Length Analysis

For bulk poly(A) tail length analysis in a sample, the RNA is 3′
end-labeled with α-[32P] pCp and digested with RNAses T1 and
A (which cleave after G, or after C and U, respectively), as previ-
ously described (29). This results in radio-labeled poly(A) tracts
which can be separated by 16% urea-PAGE and visualized by
autoradiography (Fig. 9.1c). α-[32P] pCp can be obtained from
a commercial stock or prepared in-house as described in Section
3.2.1.1.

3.2.1.1. Preparation of
α-[32P] pCp

1. Assemble the following for a total reaction volume of 20 μL:
5 μL dH2O, 2 μL 10x PNK buffer, 2 μL 3 mM Cp, 10 μL
γ-[32P]-ATP, and 1 μL T4 PNK.

2. Incubate for 30 min at 37◦C, then heat inactivate enzyme at
70◦C for 5 min.

3. Store at –80◦C if not using immediately.

3.2.1.2. RNA 3′
End-Labeling and RNase
Digestion for Poly(A)
Length Analysis

1. A 30 μL reaction volume is prepared containing the fol-
lowing: 1 μg of total RNA or 90% of an elution fraction
(up to a volume of 17.5 μL), 3 μL 10x T4 ligase buffer,
3 μL DMSO, 3 μL BSA, 2.5 μL α-[32P] pCp prepared as
detailed in Section 3.2.1.1 (or the equivalent amount from
a commercial source), and 1 μL T4 RNA ligase. Incubate
for 2 h at 37◦C.

2. Inactivate enzyme at 70◦C for 5 min.
3. Remove unincorporated nucleotides using Micro Bio-Spin

6 columns.
4. The RNA is then subjected to simultaneous degradation by

RNase A and RNase T1 for 2 h at 37◦C. Combine 30 μL
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of labeled RNA from Step 3; 40 μg yeast tRNA (as “bal-
last”); 80 U RNase T1 and 4 μg RNase A; 8 μL 10x RNase
digest buffer and water to a total reaction volume of 80 μL.
This is most conveniently added as 50 μL from a master
mix.

5. Stop the reaction by addition of 20 μL stop solution and
incubation for 30 min at 37◦C.

6. Phenol–chloroform extract once by addition of 100 μL
of a solution of 50% (v/v) acid phenol and 50% chloro-
form:isoamylacohol (24:1, v/v). Vortex thoroughly and
spin in a microcentrifuge at 16,000×g for 5 min. Phase
Lock Gel tubes can be used to simplify this step but are not
essential.

7. Transfer the aqueous phase to a new 1.5 mL microfuge
tube containing 20 μg of yeast tRNA as carrier.

8. Precipitate RNA by addition of 250 μL 100% ethanol and
incubation at –80◦C for at least 1 h or overnight. Wash the
pellet once with 80% ethanol and resuspend in 20 μL of
dH2O.

9. Pre-prepare a 16% (w/v) polyacrylamide sequencing gel
(see Note 4). The gel is pre-run at 45◦C (controlled using a
temperature probe) and 100 W for 30 min prior to loading
of the RNA.

10. In new microfuge tubes combine 5 μL RNA and 5 μL 2x
formamide RNA loading dye. Heat samples to 80◦C for
5 min immediately prior to loading.

11. Load 4–6 μL of denatured sample per lane using disposable
sequencing tips. Size markers should be run in parallel (see
Note 5).

12. The gel is run at the same parameters as in Step 9 until
the bromophenol blue dye has migrated∼two-thirds down
the gel.

13. Transfer the gel onto Whatman blotting paper, dry, and
visualize by autoradiography or phosphorImager analysis
using the FLA-5100 imager (see Note 6).

3.2.2. Ligation-Mediated
Poly(A) Test (LM-PAT)

The combination of oligonucleotide-mediated RNAse H cleav-
age of the mRNA and high-resolution northern blotting for the
3′ cleavage fragment is the benchmark for measuring poly(A) tail
lengths of individual mRNAs (30). However, the LM-PAT assay
(Fig. 9.1d) (22, 31, 32) can generate equivalent results and has
advantages in many situations due to its higher sensitivity and ease
of use. Briefly, RNA is first incubated with oligo(dT)12–18 primers
in the presence of T4-DNA ligase at 42◦C, creating a poly(dT)
copy of each mRNA’s poly(A) tails within the sample. Addition
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of excess anchor–(dT)12 primer and further incubation at 12◦C
favors annealing of the anchor primer to unpaired poly(A) ends
and ligation to the poly(dT) stretch. This assembly is then used
to prime synthesis of first-strand cDNA by reverse transcription.
PCR reactions with primers specific to the mRNA of choice and
the anchor region generate LM-PAT products, which are visual-
ized by agarose gel electrophoresis.

Due to the limited range of primer lengths in the
oligo(dT)12–18 mixture some LM-PAT product “laddering” is
often visible. The use of a anchor–(dT)12 primer further deter-
mines that the first “rung” in the PCR product ladder represents
all short tails that can accommodate a single anchor–(dT)12 but
not an additional oligo(dT)12–18 primer. To control for any bias
due to incomplete saturation of poly(A) tails with oligo(dT)12–18
prior to cDNA synthesis or a drift toward shorter amplicons dur-
ing PCR, we routinely include control reactions with total RNA
from a deadenylase double mutant Δpan2/ccr4-1 strain (33), in
which all mRNAs possess long poly(A) tails (34, 35). We also rec-
ommend inclusion of a separate reaction, where cDNA synthe-
sis is primed with an anchor–(dT)12VN primer which we term
TVN-PAT. PCR from this cDNA will generate a size marker
for the shortest possible LM-PAT product for the mRNA being
analyzed (Fig. 9.1d). Finally, LM-PAT products can be cloned
and sequenced to guard against miss-priming and other PCR
artifacts.

3.2.2.1. Preparation
of LM-PAT cDNA

1. Dilute 1 μg total RNA or 2–10% of a poly(U)100 chro-
matography fraction to a total of 6 μL with dH2O and add
1 μL of a 1/20 dilution of the stock oligo(dT)12–18 primers
(see Note 7).

2. Denature the RNA and primers at 65◦C for 5 min.
3. Meanwhile, prepare and pre-warm to 42◦C, a master mix

containing following components for each reaction : 4 μL
dH2O, 4 μL 5x Superscript III reaction buffer, 2 μL 0.1 M
DTT, 1 μL dNTP mix, 1 μL 10 mM ATP, 1 μL T4 DNA
ligase, and 0.5 μL RNaseout.

4. Flash spin down the denatured RNA, transfer to a 42◦C heat
block, and add 13 μL pre-warmed master mix. Incubate for
30 min.

5. Add 1 μL anchor–(dT)12 primer while tubes remain at
42◦C, then mix, flash-spin, and transfer to 12◦C for 2 h.

6. Return to 42◦C for 2 min before addition of 1 μL Super-
script III. Incubate at 42◦C for 1 h and then increase tem-
perature to 52◦C for a further 1 h.

7. Inactivate the reverse transcriptase by incubation at 70◦C for
10 min.
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3.2.2.2. Preparation
of TVN-PAT cDNA
(See Note 8)

1. Assemble 1 μg of total RNA, 1 μL of the anchor–(dT)12VN
primer and water in a total volume of 11.5 μL.

2. Denature at 65◦C for 5 min.
3. Meanwhile, assemble in a separate tube and pre-warm to

42◦C the following: 3.5 μL water, 4 μL 5x Superscript III
reaction buffer, 2 μL 0.1 M DTT, 1 μL dNTP mix, 0.5 μL
RNAseout, and 1 μL Superscript III.

4. Flash spin down the denatured RNA, transfer to a 42◦C
heat block adding the 12 μL of pre-warmed components
from Step 3 to the denatured RNA/anchor–(dT)12VN
primer mix.

5. Mix flash-spin and incubate at 42◦C for 1 h, after which the
temperature is increased to 52◦C and incubation continued
for a further hour.

3.2.2.3. PCR
Amplification of LM-PAT
and TVN-PAT cDNAs

1. Dilute PAT and TVN-PAT reactions 5- and 20-fold, respec-
tively in water.

2. Prepare 25 μL PCR reactions using 5 μL diluted cDNA as
template and standard PCR components and buffers sup-
plied with the Fast-Start Taq. Assemble master mixes con-
taining 1.25 U Fast-Start Taq per reaction and both the
gene-specific forward primer and the PAT assay primer at
a concentration of 1 μM (see Note 9).

3. Cycling parameters are as follows: 2 min at 95◦C; then 30 s
each at 95, 60, and 72◦C for 25–35 cycles (template depen-
dent); and a final 2 min at 72◦C (see Note 10).

4. Run one-third of the PCR product on 2% (w/v) high-
resolution agarose gels using thin (0.75 mm) gel combs for
finer resolution. Gels are cast containing 0.5 μg/mL ethid-
ium bromide for visualization. A 100 bp ladder is used to
size the products and to estimate the poly(A) tail length.
The migration of the TVN sample represents a short tail of
∼12 adenosines.

5. High-resolution images are best obtained by laser scanning
of the gels on the FLA-5100 imager.

3.3. Microarray
Analysis of Poly(U)
Chromatography
Fractions

We use dual-color spotted oligonucleotide microarrays for this
purpose, employing generic microarray and data analysis methods
as detailed elsewhere (22, 23). We implemented two experimental
designs for analysis of poly(U) sepharose eluates. In the first, we
compare pooled low temperature fractions against a pool of high-
temperature eluates on a single microarray (Fig. 9.2a). One chro-
matography run at the scale detailed above should generate suit-
able amounts of labeled cDNAs for this. The poly(A) tail status
of a given mRNA is then represented by the corresponding array
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spot ratio, which after normalization will be ∼1 for an mRNA
with an average elution pattern. For this pool comparison we
then empirically choose spot ratio cut-offs to generate mRNA
candidate lists or simply rank the transcriptome by tail length
ratio. The second experimental design uses five separate arrays
to compare each eluate against reference mRNA (Fig. 9.2b). To
obtain this reference, bound mRNA is eluted from beads in one
batch at 45◦C. It may be necessary to combine corresponding
elution fractions from several parallel poly(U) chromatography
runs at the scale detailed above to achieve suitable amounts of
labeled cDNAs. Standard data normalization means that a hypo-
thetical mRNA representing the averaged elution pattern of all
mRNAs would be assigned a spot ratio of ∼1 for each array in the
series. To select mRNA candidates, profiles may then be sorted
into classes that deviate from the average elution pattern in an
interpretable way. For example, those having a higher proportion
of long tails than average and those having a higher proportion
of short tails than average (22). As an alternative, the ratios of
each mRNA from the five elution fractions may be transformed
into one relative poly(A) tail length measure, which is then ranked
(23), see legend to Fig. 9.2c for details. In our hands, polyadeny-
lation state data displayed good correlation between the two dif-
ferent experimental designs (Fig. 9.2c).

Our PASTA surveys on exponentially growing yeast cells
uncovered a widespread coordination of mRNA polyadenyla-
tion state among cytotopically and functionally related mRNAs
that exhibits evolutionary conservation. It further revealed exten-
sive correlation between tail length and other physical and func-
tional mRNA characteristics (Fig. 9.2d). PASTA surveys could
be done in other growth conditions, mutant cells, or be carried
out in more complex eukaryotic models and cellular contexts
such as early embryonic development, in which tail length con-
trol is deemed particularly relevant. Indeed, poly(A) tail length
control in different organisms has already been studied using
related approaches (36–38). Finally, RNA eluates prepared as in
Section 3.1 should be suitable for analysis on any single- or dual-
color microarray or alternatively next-generation sequencing plat-
form. This will simply require some adjustments to the experi-
mental design and processing of the RNA samples.

4. Notes

1. The buffers for poly(U) chromatography are best made
from stocks directly before use. This is particularly impor-
tant for EB and HSBB since they contain deionized for-
mamide, which may become ionized with time. To rule
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out any variance in water quality we use Sigma’s molec-
ular biology-grade water for preparation of all small-scale
buffers and the suspension of RNA and cDNA samples.

2. The fine bore size of insulin syringes results in very few
beads being inadvertently removed at buffer change and
elution steps and allows the beads to be substantially
depleted of liquid minimizing the mixing of fractions.

3. We find that elution steps at 12, 25, 30, 35, 45◦C work well
to achieve a good size separation between fractions, each
5◦C increment resulting in approximately 10 nt tail length
shift. Ideally, the higher temperature elution steps are car-
ried out in a second thermomixer placed at room tempera-
ture. Transferring the first one from the cold room to a lab
bench and reconnecting it immediately might cause elec-
trical faults due to condensation; however, we still do this
once the first elution (12◦C) has started, the block main-
tains the incubation temperature for ∼5 min.

4. Our large format electrophoresis system is 35 cm wide,
45 cm long, and the gel has a width of 0.2 mm (Owl S3S).

5. We have used standard procedures outlined in the manufac-
turer’s instructions for PNK to generate 32P-labeled 10 bp
DNA ladders that can be run alongside RNA samples to
approximate the length of poly(A) tracts associated with
each fraction.

6. 16% urea polyacrylamide sequencing gels tend to be quite
dry and their thinness makes handling difficult. To trans-
fer the gel onto blotting paper remove the top plate, place
blotting paper (pre-cut to size) onto the gel surface (it will
not stick efficiently like lower percentage gels), and invert
onto a clean bench-top, allowing ∼4 cm overhang of the
gel relative to the edge of the bench. Pry the overhanging
gel from the glass plate allowing it to fall onto the blotting
paper. Next lift the glass plate up allowing the rest of the
gel to fall onto the blotting paper. The gel is then dried
onto the paper using a vacuum gel drier (2 h at 80◦C).

7. In practice, the dilution of the oligo(dT)12–18 primers
linker is empirically determined and varies according to the
activity of the T4 ligase and other parameters that are dif-
ficult to quantify. Readers are urged to refer also to Sal-
lés and coworkers (39) and references therein for further
discussion.

8. The TVN-PAT reaction shows the minimal length that can
be resolved by the LM-PAT assay and can unveil the occur-
rence of alternate poly(A) cleavage sites. Typically this reac-
tion is slightly more efficient than the LM-PAT reaction,
and a PCR product of defined size will be more readily vis-
ible than a smear of amplicons. To compensate for this,
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TVN-PAT samples undergo a higher dilution (or lower
PCR cycle number) than equivalent LM-PAT samples.

9. The gene-specific primers for Saccharomyces cerevisiae tran-
scripts are generally designed at or near the stop codon to
give a primer of 18–22 nt length with a melting tempera-
ture of >60◦C and a PCR product size of between 100 and
300 base pairs. To design primers for LM-PAT assays on
Schizosaccharomyces pombe and mammalian mRNAs where
3′ UTRs tend to be longer, a suitable primer sequence
is chosen within 200 base pairs from the cleavage and
polyadenylation site. If unknown, the site can be narrowed
down experimentally starting with a primer based around
the sequence at the stop codon. In all cases, the amplified
LM-PAT products encompass a region of the mRNA 3′
UTR in addition to the stretch of poly(A) tail.

10. By using low cycle numbers and a heat-activated poly-
merase (Fast-Start Taq by Roche) we avoid most PCR bias
(22). However, it is important to note that bias toward
‘apparently’ shorter poly(A)-tails can occur when using too
high a concentration of the oligo (dT)12–18 linker during
the ligation or over-cycling in the PCR step. It is useful
to analyze total RNA from wild-type cells (PAN2/CCR4)
and an isogenic strain mutant for both yeast deadeny-
lases (Δpan2/ccr4-1) in parallel to ensure saturation of the
poly(A) tail during cDNA synthesis.
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Chapter 10

Enabling Technologies for Yeast Proteome Analysis

Johanna Rees and Kathryn Lilley

Abstract

Whilst the study of yeast genomes and transcriptomes is in an advanced state, there is still much to learn
about the resulting proteins in terms of cataloging, characterization of post-translational modifications,
turnover, and the dynamics of sub-cellular localization and interactions. Analysis of the transcripts gives
little insight into function or diversity as changes in RNA levels do not always correlate with the resulting
protein abundance. A number of global and targeted attempts have been made to catalog and character-
ize the yeast proteome and we describe here the methods used to gain a greater understanding of the
yeast proteome. This comprehensive review also describes future approaches that will aid completion in
identifying and characterizing the remaining 20% of the undetermined yeast proteome as well as giving
new insight into protein dynamics.

Key words: Proteome, quantitation, post-translational modifications (PTMs), interactions,
sub-cellular localization, protein turnover, protein microarrays, bioinformatics and data repositories.

1. Introduction

1.1. Why Study at the
Proteome Level?

Over the last decade or so, a large body of data describing RNA
abundances in cells and tissues have been collected. Our knowl-
edge of cellular mechanisms has been greatly enhanced by the
study of RNA expression patterns upon perturbations such as
mutation. Characterizing RNA expression does not always lead
to mechanistic insight, arguably transcripts can be thought of as
surrogates for the proteins they encode, the proteins are the work
horses, and their study directly couples expression and function.
Furthermore, the function of many proteins remains to be deter-
mined, for example, up to 25% of the predicted Saccharomyces
cerevisiae open reading frames have an unassigned molecular func-
tion (http://www.yeastgenome.org). Analysis of the transcripts
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of these proteins will give little insight into their function, as
since changes in RNA levels do not always correlate with their
relevant protein product abundance the credible prediction of
protein abundance (1, 2). Therefore for a systems-wide knowl-
edge of an organism, characterization of the proteome is crucial.
The global study of proteins within a sample has given rise to the
field of proteomics.

In general, much less is known about the protein abundances
in the cell as methods to measure abundances and changes in
expression levels are technically very challenging for a number
of reasons. First, the chemical characteristics of proteins are far
more varied and complex than are those of nucleic acids, mak-
ing them more challenging to work with. Second, the range of
protein concentrations in a given cell or biofluid is large and
is generally over many orders of magnitude in any given sam-
ple. Unfortunately, there is no technology yet developed for the
amplification of the rarer abundance proteins in contrast to PCR
amplification of nucleic acids. Low abundance protein species may
be detected only after protracted enrichment methodologies have
been applied. Third, an additional layer of complexity is possible
as many isoforms of proteins exist that are translated from a com-
mon gene but have different functions and different distributions,
which make interpretation much more involved. These may arise
not only from differential splicing or initiation but also as a result
of the plethora of post-translational modifications (PTMs) that
are possible such as phosphorylation, methylation, acetylation,
ubiquitination, glycosylation, and proteolytic processing amongst
others.

An additional complexity when studying the proteome is
the spatial arrangement of proteins in terms of recruitment to
multiprotein complexes and sub-cellular localization. Different
protein–protein interaction combinations give rise to an enor-
mous diversity of protein complexes and functions. Moreover, in
order to fulfill their function, proteins must be present at their
correct sub-cellular location. In eukaryotes, there are numerous
complex membrane-delineated sub-cellular structures to which
many proteins are trafficked in order to carry out their correct
physiological function. The assignment of the sub-cellular local-
ization of proteins is of great importance if biologists are to elu-
cidate the role of any given protein and fully comprehend cellular
processes by tracing certain activities to specific organelles.

Traditionally the characterization of proteins involves iden-
tification of proteins within a sample using mass spectrometric
technologies, some details of which are given in Section 2 of this
chapter. An additional challenge in the study of proteins is the
reliance on well-characterized genomes which enable interpreta-
tion of protein and peptide fragmentation patterns generated by
the use of such technologies. The S. cerevisiae genome is one of
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the best annotated eukaryote genomes and hence the application
of proteomics technologies to this organism is relatively mature
and historically it has been a test bed for the development of
many proteomics methodologies. Data from yeast studies have
aided the mapping of many multicellular proteomes. In fact, as
the result of recent heroic efforts by the proteomics community, it
is reasonable to suggest that S. cerevisiae is one of the species with
the best characterized proteome (3) (http://www.peptideatlas.
org). However, despite this, 20% of the predicted proteome has
yet to be detected despite the numerous experimental approaches.

2. Characteriza-
tion of the
Proteome

The simplest form of proteomics is to catalog the presence of
proteins in any given sample. There are numerous approaches to
achieve the part list of proteins within a yeast cell. Several years
ago an extensive study from the O’Shea and Weissman labora-
tories led to the creation of a S. cerevisiae fusion library where
each open reading frame was tagged with a high-affinity epitope
and expressed from its natural chromosomal location (4). Using
immunodetection of the common tag, they obtained a census of
proteins expressed during log-phase growth and measurements
of their absolute levels, discovering that approximately 80% of
the proteome is expressed during normal growth conditions. The
results of this study are of great utility to the community but are
not without some caveats. Protein fusions were created which may
have perturbed expression levels, trafficking, the ability to form
protein–protein complexes, and physiological function of the
protein.

The technological development which has aided the study
of the global protein content of a sample, without resorting to
piecemeal creation of tagged fusion proteins, has been the advent
of soft ionization methods coupled to mass spectrometry. Two
technologies, matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF) and nanoelectrospray
ionization, earned their inventors, Koichi Tanaka and John Fenn,
respectively, Nobel prizes in 2002 (5, 6). Both approaches result
in stable products of ionization of proteins and peptides within
mass spectrometry. These stable ions can then be characterized in
terms of their mass and also quantity. Good reviews of the mass
spectrometry used in conjunction with analysis of the proteome
can be found in (7, 8). Mass spectrometry methods have advanced
considerably over the last few years and now typically proteins
are identified by performing tandem mass spectrometry experi-
ments on peptides derived from proteins using specific proteases,

http://www.peptideatlas.org
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typically trypsin. Peptides ionize more readily than whole pro-
teins and can be fragmented using collision-induced dissocia-
tion within a tandem mass spectrometer to produce informative
fragment ions whose masses can be used in silico to reconstruct
the sequences which would give rise such fragmentation patterns
using a variety of algorithms (MASCOT, SEQUEST, Phenyx, and
X!Tandem). For such approaches to be of any use in the global
analysis of the proteome, protein separation methods have made
these methodologies employable with complex samples such as
whole cell lysates.

Traditionally, two-dimensional polyacrylamide gel elec-
trophoresis (2D PAGE) has been the protein separation technique
most associated with proteomics studies (9) and remains one of
the key methodologies. Here proteins are separated first as a func-
tion of their isoelectric point (pI) and second by their denatured
molecular weight (Mw). A major drawback of using 2D gels is
their incompatibility with hydrophobic membrane proteins which
make up a mechanistically important subset of proteins and are
likely to play crucial roles within organelle proteins (10).

Non-2D gel-based technologies therefore are more attractive
methodologies to employ in a global study of the sub-cellular
proteomes as they do not suffer the same bias toward analysis
of the soluble proteome as do 2D gels, provided that the pro-
teins are successfully solubilized prior to analysis. Typically in
non-2D gel-based approaches, the proteome undergoes simpli-
fication before mass spectrometric analysis in order to maximize
the amount of information about the protein content of the sam-
ple. These methods are often referred to as shot-gun proteomics.
One such approach, MudPIT (multi-dimensional protein identi-
fication technology) (11), involves a solution-phase digestion of
proteins to peptides and then multi-dimensional chromatographic
separation of peptides before mass spectrometric analysis typically
based on separation using strong cation exchange chromatogra-
phy followed by orthogonal separation using reverse-phase chro-
matography. Washburn and co-workers first demonstrated the
utility of this approach using a S. cerevisiae cell lysate, identify-
ing 1,484 proteins. At the time this catalog of the yeast proteome
was significantly larger than any previous attempt using gel-based
methods or single-dimensional peptide chromatography. Subse-
quent refinement of this approach means that it is a method
of choice for cataloging the proteome in an unbiased manner,
sampling proteins from all sub-cellular portions of the cell with
extremes in pI, Mw, abundance, and hydrophobicity.

The above approaches are good for gaining part list of pro-
teins within a given proteomics, but more edifying datasets also
need to contain information about protein abundances.
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3. Quantitative
Proteomics

There are two approaches to interrogating the proteome in a
quantitative manner. Relative quantification methods have been
the most widely used method to date. More recently, complemen-
tary methods have been developed to give absolute quantification
values for any given protein. This latter approach tends to be used
in more focused studies where prior knowledge of the proteins is
used to design quantification experiments. Relative quantification
methods are generally used for hypothesis-generating studies.

3.1. Relative
Quantitation

The technique historically associated with quantitative proteomics
studies is 2D PAGE (12). Relative quantification utilizing 2D gels
is achieved by comparing the protein spot intensities preferably
with fluorescent dyes which bind to proteins stoichiometrically
(Sypro Ruby, Deep Purple, and CyDyes) and there are many soft-
ware packages to facilitate quantification (13).

With more traditional approaches to 2D PAGE, problems
with sensitivity, reproducibility, and normalization across the
gels have been overcome by introducing difference in-gel elec-
trophoresis (DIGE) technology (14, 15) in which proteins from
different samples to be compared quantitatively are labeled with
fluorescent dyes based on cyanine and pooled before being
applied onto a gel. An internal standard is typically used to cor-
rect for the gel-to-gel variation. Within the yeast community,
Valerius and co-workers (16) used this approach to study changes
in cell interactions of S. cerevisiae during nutrient starvation. Uti-
lizing the DIGE methodology, they determined a set of post-
transcriptionally regulated proteins which were regulated proteins
in response to amino acid starvation which included the ribosomal
protein Cpc2p/Asc1p. They went on to show that the deletion of
CPC2/ASC1 abolished amino acid starvation-induced adhesive
growth and impaired basal expression of FLO11 and its activa-
tion upon starvation in haploid cells.

A weakness of all 2D PAGE-based methodologies, however,
is that it is not always possible to relate the signal of a spot to a
particular protein when multiple proteins are detected by more
sensitive mass spectrometers.

Alternatively, non-2D gel-based methods can be used in a
quantitative manner by coupling them with either the incorpora-
tion of differential stable isotopes or label-free quantification. The
latter is achieved by one of two methods: either by comparing the
peptide peak intensities or by counting the number of MS/MS
spectra (spectral counts) collected per protein (17, 18). Within
the field of yeast proteomics, both approaches have been used to
yield significant datasets. Mosley and co-workers (19) used the
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spectral counting approach to characterize an enriched nuclear
fraction using sucrose density gradients followed by MudPIT.
They identified 2,674 proteins and estimated their abundance,
some of which has been shown to be in abundances less than
100 copies per cell by Ghaemmaghami and co-workers (4). These
researchers also assessed the co-fractionation of nuclear complexes
including transcriptional regulation complexes.

Peptide ion peak intensity measurement as a method to
gain quantitative proteomics data has been challenging because
it heavily relies on being able to align MS matrices between
different LC-MS runs and hence accurately match the intensity
of the same ion between successive runs. Foss and colleagues
(20) measured protein levels in total unfractionated cellular
proteins which involved using graph theory to enable alignment
of 408 LC-MS datasets. They went on to apply this approach to
elucidate the genetic basis of variation in protein abundance in a
cross between two diverse strains of yeast, BY4716 and a vineyard
isolate. They discovered that loci which were found to influence
protein abundance were different from those that influenced
transcript levels. This study again emphasized the importance of
direct analysis of the proteome. One of the advantages of these
approaches is the lack of requirement for labeling of peptides.
A disadvantage of these methods, however, is the potentially
semi-quantitative character of the data as accurate quantitation
is highly dependent on reproducible peptide generation, chro-
matography, and ionization efficiency (21). Another level of
technical challenge within label-free quantitation methods comes
from the fact that samples to be compared are not combined
at any point in the experimental protocol and hence technical
variability, particularly in the case of studies with protracted
workflows, will have influence on the reproducibility of the data.
This in turn may lead to the necessity to run many replicate
experiments to achieve statistically relevant data (22).

Alternative non-gel-based methods which overcome some
elements of technical irreproducibility involve the differential
incorporation of stable isotopes. Incorporation of stable isotopes
into a protein or peptides can be achieved in vivo, or in vitro by
the incorporation of chemical tags.

In the case of yeast, in vivo incorporation of stable iso-
topes during growth is possible in two ways. The first entails the
replacement of an amino acid by on containing a heavy isotope
in growth media (23). This approach is known as SILAC (sta-
ble isotope labeling of amino acids in cell culture). The second
method, metabolic labeling, involves complete replacement of an
element used to synthesize amino acids, typically 15N, by using
growth media which contain only the stable isotopic form of the
element (24). Samples grown in the presence of the heavy iso-
tope are pooled with samples grown in the presence of the light
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isotope and are subsequently digested to peptides and analyzed
by LC-MS/MS. For both SILAC and metabolic labeling, the iso-
tope label is uniformly incorporated into all proteins after several
rounds of cell division. The relative abundance of the light pep-
tide is then compared to that of the corresponding heavy peptide,
giving information on the relative protein quantities in addition
to protein identity. The strength of this approach is that sam-
ples can be combined early on in an experimental protocol and
thus from the point of combination share experimental variance.
A weakness of the technique, however, is the limited multiplex-
ing capabilities of the system, with typically pair-wise comparisons
being made within experiments. The SILAC technology has been
used by several researchers to investigate the yeast proteome. de
Godoy and co-workers (25) recently employed this technology to
compare protein levels of 4,399 endogenous proteins in haploid
yeast cells to their diploid counterparts spanning four orders of
magnitude in protein abundance. They achieved this admirable
level of protein coverage (approx. 75% of the yeast proteome)
by using a combination of multi-dimensional separations at the
protein and peptide levels, and repeat mass spectrometric analysis
at finite, but overlapping mass ranges. They demonstrated one-
to-one ratios of most yeast proteins but noted that key mem-
bers of the pheromone pathway were specific to haploid yeast
where other members of the same pathway were unaltered. From
this they postulated an efficient control mechanism of the mat-
ing response. Additionally they noted several retrotransposon-
associated proteins which were specific to haploid yeast and also
highlighted a significant change for cell wall components consis-
tent with the fact that diploid cells have twice the volume but not
twice the surface area of haploid cells. The large coverage of the
yeast proteome demonstrated the utility of this approach to gain
very information-rich datasets.

The alternative in vivo stable isotope labeling strategy, where
replacement of an element with a stable isotopic variant occurs
during growth, has also been used to great effect in yeast. de
Groot and colleagues (26) replaced 14N with 15N in yeast culture
to reveal post-transcriptional regulation of key cellular processes
during anaerobiosis.

More widely applicable differential stable isotopic labeling can
be achieved by labeling extracted proteins in vitro with one or
more isotopic variants of a tag. There are many such tagging
methods currently available. One of the most simple approaches
involves proteolysis of proteins in the presence of H2

16O or
H2

18O, leading to the incorporation of two isotopic variants of
oxygen at the C terminus of every peptide generated (except the
original C terminus) (27). Currently, however, the most com-
monly used peptide tagging system is the iTRAQ (amine-reactive
reagents for relative and absolute quantitation), developed by
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Ross and co-workers at Applied Biosystems (28). The tagging sys-
tem is a multiplexed set of four or eight isotope tags which label
via amino groups of peptides typically generated by proteolysis of
proteins using trypsin. iTRAQ tags are isobaric and differentially
labeled versions of a peptide appear as a single precursor ion peak.
When an iTRAQ-labeled peptide is subjected to collision-induced
dissociation in MS/MS mode, however, the iTRAQ tags release
diagnostic, low-mass ions (reporter ions) that are used for quan-
titation. This technology thus allows for significant levels of mul-
tiplexing within experimental designs. iTRAQ labeling to achieve
relative quantification of the yeast proteome has been used by
many groups (29–31).

In a set of collaborating laboratories including the authors’,
this method was used for a systems-wide study of the tran-
scriptional, proteomic, and metabolic levels under defined con-
trolled conditions where either nitrogen, carbon, sulfur, or
phosphorus was limiting (32). The studies demonstrated that
characteristic signatures at the transcriptomic, proteomic, and
exo- and endometabolomic levels reveal groups of growth-
regulated genes, proteins, and biological processes controlled
at different levels, with specific outliers characteristic of each
nutrient-limiting condition.

Although the authors used iTRAQ data in the publication
describing this study, earlier datasets were collected on the same
material using DIGE (see Fig. 10.1), demonstrating that com-
plementary datasets can be achieved using different quantitative
methods.

Each approach listed above has strengths and weaknesses, and
such technologies should not be used without careful considera-
tion of appropriate experimental designs and data analyses. A full
description of these is outside the scope of this manuscript and
explored in (10) and many other publications.

3.2. Absolute
Quantitation

Methods to define differences between two or more proteomes
in a relative manner have been used with great effect by the com-
munity, but such methods have several limitations.

The relative nature results in comparison possible only for the
same protein and not between different protein species, which
would be very useful in terms of determining stoichiometries
of proteins within multiprotein complexes. Moreover, in relative
proteomics experiments carried out on a global scale, a sample of
interest is usually compared against a “normal” sample acting as
a reference. Much care must be taken into consideration when
determining and preparing what can be considered to be the
normal sample, otherwise serious errors in quantitative measure-
ments will arise. Large amounts of this normal sample also have
to be prepared for larger scale experiments, which often means
that storage of the sample is challenging if its quality is not to
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Fig. 10.1. Comparison of DIGE and iTRAQ proteomics data. The x- and y-axes represent the two principal compo-
nents (PC1, PC2), the groups responsible for the majority of the variance in (a) proteomics dataset collected using DIGE
technology on cell lysates from replicate samples grown with either carbon (C), nitrogen (N), phosphorus (P), or sulfur (S)
limitation and (b) dataset using the same samples but quantifying the proteome using the iTRAQ technology. Growth rates
μ=0.1 and 0.2 h–1. Reproduced from (32), with permission from BioMed Central (copyright retained by the authors). For
more details see (32).

be compromised. Moreover, in label-free quantification methods,
the experimental conditions need to be kept constant at all times
to assure pattern reproducibility. Additionally, in relative quantifi-
cation experiments involving mass spectrometric measurements
of peptides, it is often impossible to sample the set of peptides in
different experiments and different peptide surrogates for a pro-
tein may be measured in successive experiments. This can cause
issue with respect to peptides which may be common to different
protein isoforms. Finally, there is a limit of detectability in most
relative quantification experiments as the peptides are sampled in
a data-dependent manner such that only the most abundant pep-
tides are analyzed, leading to a reduction in the abundance range
sampled (33).

Methods to interrogate the proteome in a manner which
returns absolute quantitation data for peptide species acting as
surrogates for the proteins from which they were proteolytically
generated have become more widely used in recent years. Broadly
such methods fall into four categories:

1. spiking a known concentration of a synthetic stable isotope-
labeled target peptides which serve as internal standards
(AQUA) (34);

2. creation of a concatenated stable isotope-labeled protein
(QconCAT) which when digested liberates target peptides
which serve as internal standards (35);
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3. spiking of a known concentration of a stable isotope-labeled
version of the protein whose absolute concentration is to be
determined. The sample is then usually digested to peptides
after addition of the labeled internal standard protein and
quantification is carried out at the peptide level (36);

4. spiking of a known concentration of an abundance calibra-
tion protein and using peak intensity measurements of pep-
tides generated from this protein after digestion to infer
the absolute concentration of peptides within the same mass
spectrometric run (37).

The first three of the above approaches use the relative inten-
sities of the spiked internal standard peptides (generated upon
digestion of their parent protein) and the unlabelled peptides of
the same sequence generated from the native proteins within a
sample to extrapolate the absolute amount of the latter in the
sample.

These three approaches are often used in conjunction with
selective reaction monitoring (SRM) approaches. Here, the only
selected ions corresponding to the mass/charge ratio of the tar-
get peptides (native peptide and the internal standard surrogate
peptide) are selected in the mass spectrometer and relative mea-
surements are made via a set of discriminatory fragment ions gen-
erated as part of the tandem mass spectrometry process (38).

All four approaches have strengths and weaknesses. The first
two methods assume that the stoichiometric amounts of the
native peptide are released upon digestion but are suitable for
multiplexing such that absolute abundance of several proteins
can be recorded per experiment. The third approach is in many
respects the most robust as internal standard and native pep-
tides are generated simultaneously as part of the same proteolytic
digest, but this method requires production and purification of
recombinant labeled proteins and thus does not lend itself to high
levels of multiplexing. The fourth method assumes that each pep-
tide has the same ionization efficiency as the internal standard
which is not likely.

In the case of the first three approaches is of utmost impor-
tance to design internal standard peptide surrogates such that they
are specific (proteotypic) for the isoform of protein of interest
and are not likely to undergo differential chemical modification
compared with the native peptide during sample preparation, for
example, oxidation or deamidation (39).

A recent study, of great significance to the yeast community,
has come from the Aebersold group and makes use of the above
methodologies (3). They applied a targeted proteomics approach
using SRM to detect S. cerevisiae proteins expressed at concen-
trations below 50 copies/cell from total cellular digests (see Fig.
10.2). They achieved this by carrying out SRM analysis on five
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Fig. 10.2. Cellular concentrations of the set of measured proteins. Protein abundances are derived from (4). Yeast
proteins detected by SRM assays are sorted by abundance to show the even distribution across the whole range of con-
centration (filled circles). Proteins for which the absolute abundance was measured using isotopically labeled standards
are indicated on top of the graph (open circles). Reproduced from Picotti et al., (2009) (3) with permission from Elsevier.

proteotypic peptides per 100 proteins which spanned the abun-
dance range of the S. cerevisiae proteome as determined in the
antibody-based study of the O’Shea and Weissman laboratories
(4). They demonstrated a linear correlation between the abun-
dance of proteins and the SRM signal intensity of the most intense
proteotypic peptide and confirmed their findings by using sta-
ble isotope-labeled reference peptides to absolutely quantify 21
selected proteins distributed across all levels of cellular abun-
dances. They went on to show the power of this approach by
displaying rapid and reproducible analysis of a network of proteins
spanning the entire abundance range over a growth time course
of S. cerevisiae involving passage through a series of metabolic
phases. The great power of this approach is that as only a set
number of proteins are assayed in any experiment, sensitivity and
speed of analysis are greatly improved.

Focused quantitative proteomics approaches hold huge
promise in situations where the proteome is well annotated
and suitable proteotypic peptides can be selected. Entire sig-
naling pathways can be targeted and, because of the fast mass
spectrometric-based assays associated with this approach, it lends
itself to temporal studies or experimental schema where multiple
treatments are measured with high replication (40).
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The MRMAtlas contains a compendium of targeted pro-
teomics assays to detect and quantify yeast proteins in complex
proteome digests by mass spectrometry. It results from high-
quality measurements of yeast proteins conducted on a triple
quadrupole mass spectrometer and is intended as a resource for
selected/multiple reaction monitoring (SRM/MRM)-based pro-
teomic workflows. The database (http://www.mrmatlas.org) at
present is the largest resource of validated MRM assays of any
organism. It currently contains assays for nearly 1,500 S. cere-
visiae proteins, corresponding to 21% of the yeast proteome and
spanning all levels of abundance. Furthermore, it offers different
software tools which allow users to browse through single pro-
teins, peptides, and cellular pathways. The optimal coordinates for
establishing an MRM assay can be readily exported and uploaded
to the SRM/MRM method of a triple quadrupole mass spectrom-
eter. The assays can then be used to detect and quantify at high
throughput deliberately chosen sets of target proteins in any bio-
logical sample of interest.

4. Post-
translational
Modifications

The previous section dealt with characterization of the proteome
simply in terms of abundance. A whole added layer of complexity
is possible when one considers chemical events which may occur
to proteins after their translation.

Post-translational modifications (PTMs) are paramount for
cell life. PTMs dictate progression of cells through the cell cycle
and metabolites through the various metabolic pathways, synthe-
sis of phospholipids, and cell wall assembly amongst other pro-
cesses. Most PTMs can now be detected by protein and peptide
analysis by mass spectrometry (MS), either as a mass increment or
a mass deficit relative to the nascent unmodified protein (41). In
addition, the modified amino acid may liberate a unique diagnos-
tic ion in MS/MS. Most PTMs can be searched for by selecting
such variable modifications in parameters in software for example,
Mascot (Matrix Science) such that the additional mass of a pep-
tides associated with the modification is utilized within the search
(42).

4.1. Phosphorylation Many pathways and protein interactions are regulated by
reversible phosphorylation and studies date back to the 1950s
(43–45). More recently, MS has become the method of choice for
the analysis of protein phosphorylation with thousands of phos-
phopeptides and phosphorylation sites being routinely identified
(46). The first yeast phosphopeptides were discovered in 1987
(47) and to date there are 145 published MS-based studies of
which 39 were in 2009 (PubMed).

http://www.mrmatlas.org


Enabling Technologies for Yeast Proteome Analysis 161

Phosphoprotein and phosphopeptide detection is still a
rapidly developing field in MS with several complementary meth-
ods for enriching and detecting specific phosphopeptides from
complex mixtures. Such enrichment methods included titanium
dioxide (TiO2), iron (Fe3+), and gallium (Ga3+) that bind phos-
phate groups in an acidic environment. A spectral shift of 80 Da
is indicative of a phosphorylated peptide with a neutral loss mass
difference of 98 Da (including 18 Da for a water molecule) for
phosphothreonines and -serines.

Comparisons of phosphoproteomes of three yeast species
(S. cerevisiae, Candida albicans, and Schizosaccharomyces pombe)
have been performed to quantify the evolutionary change in
phosphorylation and resulted in the proposal that protein kinases
are an important source of phenotypic diversity (48). Phospho-
proteins are conserved within these three species with predomi-
nantly phosphoserines (72–82%), phosphothreonines (15–25%),
and few phosphotyrosines (0.8–1.9%), with an average of 20% of
each proteome comprising phosphoproteins. In the same study,
in an analysis of 6,333 S. cerevisiae proteins, 1,185 were phos-
phoproteins with 3,486 phosphosites. The conserved functions
assigned to the phosphoprotein groups were cytokinesis, cell bud-
ding, morphogenesis, and signal transduction. Functions that
were not conserved across the three species included RNA poly-
merase I, respiratory chain proteins, and outer kinetochore pro-
teins. Global analyses, in particular of Cdk1 substrate phospho-
rylation sites, have revealed that the position of most phospho-
rylation sites in S. cerevisiae is not conserved in evolution and
that the clusters shift position in rapidly evolving disordered
regions (49).

Many databases exist to identify potential/predicted phos-
phorylation sites such as Phosida and more recently Phospho-
Pep (http://www.phosphopep.org), a database of protein phos-
phorylation sites in four model organisms including yeast (46).
This paper reported 9,554 phosphopeptides with confidence
(p value>0.8) and a total of 8,901 phosphorylation sites (of
which 5,890 are uniquely assigned) in S. cerevisiae, covering one-
third of the predicted yeast proteome. In addition, PhosphoPep
has the ability to support cross-species comparisons and viewing
and aligning of orthologous phosphoproteins in whole signaling
pathways at different cellular states that could be useful in tar-
geted experiments.

MS technologies are frequently improving in order to pre-
serve PTMs and the introduction of electron transfer dissoci-
ation (ETD) has offered a complementary approach to deter-
mining sites of phosphorylation by MS detection of phospho-
proteins. ETD employs radical anions to bring about fragmen-
tation of the peptide backbone during tandem mass spectrome-
try. This fragmentation generates c and z fragment ions from the
original peptide but largely leaves side chain modifications such

http://www.phosphopep.org
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as phosphorylation intact (50). In collision-induced dissociation
(CID), the method typically employed in tandem mass spectrom-
etry results in the loss of the labile phosphate groups on phos-
phoserines and phosphothreonines, hence use of ETD is a good
approach to confirm the existence of phosphorylation at these
two residues. Using ETD, Chi et al. identified 1,252 phosphory-
lation sites, including a phosphohistidine (pHis) site, on 629 pro-
teins with phosphoprotein expression levels ranging from <50 to
1,200,000 copies per cell. In addition, they were able to identify
a consensus site representing a motif for uncharacterized kinases
and that yeast kinases contain a disproportionately large number
of phosphorylation sites (51). More recent large-scale phospho-
proteome analysis of S. cerevisiae and human embryonic stem cells
using a decision tree-driven algorithm resulted in 5,874 phospho-
peptides of 39,507 total identifications using ETD (52).

4.2. Glycosylation The most complex and energetically most costly PTM of yeast
proteins is glycosylation. Although yeast possesses only two types
of glycolsylation, N-glycosylation of asparagine residues and
O-mannosylation of serine and threonine residues, further mod-
ifications of the primary sites of modification lead to mannosyl
extensions of various lengths but, unlike eukaryotes, these
are relatively simple and not as highly branched as oligo- and
polysaccharide groups (53). The biosynthesis of these PTMs,
however, is highly conserved in eukaryotes and studies in yeast
and yeast mutants have been invaluable in elucidating altered
cellular functions and human developmental diseases such as
CDG (congenital disorders of glycosylation) syndrome, con-
genital muscular dystrophy, and neuronal cell migration defects
(54, 55). Detection of glycosylated peptides or proteins is more
complex due to the varieties of groups, N-linked glycans result
in mass increments of 162, 203, 291, and 365 Da and O-linked
glycans result in many increments >203 Da (55). Glycoproteins
or proteolytically derived glycopeptides can be enriched for using
lectins. Following enrichment, glycopeptides can be treated with
enzymes to remove the core sugar moieties to aid identification
of the modified peptide. Studies have used 18O labeling to enable
site- specific assignment of glycosylation sites by ion signals (56).
There is little yeast glycoproteome data reported at a global scale.
Most studies to date have been more focussed such as the char-
acterization the oligosaccharyltransferases (57), and glycosylated
membrane proteins (58), and the functional effects of perturbing
glycosylation (54). There is much to investigate in this area
and new developments in refining the detection techniques will
greatly improve the high-throughput identification and mapping
of these complex PTMs.

4.3. Acetylation Almost as abundant as phosphorylation, acetylation is a reversible
modification, neutralizing the positive charge on lysine residues
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thereby changing protein function, and has many roles within a
cell. The most extensively studied acetylations in all organisms are
those involving lysine residues within histone proteins. Acetyla-
tion and deacetylation of histone lysine residues are among the
best of all characterized post-translational modifications in yeast.
There are over 20 reported histone acetyltransferases and deacety-
lases in S. cerevisiae (59). Acetylation is also crucial in extranuclear
metabolic proteins such as the gluconeogenesis enzymatic Pck1p.
Tandem MS identified multiple essential Lys residues crucial for
Pck1p activity which allow yeast growth on non-fermentable car-
bon sources and deacetylation of a single residue resulted in a
loss of Pck1p activity blocking the yeast life span (60). Other
important roles of acetylated proteins in yeast are in the sepa-
ration of sister chromatids by SMC3 and the regulation of kinase
activity for CDC28, CDK9, and CDK6 (61). These authors con-
cluded that lysine acetylation appears to contribute to the regula-
tion of all nuclear functions and that there appears to be extensive
cross talk between different PTMs, notably phosphorylation and
ubiquitination.

Acetylation of proteins or protein complexes can be easily
detected by MS especially as acetyl–lysine is a very stable PTM
during tandem MS analysis. Acetylation of lysine residues can be
observed by a spectral peak shift of 42 Da corresponding to an
acetyl group. An alternative or a complementary method to iden-
tify acetylated proteins is by immunoaffinity purification using
an antibody specific for acetyl-lysine followed by further enrich-
ment with IEF and high-resolution MS. This technique used by
Choudhary and colleagues identified 3,600 acetylation sites in
1,750 human proteins many of which were involved in complexes
and are homologous to yeast. Unlike phosphorylation, acetyla-
tion appears to target structurally ordered regions and is not
only restricted to the nucleus. Analysis of amino acids surround-
ing acetylated lysines in cytoplasmic and mitochondrial acetylated
proteins was also mapped, providing potential motifs for mapping
other acetylomes including yeast (62).

The only global attempt to map the yeast acetylome are pro-
tein acetylation microarrays that have characterized acetylated
yeast substrates revealing 91 proteins acetylated by the NuA4
complex that were validated in vitro using GST fusions (60).

4.4. Methylation Methylation of proteins is a critical process in gene transcription,
both activation and repression (63), and is abundant especially in
histones and ribosomes occurring most commonly on lysine and
arginine residues but also aspartate and glutamate residues where
different diverse functions have been proposed in yeast (64).

Methylation detection is possible by MS but the mass shift of
trimethylation is similar to that of acetylation (approx. 42 Da);
however, high-resolution MS is able to distinguish these as well
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as establish the site specificity. In addition, the retention times of
acetylated or trimethylated version of the same peptide differ (63)
and the diagnostic ions are unique for each (tri-)(di-)methylated
lysine or arginine peptide, whereas acetylated peptides generate
ammonium ions at m/z 126 and 143 (41). To date, no global
methylation proteome in yeast has been reported.

4.5. Ubiquitination Ubiquitination (Ub) is a factor in protein turnover and is
implicated in many diseases. Sequential addition of ubiquitin
molecule(s) by ubiquitin ligase to lysine residues in proteins,
although a rapid and a specifically targeted event, is easily
detectable by MS as a 114-Da Gly-Gly tag remains even after
tryptic digestion of proteins. Current studies are adding to the
knowledge of ubiquitination sites and tools are now available to
predict such sites (UbPred) (65). This chapter also describes how
mutant yeast strains have been invaluable in targeting short-lived
proteins for ubiquitination and the sequence and structural pref-
erences of ubiquitination sites. To date there are hundreds of con-
firmed and predicted Ub sites in S. cerevisiae (65–67).

4.6. Sumoylation Sumoylation, like ubiquitination, is reversible modification of a
lysine residue, which is a rapid event, and often protein targets
are at very low abundance. A number of proteomics approaches
have addressed this modification at a quantitative and global scale
and SILAC has been useful in studying sumoylation dynamics in
response to stimuli that initiate sumoylation (68, 69). Also yeast-
two-hybrid approaches have been used to identify SUMO sub-
strates and distinguish the covalent from non-covalent modifica-
tions (70). A comprehensive review documents many other pro-
tocols to identify and characterize sumoylation in yeast and other
organisms (71). As far back as 2004, Panse and co-workers identi-
fied 139 sumoylated substrates by affinity purification followed by
MS with most being nuclear proteins or nuclear pore complexes.
The following year, a further >150 sumoylated substrates were
characterized by Hannich et al. by alternative approaches. No sin-
gle method, or large-scale approach, has been able to unravel the
entire SUMO proteome and known targets often remain unde-
tected due to low abundance, reiterating the fact that orthogonal
approaches are required for such analyses.

5. Protein–
Protein
Interactions

Establishing abundance levels and post-translational states gives
insight into only fraction of a protein’s function. Proteins rarely
exist in isolation and usually interact with other biomolecules as
part of their function. Characterization of protein interactions
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is essential to further our understanding of other complex
pathways underpinning biological functions. There are a number
of approaches to establish multi-component protein complexes
using a variety of methodologies. A specific chapter in this volume
details methods for analysis of yeast protein–protein interactions
and networks (see Chapter 12).

5.1. Yeast-Two-
Hybrid

Yeast-two-hybrid (Y2H) approaches have been used widely in the
last two decades and have generated vast proteome datasets in
many organisms as a result of its primary application in yeast (72).
This technique is well documented (73, 74).

5.2. Tandem Affinity
Purification (TAP)

Tandem affinity purification (TAP) has been adopted as a method
of isolating not only target proteins but also their binding part-
ners at an individual and global scale. In addition, TAP tagging
combined with Y2H methods and mutant studies have identified
PTMs in proteins as described previously.

At a more global scale, in 2005 a collection of C-terminal
TAP- and GFP-tagged yeast strains were generated, tagging
approximately 75% of the yeast proteome (75). These can be,
and have been, used in many studies to determine interactions,
PTMs, and sub-cellular localizations and are commercially avail-
able (http://www.openbiosystems.com).

5.3. Interactions by
Parallel Affinity
Capture (iPAC)

Another recent methodology for identifying protein–protein
interactions is iPAC, interactions by parallel affinity capture
(76). This procedure involves isolating in vivo-tagged endoge-
nous proteins from lysates and purifying baits and binding
partners in native conditions using two or more affinity cap-
ture techniques in parallel, rather than the TAP sequential
approach. The resulting eluted protein complexes are ana-
lyzed by MS and the datasets compared for overlap, with
proteins in common being assigned higher confidence scores.
Interaction lists are compared to public repositories such as
those listed below. This parallel approach overcomes the low
yields of interacting partners often recovered at the end of
two or more sequential elution steps during TAP affinity
protocols.

5.4. Interaction
Repositories

There are a number of public and private repositories for yeast
protein–protein interactions described below:

• Yeast protein complexes and interactions (http://yeast-
complexes.embl.de/).

• BioGRID (http://www.thebiogrid.org); 5,483 interactions
to date.

• PIMRider Yeast (http://pim.hybrigenics.com/) (account
required although site no longer maintained) has yeast pro-
tein interactions and resulting networks are available in the
PSI downloadable format.

http://www.openbiosystems.com
http://yeast-complexes.embl.de/
http://yeast-complexes.embl.de/
http://www.thebiogrid.org
http://pim.hybrigenics.com/
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• The Saccharomyces Genome Database (SGD) (http://www.
yeastgenome.org) documents literature relating to 65 large-
scale protein interaction studies.

6. Sub-cellular
Localization

A further complexity when studying the proteome is the spa-
tial arrangement of proteins. In eukaryotes, there are numerous
complex sub-cellular structures which are generally delineated by
membranes. Proteins traffic to the correct sub-cellular position in
order to carry out their correct physiological function. Assigning
the sub-cellular location of proteins is of paramount importance
to biologists for two reasons: first, in the elucidation of their role
and second in the refinement of knowledge of cellular processes
by tracing certain activities to specific organelles.

There are many technologies which have been developed over
the years to characterize the sub-cellular location of proteins.

The first large-scale yeast protein sub-cellular localization
study was conducted by the O’Shea laboratory. This study
involved the construction and analysis of a collection of yeast
strains expressing full-length, chromosomally tagged green flu-
orescent protein fusion proteins representing 75% of the yeast
proteome (77). These were then classified into 22 distinct sub-
cellular localization categories and provide localization informa-
tion for 70% of previously unlocalized proteins. Analysis of this
high-resolution, high-coverage localization dataset in the context
of transcriptional, genetic, and protein–protein interaction data
helped reveal the logic of transcriptional co-regulation and pro-
vided a comprehensive view of interactions within and between
organelles in eukaryotic cells.

A criticism of this approach is that while it performs well
with soluble proteins, problems may arise when applying the same
strategy to localize integral membrane proteins. Artifactual results
arise as GFP attached to a protein may result in the protein traf-
ficking in an aberrant manner.

Organelle proteomics methods have largely relied to date on
the ability to purify an organelle to homogeneity and then cat-
alog the proteins present generally using shot-gun proteomics
strategies. Such approaches have recently been reviewed by Prem-
sler and colleagues (78). In the case of certain organelles, such
as the mitochondria, this approach works very well and gives
high-quality datasets of mitochondrial resident proteins (79). For
other organelles, purification to near homogeneity is not pos-
sible. Many compartments, such as those associated with the
endomembrane system, have similar physicochemical properties

http://www.yeastgenome.org
http://www.yeastgenome.org
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and are therefore impossible to obtain without the presence of
contaminating organelles. Also, homogenization steps often used
to release the content of the cells may damage the organelles,
increasing heterogeneity in their size, shape, and density. More-
over, given that many proteins traffic from one compartment to
another, it can be a challenge to distinguish cargo from “full-
time” residents. For example, residents of the endoplasmic reticu-
lum (ER) continuously cycle between the ER and Golgi via COPI
and COPII vesicles (80), and many plasma membrane (PM) pro-
teins are recycled to the PM after endocytosis. Additionally, in
plant and animal cells, endocytic and exocytic routes are thought
to share common intermediates, making it difficult to separate
these systems and assign endocytic or exocytic proteins. Finally,
alternatively spliced forms of transcripts may lead to protein prod-
ucts, which are targeted to different sub-cellular compartments.
If the extent of contamination by other organelles is not assessed
in these cases, many false assignments of uncharacterized pro-
teins to specific sub-cellular locations will occur. Overall, these
factors necessitate an approach which allows the measurement of
the global steady-state distributions within organelles to obtain
insight into principal sub-cellular distributions.

Several methods have been developed in the last few years
which allow assignment of proteins to sub-cellular locations which
do not rely on purification of an organelle to homogeneity. First,
subtractive proteomics methods have been used to look at enrich-
ment of proteins within a system where a relatively crude frac-
tion is partitioned from a fraction which contains the organelle of
interest. An example of this approach within the C. albicans is the
strategy of phase partitioning for enrichment of the detergent-
rich membranes (81). In this study, the enrichment of proteins
associated with lipid rafts was facilitated by the use of aqueous
phase partitioning in different detergents. Lipid rafts have been
shown to have an important role in mating and hyphal forma-
tion and also contain certain transporter proteins such as the argi-
nine permease Can1. Identification of proteins associated with
lipid rafts is therefore important to understand function of the
rafts. Wiederhold and co-workers (82) used a similar approach
employing iTRAQ tagging methods and robust statistical
analysis to look at the enrichment of S. cerevisiae vacuolar
proteins. They reported 148 proteins which were significantly
enriched in the “pure” vacuolar fractions when compared with
a crude vacuolar preparation, including well-characterized vacuo-
lar proteins such as the subunits of the vacuolar H

+
-ATPase. The

issue with this approach is that the comparison is pair-wise and
therefore reveals only whether a protein is present in the enriched
fraction and thus gives no information about proteins with mul-
tiple locations. Furthermore, most enrichment methods do not
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achieve purification of any organelle, and hence data are still
peppered with false assignments from contaminating organelles.

Many decades ago, de Duve (83) noted that when analyt-
ical centrifugation was applied in order to enrich for organelles,
true resident(s) of a spatially distinct organelle(s) were not unique
to a single fraction but had a characteristic distribution within
the gradient. He postulated that if the distribution pattern could
be determined for a marker known to be specific to a particular
organelle, then determining the organelle residency of a protein
of unknown location could be achieved by matching its distri-
bution to that of a known marker. By applying this approach,
several organelles can be investigated at the same time. Two
high-throughput proteomics studies have been developed that
make use of organelle-specific distribution patterns to identify
novel organelle residents. Here distribution patterns of organelle
marker proteins along density gradients are matched to patterns
of proteins with no known localization to enable the assignment
of organelle residency.

The first, protein correlation profiling, employs label-free
quantification methodologies to determine protein distribution
patterns (84). This method allows the simultaneous assignment
of proteins to multiple organelles and has been used by several
groups to map proteins to different organelle locations in mam-
malian tissues (85, 86). The utility of label-free approaches for
this type of analysis is still hotly debated in that each sample is
processed separately during all steps of the procedure from pro-
tein extraction to MS analysis, and thus the variance associated
with the data may be too great to allow the subtle discrimination
required to assign proteins confidently to organelles such as the
ER and Golgi. LOPIT (localization of organelle proteins by iso-
tope tagging) is a method also inspired by de Duve’s observations
but uses the iTRAQ technology to measure distribution patterns
of proteins from self-generating iodixanol density gradients (87).
This technique also allows simultaneous assignment of proteins
to multiple organelles and has been used in the author’s labora-
tory to assign proteins to organelles in plants, Drosophila, and
animal cell culture, respectively (88–90). Four or eight fractions,
enriched with different organelles, are selected for comparison
and protein distributions are determined by measuring their rel-
ative abundance using iTRAQ quantification. Multivariate statis-
tical techniques such as principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA) are employed
to cluster proteins according to the similarities in their gradient
distributions and distributions of known organelle markers, and
thus to assign proteins to specific organelles. The strength of this
method is that iTRAQ tagging and co-analysis of different frac-
tions from the same gradient in a single LC-MSMS experiment
reduces experimental variation, and the use of robust statistical



Enabling Technologies for Yeast Proteome Analysis 169

tests and the appropriate use of replicates enable the creation of
high-quality organelle protein maps.

Yeast cell biology is ripe for having a more thorough organelle
proteomics study using some of the more advanced methods
described above to characterize more organelles, especially those
associated with the secretory pathway. Such datasets offer an
excellent complementary to resource to that of Huh and co-
workers in cataloging organelle-specific localization of proteins
in yeast (77).

7. Protein
Turnover

The knowledge of the abundance of a protein and its interaction
partners and sub-cellular location still does not give a complete
picture of the dynamics of the proteins. For the vast majority of
protein species, there is continuous turnover of the protein even
in an unstressed steady-state condition. Proteins are synthesized
and degraded at relative rates which either maintain the steady-
state concentrations of a protein or vary it to allow adjustment of
the protein pool which is a vital component of the modulation
of response of the cell to changing conditions, such as nutrient
availability. Proteins turn over at different rates from one another
which may range from a matter of seconds to months, the latter
generally being non-regulatory proteins or those whose regula-
tion is modulated by post-translational processes.

The measurement of synthesis and degradation rates of pro-
teins is tricky, especially if they are to be carried out at a global
scale.

One approach to study the half-life of yeast proteins was
taken by Belle and co-workers (91), who used the TAP-tagged
yeast collection (75) to determine the degradation rates of 3,751
yeast proteins using quantitative Western blotting techniques and
were able to classify 161 proteins as very unstable with half-
lives of less than 4 min. They compared these data with previous
measurement of mRNA abundance and concluded that mRNA
abundance plays a major role in determining protein abundance
but actual abundance is determined by degradation. Addition-
ally, based on their data, they were able to cluster proteins into
production and regulation groups in which the former was com-
prised of mostly cytoplasmic proteins such as ribosomal proteins
which are produced in larger quantities and are generally stable
compared to low-abundance, rapidly degrading regulatory pro-
teins such as cell cycle and transcriptional proteins. They corre-
lated half-lives with protein sequence and determined that pro-
teins with short half-lives were significantly enriched in serine
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residues, whereas stable proteins were enriched in valines. They
also proposed a model which predicts correlation between mRNA
expression and half-lives of unstable proteins. This approach,
though useful, is extremely time consuming and open to criticism
as to whether the Tap tag fusion had any effect on degradation
rates.

A SILAC proteomics-based study to look at the turnover of
proteins in S. cerevisiae was reported by Pratt and co-workers
(92). In this study the S. cerevisiae were grown in chemostat cul-
tures in the presence of deuterated leucine for the equivalent of
seven doubling times. An excess of unlabeled amino acid was then
added instantaneously to the culture vessel and samples taken
at time points and the decrease of deuterated peptides and the
appearance of undeuterated peptides were measured mass spec-
trometrically to determine the turnover of each protein. Although
they produced a limited dataset in this study, they demonstrated
that the average rate of degradation of 50 proteins was 2.2% per
hour, although some proteins were turned over at imperceptible
rates, and others had degradation rates of almost 10 per hour.

A similar elegant approach has also been recently published
by Selbach and co-workers (93, 94) and termed pulsed SILAC.
This method allows the direct quantification of protein transla-
tion at a proteome-wide scale and is able to differentiate between
synthesis rates rather than protein turnover rates of proteins.
Cells are first grown in a standard growth medium with the
normal light (L) amino acids. The cells are then transferred after
differential treatment such as application of an miRNA species,
which shuts off production of a subset of proteins, to a culture
medium containing either heavy (H) or medium–heavy (M)
amino acids. After an incubation phase, all newly synthesized
proteins appear in the H or M form. Both samples are then com-
bined and processed and the ratio of H to M peptides measured.
The H versus M peptide ratio reflects differences in translation
of the corresponding proteins. Since preexisting proteins remain
in the L form and can be ignored, this method is independent
of differences in protein stability that would otherwise interfere
with accurate quantification. Although degradation will also
affect newly synthesized proteins, this degradation will normally
occur for proteins in both the M and the H samples and thus will
not have great effect on the H/M ratios.

8. Bioinformatics

Proteomics technologies are highly reliant on bioinformatics
methodologies and resources to enable identification of protein
species and addition of context to proteomics datasets in terms of
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function, known genetic interactions, and collation of data from
numerous studies.

8.1. Data
Repositories

The Saccharomyces Genome Database (SGD) (http://www.
yeastgenome.org) hosts a number of public repositories for pro-
tein detection, protein interactions, protein modifications, and
protein localizations, reporting a plethora of experimental and
computational techniques to add to the increasing collection of
yeast data.

In addition the BioGRID (http://www.thebiogrid.org) also
reports protein interactions and in 2001 the YEAST protein
complex database (http://yeast.cellzome.com) describes kinase-
targeted protein complexes and their localization(s). However,
the latter is no longer maintained as the data are now located
within many general public repositories (e.g., http://yeast-
complexes.embl.de/). More repositories for protein–protein
interaction data are described later.

Peptide Atlas (http://www.peptideatlas.org/) is a reposi-
tory reporting all peptides identified from yeast proteins using
MS studies. A new build was publicly available in April 2009
reporting 3,110 peptides from 324,658 spectra. This release runs
in parallel with the MRM Atlas (http://www.mrmatlas.org/;
Yeast_MRM_Atlas_2008-03_P0.9) that is useful for designing
targeted approaches to identify specific proteins, in particular low-
abundance proteins in complex mixtures.

Much of the above data are compiled into central repositories
such as IntAct (http://www.ebi.ac.uk/intact) that reports 1,281
protein interactions in Saccharomyces species.

Interaction datasets often report confidence scores; however,
currently there is no consistent method or range for report-
ing these. IntAct hosts a collection of interaction datasets that
can only be compared qualitatively. Until such standardization
is implemented, any proteomics approach requires orthogonal
experimental validation.

In order to standardize all proteomics and interactomics
datasets for all organisms, the HUPO Proteomics Standard Ini-
tiative Molecular Interaction (PSI-MI) format was established
in 2004 by Hermjakob et al. and updated by Kerrien et al.
(95, 96). The minimum information required for reporting
a molecular interaction experiment (MIMIx) for a proteomics
experiment is described in (97). More recently, further develop-
ments have been reported, with PSI-M XML2.5 schema allowing
easy comparison of consistent large datasets.

8.2. Assessment of
False Discoveries

With the ever increasing amount of data being deposited into
public repositories, there is a need for assessing the quality of such
mass produced datasets. Many groups now report the false discov-
ery rates (FDRs) for protein identification from MS experiments.

http://www.yeastgenome.org
http://www.yeastgenome.org
http://www.thebiogrid.org
http://yeast.cellzome.com
http://yeast-complexes.embl.de/
http://yeast-complexes.embl.de/
http://www.peptideatlas.org/
http://www.mrmatlas.org/
http://www.ebi.ac.uk/intact
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This value however must not be confused with the false positive
rate, also described in MS experiments.

Protein quantification data may also be polluted with many
false discoveries, not least because many quantification datasets
have been interrogated with univariate statistical tests in which
tests, each carrying a probability that the test will return a false
finding, are used in isolation and thus an accumulation of erro-
neous results, also referred to as the multiple testing issue (98). As
with all quantitative datasets, successful quantitative proteomics
relies on appropriate experimental design and employment of sta-
tistical tests which are suitable for the type of data analyzed. For
more details about issues related to experimental design and data
analysis in quantitative proteomics, see (22).

9. Other
Methodologies

9.1. Protein
Microarrays

Other approaches to catalog the yeast proteome use protein
microarrays and also interrogate its functionality. Protein microar-
rays are microarray chips printed with proteins as opposed to
DNA or RNA and date back to 2000 (99) and 2001 where
Zhu and co-workers (100) expressed proteins from 5,800 cloned
ORFs to screen diverse biochemical pathways and PTMs. Pro-
tein microarrays have also been used for ubiquitination screening
(101) where substrates of the ubiquitin E3 ligase were identified
at a global scale. Commercially available yeast protein microarrays
exist with more than 4,000 GST-and His6-tagged yeast proteins
(Invitrogen). Protein acetylation microarrays have been used to
characterize acetylated yeast substrates with 91 proteins acety-
lated by the NuA4 complex that were validated in vitro using
GST fusions, a large proportion being enzymes and effectors
involved in signaling pathways responsive to nutrient availability
and energy status (60).

10. Future
Prospects

It is clear that the application of proteomics technologies has
greatly enhanced our knowledge of yeast biology. Despite large-
scale global studies from several groups, there is still approxi-
mately 20% of the yeast proteome which has failed to be iden-
tified in proteomics experiments and 25% of the yeast proteome
uncharacterized in terms of location and function. The wish list
of what proteomics needs to deliver to the yeast community in
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the future, however, involves global studies which define abun-
dance, sub-cellular localization, protein interaction data, and
post-translational status for all proteins expressed by proteome
in any given situation. Furthermore, these studies need to be
extended to give dynamic information, for example, changes in
the above when yeast is grown in different growth conditions.
Finally, proteomics studies need to be expanded such that func-
tional information about the proteome is also captured in global
experiments.

To come close to fulfilling this wish list, future proteomics
experiments need to address the characterization of low copy
number proteins and also use methods to interrogate the yeast
proteome and to fill in the gaps in our knowledge, which have as
yet been applied only in other organisms.

Targeted proteomics approaches such as those using SRM to
detect and quantify as pioneered by Aebersold and co-workers,
coupled with some of the methodologies allowing robust sub-
cellular fractionation, will be necessary to push the detection
boundary of proteins. Application of methods such as LOPIT or
protein correlation profiling and comparison of resulting datasets
with the GFP-tagged sub-cellular localization studies of Huh et al.
will give more refined knowledge about the protein sub-cellular
localization. Refinement of these methods is needed so that they
can be used in a dynamic sense such that correlated re-location of
proteins upon perturbation can be tracked at a scale not possible
with the use of fluorescent protein fusion tags. Moreover, extend-
ing sub-cellular localization data to include differential informa-
tion about protein isoforms, particularly phospho-isoforms, has
the potential to enrich our understanding of signaling pathways
and their execution. These extensions to existing technologies will
be technically challenging but not beyond current technology,
particularly with the availability of new generations of mass spec-
trometers where resolution, sensitivity, and mass accuracy are sig-
nificantly improved of their predecessors (102, 103). In terms of
protein–protein interaction networks, yeast has historically been
the test bed for technologies, but these now require refinement
such that high-throughput, robust datasets can be achieved with
low frequencies of false interactors and also coupled with quan-
tification technologies more readily such that dynamic changes in
protein complex components can be easily monitored.

In the case of both sub-cellular distributions and protein com-
plex makeup, datasets in the past have tended to produce a snap
shot of the cell rather than continuum representing the truly
dynamic nature of a living cell.

Another dynamic aspect of protein behavior is its synthe-
sis and degradation. In future, coupling of absolute quantifica-
tion methods to measure the absolute amount of a protein with
the SILAC type methods described by Selbach and co-workers



174 Rees and Lilley

(93, 94) will be accurately able to dissect the degradation and
synthesis for any protein. As yet such studies have not been pub-
lished at a large scale.

The yeast proteome is probably one of the best character-
ized in terms of post-translational modifications. Our knowledge
of some modifications is less complete than others; for example,
glycoproteomics studies have a long way to go to give us a full pic-
ture of possible glycosylation sites within proteins and how these
change in response to given perturbations. The dynamic nature
of post-translational modifications thus also needs to be worked
upon.

In terms of defining protein function, non-mass
spectrometry-based approaches such as protein microarrays
offer complementary methods to assign function to the 25%
of proteins with no known function such as those described
in Section 9.1. Coupled with more traditional proteomics
approaches characterizing the proteomes of various deletion
mutants, functional arrays offer an attractive complementary
technology to complete our understanding of what roles proteins
play within yeast.

Proteomics datasets to date largely involve studies carried out
on S. cerevisiae, but application of bioinformatics tools particu-
larly those that allow the investigation of the evolution of yeast
strains will give insight also into the functional groups of pro-
teins and their evolution and allow extrapolation of protein biol-
ogy from the well-studied S. cerevisiae to other important yeast
species.

The creation of robust proteomics datasets has served and
will continue to serve as valuable resources to the yeast com-
munity and act as a complement to the wealth of data emerg-
ing from transcriptomics studies and characterization of the
yeast metabolome. There is still much methodological devel-
opment required, however, to ensure completeness of such
datasets.
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Chapter 11

Protein Turnover Methods in Single-Celled Organisms:
Dynamic SILAC

Amy J. Claydon and Robert J. Beynon

Abstract

Early achievements in proteomics were qualitative, typified by the identification of very small quantities
of proteins. However, as the subject has developed, there has been a pressure to develop approaches to
define the amounts of each protein – whether in a relative or an absolute sense. A further dimension to
quantitative proteomics embeds the behavior of each protein in terms of its turnover. Virtually every pro-
tein in the cell is in a dynamic state, subject to continuous synthesis and degradation, the relative rates of
which control the expansion or the contraction of the protein pool, and the absolute values of which dic-
tate the temporal responsiveness of the protein pool. Strategies must therefore be developed to assess the
turnover of individual proteins in the proteome. Because a protein can be turning over rapidly even when
the protein pool is in steady state, the only acceptable approach to measure turnover is to use metabolic
labels that are incorporated or lost from the protein pool as it is replaced. Using metabolic labeling on
a proteome-wide scale in turn requires metabolic labels that contain stable isotopes, the incorporation
or loss of which can be assessed by mass spectrometry. A typical turnover experiment is complex. The
choice of metabolic label is dictated by several factors, including abundance in the proteome, metabolic
redistribution of the label in the precursor pool, and the downstream mass spectrometric analytical pro-
tocols. Key issues include the need to control and understand the relative isotope abundance of the
precursor, the optimization of label flux into and out of the protein pool, and a sampling strategy that
ensures the coverage of the greatest range of turnover rates. Finally, the informatics approaches to data
analysis will not be as straightforward as in other areas of proteomics. In this chapter, we will discuss the
principles and practice of workflow development for turnover analysis, exemplified by the development
of methodologies for turnover analysis in the model eukaryote Saccharomyces cerevisiae.

Key words: Metabolic labeling, amino acids, mass spectrometry, stable isotope, cell culture, yeast
metabolism, protein synthesis, protein degradation, turnover rate.

1. Introduction

Metabolic incorporation of stable isotope labels is a fundamental
methodological approach in comparative proteomics, particularly

J.I. Castrillo, S.G. Oliver (eds.), Yeast Systems Biology, Methods in Molecular Biology 759,
DOI 10.1007/978-1-61779-173-4_11, © Springer Science+Business Media, LLC 2011

179



180 Claydon and Beynon

applied to isolated cells grown in culture and most commonly
known as SILAC (stable isotope labeling with amino acids in cell
culture) experiments (1). In SILAC, one cell culture is labeled
with, for example, an amino acid in which every carbon atom
is carbon-13 (13C, “heavy”, abbreviated H), and a second culture
is labeled with the same amino acid in which every carbon atom is
carbon-12 (12C, “light”, abbreviated L). Often the labeled cells
are grown under normal conditions, and the corresponding unla-
beled cells are exposed to a differing physiological, or pathologi-
cal, environment. This has the advantage of a single control sam-
ple for multiple perturbed samples, without the need for addi-
tional expensive labeled amino acids. Conversely, the perturbed
samples could be labeled and compared to a single unlabeled
control. Moreover, different isotopes, such as [13C6]arginine and
[13C6][15N4]arginine, allow for a degree of multiplexing (the first
is 6 Da heavier than the unlabeled counterpart and the second is
10 Da heavier). The two (or more) cell cultures are combined,
post-labeling, and the mixture subjected to downstream process-
ing for proteomics. Subsequently, every peptide that contains at
least one instance of that amino acid will appear as a H–L dou-
blet in mass spectrometric analysis. The relative intensities of the
H and L ions will indicate the relative expression of the protein
when the cell cultures are compared. A fundamental goal that is
implicit in the SILAC approach is that the labeling is complete –
each label can only report on the entire population of proteins. In
practice, this is not formally necessary, but with single cells grown
in culture, this is attainable and makes downstream analysis much
simpler.

Thus, an assumption with SILAC experiments is the com-
pleteness of labeling of the control culture. If any unlabeled pro-
teins remain, their constituent peptides will add to the peak inten-
sity of the peptides representing protein from the unlabeled cul-
ture, and therefore peak ratios will not indicate true biological
protein abundance ratios without more detailed analysis. Incom-
plete labeling, whether through the use of partially labeled pre-
cursors or as a consequence of sampling cells before they are
fully labeled, can compromise a SILAC experiment if not spotted
or complicate the data analysis if known. In this regard, a rapid
method of checking incorporation is valuable (2).

In marked contrast, proteome-level turnover measurements
differ from standard comparative proteomics experiments in one
fundamental way – the proteins cannot be fully labeled, as it is
the time dependence of the process of labeling of each protein
that defines the turnover rate. We have referred to such stud-
ies as “dynamic SILAC” experiments (3) (for a summary of the
few studies of this type, see Table 11.1 and references therein).
Although single time point experiments are possible, the pre-
ferred experiments are those in which the proteome is sampled
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along the labeling trajectory, to allow the rate of change in label-
ing profile to be assessed (3–8).

1.1. Fundamental
Structure of a
Turnover Experiment

Because turnover can operate even in the absence of any change
in the protein pool size, it follows that tracer labels must be used
to measure flux through the protein pool. Methods that mea-
sure regression of a protein pool after poisoning of protein syn-
thesis with cycloheximide, for example, are of limited value; the
toxic effects limit the time frame over which loss of protein in the
absence of protein synthesis is physiologically relevant. As such,
tracer methods to follow turnover in the steady state are best used
with living cells. Turnover experiments invoke an added degree
of complexity such that comparative turnover analyzes have yet
to become routine, and in the first instance, preliminary studies
have concentrated upon building a profile of turnover rates for
individual proteins. In all cases, the experimental outline is essen-
tially the same.

Protein turnover can be monitored in two different ways
using the same general approach: labeling to completeness fol-
lowed by a “light” chase using non-labeled amino acid, or alter-
natively labeling over time from the initial unlabeled culture. In
the latter, unlabeled (L) cells are exposed to the heavy labeled
(H) precursor, and the incorporation of the heavy isotope reflects
the rate of synthesis. Alternatively, the cells can be pre-labeled
with the H precursor, and at the start of the turnover experiment,
the precursor is swapped to the L counterpart. Although the two
experiments are formally equivalent, there are some advantages of
taking the latter approach, related to the need for control of the
relative isotope abundance (RIA) of the precursor (9, 10). In a
turnover study, the transition of the precursor pool from labeled
to unlabeled, or vice versa, is an obligatory component. Ideally,
this transition will be from an RIA of 1 to an RIA of 0 (a “light
chase”), or from an RIA of 0 to an RIA of 1 (a “heavy chase”).
Whilst not essential, management of the transition such that it
is between 0 and 1, whether in a light or a heavy chase exper-
iment, simplifies the analysis and maximizes the range of label-
ing. One incidental benefit of a light chase experiment is cost; an
excess of amino acid is required to ensure that any labeled amino
acid returned to the precursor pool from protein degradation and
then reincorporated is negligible, thus rapidly fixing the RIA at 0.
If this excess is prepared from unlabeled precursor, the costs will
be dramatically lower.

1.2. Overall
Experimental
Strategy

As metabolic labeling involves the incorporation of a stable iso-
tope label into newly synthesized proteins in vivo, it also enables
the rate of protein synthesis, not just change in abundance, to
be monitored by assessing the peak intensity ratio between corre-
sponding labeled and unlabeled peptides over time. Any peptide
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that could contain the label can be used as a surrogate to measure
turnover for the entire protein, as turnover kinetics are the same
for all peptides from the same protein (3).

1.3. Choice of Label As stable isotopes are chemically identical to their non-labeled
counterparts, they respond identically in a mass spectrometer so
that if peptides containing either the labeled or non-labeled forms
are present in the same quantity in a sample, they will have the
same intensity in a mass spectrum. The most common stable iso-
tope labels used are 13C, 15N, and 2H, which are often inte-
grated into amino acids or other compounds such as glucose
(11). The benefit of using a stable isotope-labeled amino acid,
such as [13C6]arginine or [2H10]leucine, instead of glucose, is
that the mass offset created by the label is constant and there-
fore H–L pairs are easy to identify. When [15N]H4Cl is used as
the sole source of nitrogen, all amino acids incorporate the label
at the α-nitrogen position, and those with nitrogen-containing
side chains (Asn, Gln, His, Trp, Lys, and Arg) will also incor-
porate different numbers of heavy nitrogen atoms into the side
chain. The outcome is that peptides of differing chain length and
amino acid composition have different mass offsets from the unla-
beled counterpart. Compare this complexity of labeling to the use
of [13C6]arginine, where a peptide containing a single arginine
residue will always show a 6 Da separation between peaks rep-
resenting the labeled and unlabeled forms. A di-arginine peptide
will show a 12 Da separation and so on.

Similar is true of deuterated amino acids, but transamination
of the α-carbon deuteron can lead to a mass shift less than that
expected. For example, [2H10]leucine can be transaminated and
lose the label at the α-carbon atom, generating a 9 Da difference
between labeled and unlabeled peptides. Additionally, hydrogen
is more hydrophilic than deuterium, which can lead to elution of
peptides labeled with [2H]amino acids from reversed-phase chro-
matography columns before their unlabeled counterpart. This
could result in inaccurate intensity ratios between H–L pairs,
although the deuterium interaction with the column is depen-
dent on the properties of the other amino acids in the sequence
of the peptide (12).

Stable isotope-labeled precursors are not isotopically pure,
and isotope purities of 98.5–99%, often referred to as 98.5 or
99APE (atom percent excess), are typical. For the incorpora-
tion of a single labeled amino acid, such as [13C6]arginine, every
peptide containing a single arginine residue will, even if “fully”
labeled with the heavy isotope, demonstrate about 1% ion inten-
sity from the unlabeled contaminant. In most circumstances this
is not a major issue, although it could introduce quantitative
errors when only a few percent of unlabeled peptide is present
in the analyte. By contrast, nitrogen labeling is more complex



Protein Turnover Methods in Single-Celled Organisms: Dynamic SILAC 185

and requires analysis and correction. To illustrate, the peptide
LVFHSASTEDNNQLIMEGR has the elemental composition
C91H145N27O32S1 and thus at an isotopic purity of 99% 15N
(therefore 1% 14N), there are 27 different ways to construct a
peptide with a single “light” nitrogen atom, all of which have a
mass 1 Da less than the monoisotopic true heavy labeled peptide.
This peak is therefore about 27% of the height of the fully labeled
peptide, representing a significant portion of the heavy synthe-
sized material, and has to be factored into calculations.

Fig. 11.1. Accurate determination of degradation rate requires multiple points to define
the rate of loss of material, and the range of degradation rates that are anticipated
defines the sampling strategy (Panel a – degradation in the absence of any pool expan-
sion). However, if the system is growing rapidly (e.g., cells in exponential growth or a
chemostat operating at a dilution rate of 0.1/h), then the change of labeling within any
protein is a combination of degradation and dilution (Panel b). The outcome of this com-
plication is that lower degradation rates are not readily discerned, yielding similar rates
of loss of labeling irrespective of degradation rate, and therefore placing extra demands
on the quality of isotopic data. In this example, it is likely that only those proteins with
degradation rates more than two times the dilution rate would yield satisfactory degra-
dation rates.
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1.4. Limitations of
Sampling Frequency

To access quantitative data on proteins that are turned over within
minutes, samples must be taken rapidly and at very early time
points in the chase. How rapidly this can occur is determined
mostly by the practicalities of sampling and of arresting the cells
metabolically. Moreover, sampling usually disrupts the mixing and
aeration in batch culture, and thus the cells are changed. A con-
tinuous chemostat culture has the advantage that the eluted cells
can be collected, but large samples will be collected over a signifi-
cant time window. To illustrate, a 1 L chemostat culture operating
at a dilution rate (flow/volume ratio; D=F/V) of 0.1/h will pro-
duce 100 mL of cell suspension/h, or 1.6 mL/min. If biomass
equivalent to 20 mL of cells were required, cells would have to
be collected for 15 min, during which time some high turnover
proteins could be fully replaced. Sampling frequencies should be
geometrically distributed in order to cover the broadest range of
degradation rates. For example, a sampling regimen of 0, 2, 5, 10,
20, 40, 80, 160 min will yield at least five data points containing
between 100 and 5% undegraded material for all rates of degra-
dation from 0/min (no degradation) to 0.25/min: a half life of
2.7 min. A second complication derives from growth. If cells are
actively growing (such as in exponential phase), then proteins are
lost from cells in part by degradation and in part by dilution into
daughter cells. This sets a limit on the range of degradation rates
that can be reliably assessed (Fig. 11.1). Low turnover proteins
will transition from labeled to unlabeled (or vice versa) mostly by
dilution, and the closer the degradation rate is to zero, the more
difficult it will to be to resolve losses due to degradation from
those due to dilution.

2. Materials

2.1. Labeling of Cells
in Culture

1. This chapter aims to give details on the analysis of proteomic
data to determine protein turnover rates in yeast; for a more
comprehensive guide to culture methodology, please refer to
other chemostat culture methods, also (3, 8, 13).

2. Downstream analysis will be simplified if a yeast strain aux-
otrophic for the amino acid to be labeled is used, e.g.,
BY4743, a leucine auxotroph. This is not critical however,
especially if an essential amino acid is chosen, as the organ-
isms may be able to use the amino acid provided in the
growth medium (in labeled form) (8) and not dilute the pool
with biosynthesis de novo.

3. Additional materials required include the stable isotope-
labeled amino acids, for example, [2H10]leucine or
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[13C6]lysine and [13C6]arginine (Cambridge Isotope Lab-
oratories) and the corresponding unlabeled amino acid
(Sigma-Aldrich) (see Notes 1 and 2):
i. For a “light” chase experiment, 100 mg stable isotope-

labeled amino acid is added to the culture for the initial
labeling phase.

ii. The unlabeled amino acid is then added (1 g/50
mL medium) to the culture and the inflowing
medium changed to also contain unlabeled amino acid
(50 mg/L).

2.2. Harvesting
Soluble Proteins

1. To suspend protein synthesis at the instant of collection,
cycloheximide (Sigma-Aldrich, freshly prepared in water or
buffer at neutral pH) is added to each sample taken at a final
concentration of 100 μg/mL.

2. Before lysis, 20 mM HEPES (pH 7.5) (Sigma-Aldrich)
containing 1 protease inhibitor cocktail tablet (EDTA-free)
(Roche Diagnostics) per 10 mL is required.

3. Glass beads (Sigma-Aldrich) are used to lyse the cells.
4. Make solutions of DNase and RNase (Sigma-Aldrich) at

1 mg/mL.

2.3. Sample
Preparation

1. Ammonium bicarbonate (50 mM; Analar grade) is required
as the buffer for tryptic proteolysis. For best results, all solu-
tions used here should be made fresh.

2. For in-solution proteolysis, a detergent is added to the sam-
ple to denature the proteins present. RapiGestTM surfactant
(Waters) is made up to 1% (w/v) using 50 mM ammonium
bicarbonate.

3. Reduction of disulfide bonds between cysteine residues dur-
ing in-gel and in-solution proteolysis is achieved using a final
concentration of 10 and 3 mM dithiothreitol (DTT) (Sigma-
Aldrich), respectively, in 50 mM ammonium bicarbonate.
For the in-solution protocol outlined below, this is achieved
with a 9.2 mg/mL DTT starting solution.

4. Alkylation with final concentration of 60 and 9 mM iodoac-
etamide (IAA) (Sigma-Aldrich) in 50 mM ammonium bicar-
bonate is also required. The 9 mM IAA for in-solution pro-
teolysis requires a 33 mg/mL starting solution.

5. For in-gel proteolysis, 25 mg lyophilized trypsin (Roche
Diagnostics) is resuspended in 250 μL of 50 mM acetic acid.
This is then diluted 1:9 with 25 mM ammonium bicarbonate
to give a final trypsin concentration of 0.01 μg/μL.

6. For the in-solution digestion protocol, 125 mL of 10 mM
acetic acid is used to resuspend the trypsin, which is then
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added to the sample for proteolysis at 0.2 μg/μL concen-
tration at a 1:50 trypsin:protein ratio.

7. All other solutions (acetonitrile and trifluoroacetic acid) are
obtained from VWR.

2.4. Mass
Spectrometry (MS)

1. For matrix-assisted laser desorption ionization time-of-flight
(MALDI-ToF) MS, the matrix α-cyano-4-hydroxycinnamic
acid should be made up to 8 mg/mL using 60% acetonitrile
and 1% trifluoroacetic acid. Best results are obtained when 1
μL sample is dried onto the MALDI target and then 1 μL
matrix is added and allowed to crystallize.

The buffers used for reversed-phase liquid chromatography
(RP-LC) are made from HPLC-grade acetonitrile and HPLC-
grade water (VWR) plus 0.1% formic acid. A linear gradient is
most commonly used, for example, 0–50% buffer B over 30 min,
when using a 75 μm capillary reversed-phase (C18) column.

3. Methods

3.1. Labeling of Cells
in Culture

The main details covered in this section will not be the grow-
ing of the yeast but the subsequent mass spectrometric analy-
sis of labeled peptides following protein isolation from the yeast
cells. However, the basic method for a protein turnover exper-
iment, using deuterium-labeled leucine as the stable isotope-
labeled amino acid, is detailed below (3, 13) (see Note 3):

1. Grow cells in a glucose-limited chemostat culture using
complete synthetic medium, supplemented with 100 mg
DL-[2H10]leucine (98.5APE) at a dilution rate of 0.1/h (see
Note 4):
i. To ensure cells are fully labeled, maintain cells in this

growth medium for at least seven doubling times (see
Note 5).

ii. Following this, add the 50 mL solution of unlabeled
L-leucine to the culture and change the inflowing
medium to also contain unlabeled L-leucine (50 mg/L).

iii. Begin sampling of the yeast cells at appropriate time
points, e.g., 0, 10, 40 min, and then continue with fairly
regular sampling (e.g., seven samples every 1–2 h for the
first 12 h) reducing frequency until the two final samples
at approximately 24 and 51 h.

iv. If the chemostat is sampled directly, and large volumes
are removed, the apparent dilution rate will be modified
(see Note 6).



Protein Turnover Methods in Single-Celled Organisms: Dynamic SILAC 189

3.2. Harvesting
Soluble Proteins

1. When cells (40 mL) reach an A600 of about 1.6, collect
into ice-cold Falcon tubes containing cycloheximide (100
μg/mL final concentration).

2. Centrifuge at 4◦C for 5 min at 7,000× g and discard the
resulting supernatant.

3. Resuspend the pellet in 1 mL ice-cold double distilled water
and transfer to 1.5 mL microcentrifuge tube.

4. Centrifuge again at 16,000× g and discard the supernatant:
i. Pellets can be stored at –80◦C at this point.

5. Resuspend the pelleted cells in 300 μL of 20 mM HEPES,
pH 7.5, plus protease inhibitor solution.

6. Vortex with glass beads to lyse cells in six bursts of 45 s
(allowing 45 s cooling).

7. Add 6 and 2 μL of the DNase and RNase solutions, respec-
tively.

8. Incubate at 4◦C for 1 h.
9. Centrifuge the cell lysate at 4◦C for 10 min at 2,500× g and

collect the supernatant.

3.3. Sample
Preparation

For ease of analysis, and to increase information gained, the sam-
ple must be separated before analysis using mass spectrometry.
Gel-based methods can be used, with separation of the proteins
by 1D or 2D SDS-PAGE before in-gel proteolysis; if a gel-free
approach is taken, an in-solution proteolysis step usually precedes
separation.

3.3.1. In-Gel Proteolysis
Following Gel-Based
Separation

1. Excise spots corresponding to the same protein from each
gel and perform standard in-gel digestion technique:
i. De-stain gel plug of protein spot with 25 μL of 1:1

acetonitrile:50 mM ammonium bicarbonate ammonium
bicarbonate for 15 min or until all color removed.

ii. Reduce disulfide bonds between cysteine residues using
25 μL of 10 mM DTT. Incubate at 60◦C for 60 min,
then discard the liquid.

iii. Alkylate with 25 μL of 60 mM IAA. Incubate in the dark
at room temperature for 45 min, then discard the liquid.

iv. Dehydrate the gel plug by incubating at 37◦C in 10 μL
acetonitrile, leaving the microcentrifuge tube lid open.
After 15 min, if the gel plug is white, remove the remain-
ing liquid and leave for a further 10 min.

v. Rehydrate the gel plug in 10 μL of 0.01 μg/μL trypsin
solution and incubate overnight at 37◦C.
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3.3.2. In-Solution
Proteolysis for Gel-Free
Separation

1. To 100 μg protein in 160 μL (final volume) of
50 mM ammonium bicarbonate, add 10 μL of 1% (w/v)
RapiGestTM surfactant. Incubate at 80◦C for 10 min.

2. Add 10 μL of 3 mM (final concentration) DTT and incubate
at 60◦C for 15 min.

3. Alkylate with 10 μL of 9 mM (final concentration) IAA for
30 min in the dark.

4. To this add 10 μL of 0.2 μg/μL trypsin and incubate
overnight at 37◦C.

5. Inactivate the detergent by the addition of 1 μL trifluo-
roacetic acid (0.5%, v/v, final concentration) and incubate
for 45 min at 37◦C.

6. Before analysis, remove all precipitation formed at this stage
by centrifugation.

3.4. Mass
Spectrometry (MS)

If a gel-based strategy is used, analysis of individual protein spots
by MALDI-ToF MS is sufficient to acquire data for individual
proteins, which also avoids any possible complications introduced
by the differential elution of deuterium-labeled peptides. An in-
solution tryptic digest of the whole-cell lysate is however too
complex to analyze by MALDI-ToF MS alone. Online liquid
chromatography (LC) separation into an electrospray (ESI) mass
spectrometer, such as a Q-ToF or linear ion-trap instrument, is
preferred. Alternatively, offline LC followed by MALDI-ToF MS
can be used, taking care to combine all spectra for labeled and
unlabeled peptides:

1. Acquire protein identification data:
i. For MALDI-ToF MS analysis, peptide mass fingerprint-

ing (PMF) will identify the protein present in the spot.
ii. Analysis using ESI-MS can take advantage of MS/MS

capabilities and sequence information can also be
obtained for database searching (see Note 7 and
Fig. 11.2).

2. The protein identifications can then be used to validate H–L
peptide pairs, separated by a mass difference corresponding
to the number of labeled amino acids present (see Note 8).
The number of labeled amino acids present can also be used
to confirm and support the protein identification (14).

3. Record isotopomer peak intensities for MS peaks represent-
ing L and H peptides or the corresponding peak areas from
extracted ion chromatograms (see Notes 9 and 10).

4. The RIA of the label in each specific protein at each time
(RIAt) is calculated as follows:

RIAt = Labeled isotopomer
Labeled isotopomer+Unlabeled isotopomer

= H
H+ L
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5. Plot these values over time for each protein.
6. Using non-linear curve fitting, the rate of loss of the label

(kloss) can be calculated from the gradient of the line when
the RIA at the beginning (RIA0) and the end (RIA∞) of the
experiment are taken into consideration:
i. RIA0 can be determined using a random selection

of proteins taken before the start of the light chase.
Although this RIA should be 1, it is possible that the
value may be slightly less due to the purity of the label
used and degradation of unlabeled proteins releasing
amino acids into the precursor pool.

ii. The RIA of the culture at the end of the labeling period
can be taken as 0 as long as there has been more than
seven doubling times (but this should be directly observ-
able).

iii. When RIA∞ = 0, RIAt = RIA0 × exp−kt , where k =
kloss.

7. From this it is possible to determine the rate of protein
degradation (kdeg) by factoring in the effect of the rate of
dilution (kdil) into the value of kloss, i.e., kdeg = kloss − kdil:
i. As kdil is constant, it does not affect the error in the param-

eter estimates.
8. It is also possible to measure the rate of loss, and thence,

turnover from a single time point t using the equation kloss =
(−loge(RIAt/RIA0))/t .

If single time point experiments are to be used, an
increased number of peptides per protein would be recom-
mended to decrease the error. However, a true time course
is valuable as it defines the trajectory of the loss of label from
the proteins and, for example, allows it to be assessed as for-
mally first order.

4. Notes

1. Stable isotopically labeled compounds are often named
informally, according to the nomenclature such as
[13C6]lysine. In this instance, there are only six carbon
atoms and therefore, all six atoms must be replaced – the
compound is referred to as (U-13C6 lysine) where “U”
refers to “uniformly labeled”. However, it is also possible
to purchase labeled lysine variants such as “2-13C, 99%;
ε-15N, 99%” that is only labeled at the α-carbon atom and
the side chain nitrogen atom. Care must be taken in defin-
ing exactly the precursor form being used.
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2. Trypsin is the endopeptidase most commonly used to
generate peptides for mass spectrometric analysis and
has a clearly defined specificity (cleavage at Arg-X and
Lys-X, Arg-Pro and Lys-Pro excepted). Labeling with
[13C6]arginine and [13C6]lysine has the advantage that
almost all tryptic peptides are identically labeled with the
+6 Da variant. The exceptions are peptides that contain
internal arginine or lysine residues, either because of missed
cleavages or because the peptide contains the uncleavable
Arg-Pro or Lys-Pro bonds.

3. Experiments, especially in chemostat culture, that use sta-
ble isotope-labeled amino acids can be costly. There is merit
in performing an entire experiment as a “dry run” using
unlabeled amino acids throughout. In a perfect experi-
ment, the switch from heavy to light amino acid (or vice
versa) will be near instantaneous, complete and have no
effect on the growth rate or gene expression profile of the
organism. In particular, a dry run would identify the bottle-
necks in the period of rapid sampling and allow appropriate
measures to be taken to avoid these bottlenecks.

4. L-amino acids are the forms that are metabolically active
and the precursors for protein synthesis. To reduce costs
further, it is possible to use the DL racemic mixture of
a labeled amino acid, and to assume that label from the
D-amino acid does not make a significant contribution to
the labeling pattern.

5. It is possible that during exponential growth, some proteins
have zero degradation, and thus, label can be incorporated
into the protein only during pool expansion, i.e., growth.
After each doubling time, half of that protein in each cell
would have been replaced by newly synthesized proteins
containing the stable isotope-labeled amino acid from the
growth medium. Therefore, after one generation, at least
50% of the proteins will be labeled, after two generations
75% etc., until after seven generations over 99% of proteins
with the slowest rate of turnover will contain a heavy amino
acid.

6. The changes in dilution rate can be caused by the removal
of cells from a chemostat culture during sampling. When
a set volume is removed from the culture, the rate of
cell loss from the outflow is reduced, while the volume is
replenished by new medium. The remaining cells therefore
remain in the chemostat system for an extended period of
time. This can be avoided by sampling directly from the
culture outflow, as long as the flow rate is fast enough
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to deliver sufficient cells for analysis, or by using a batch
culture.

7. Proteomic search engines (MASCOT, SEQUEST, etc.)
allow the use of variable modifications when analyzing
mass spectrometric data. If the chosen labeled amino acid
is set as a variable modification when identifying proteins
using these search tools, a comprehensive list indicating
labeled and unlabeled peptides will be created which helps
to reduce analysis time (Fig. 11.2). In addition, some soft-
ware, such as ProteinLynx Global Server (Waters), will also
give the intensity values of the identified peaks.

8. Fully deuterated amino acids are relatively inexpensive
but will be labeled at the α-carbon atom. This atom is
metabolically labile, and the deuteron would be lost by the
reversible process of transamination. In our experience, the
α-deuteron of [10H2]leucine was completely lost in a yeast
labeling experiment, and turnover was assessed by a 9 Da
separation between unlabeled and single labeled peptides.

9. A critical step in any turnover study is the need for
an instantaneous transition as the experiment is switched
between the two labeled variants. Two things can go wrong
here; the changeover might be slow or the changeover
might be incomplete. If the changeover is incomplete, the
precursor pool will possess an RIA that is neither zero nor
unity. In this instance, some of the precursor pool will
be labeled and some unlabeled. This is detectable by the
inability of the labeling curve to move between 0 and 1, or
vice versa, and by the appearance of intermediate labeled
forms of peptides where the peptide contains two instances
of the amino acid. It is advisable to deliberately look at
such peptides to ensure that there is complete replacement
of the precursor pool.

10. There are a number of bioinformatic tools that have been
created to automatically acquire information regarding
peak intensities and relative abundances in stable isotope-
labeled samples (not discussed in this review), each with
their advantages and disadvantages (15).
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Chapter 12

Protein–Protein Interactions and Networks: Forward
and Reverse Edgetics

Benoit Charloteaux, Quan Zhong, Matija Dreze, Michael E. Cusick,
David E. Hill, and Marc Vidal

Abstract

Phenotypic variations of an organism may arise from alterations of cellular networks, ranging from the
complete loss of a gene product to the specific perturbation of a single molecular interaction. In inter-
actome networks that are modeled as nodes (macromolecules) connected by edges (interactions), these
alterations can be thought of as node removal and edge-specific or “edgetic” perturbations, respectively.
Here we present two complementary strategies, forward and reverse edgetics, to investigate the pheno-
typic outcomes of edgetic perturbations of binary protein–protein interaction networks. Both approaches
are based on the yeast two-hybrid system (Y2H). The first allows the determination of the interaction
profile of proteins encoded by alleles with known phenotypes to identify edgetic alleles. The second is
used to directly isolate edgetic alleles for subsequent in vivo characterization.

Key words: Protein–protein interactions, interactome networks, interactome perturbations,
interaction-defective alleles, edgetic alleles, yeast two-hybrid, reverse yeast two-hybrid,
disease-associated alleles, gateway cloning.

1. Introduction

Genes and gene products do not work in isolation but instead
interact with each other and with other cellular components
within complex and dynamic “interactome” networks modeled
as graphs of nodes and edges representing individual molecules
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Fig. 12.1. Impact of various genotypic alterations on the interactome and on the result-
ing phenotype. Mutation a: mutation resulting in a protein with drastic molecular defects
(dashed circle) such as a major truncation and/or an unstable fold. Mutation b: mutation
(star) preserving the folding and some functional properties of at least one domain of a
protein.

and the interactions between them, respectively (1, 2). Ongo-
ing binary protein–protein interaction mapping efforts have iden-
tified a substantial fraction of interactome networks for human
(3, 4) as well as for model organisms (5–7). Phenotypic changes
arise from alteration of these networks, due to either complete
loss of gene products (“node removal”) or perturbations of spe-
cific interactions (edge-specific or “edgetic perturbations”) (8, 9)
(Fig. 12.1). For example, nonsense mutations and out-of-frame
insertions or deletions resulting in a major truncation of a gene
product as well as gene knockouts and RNAi-mediated gene
expression knockdowns can be considered as “node removal” in
the context of interactome network models. Alternatively, trunca-
tions that preserve specific autonomous protein domains or single
amino acid substitutions in protein-binding sites likely cause what
can be considered as edgetic perturbations (8, 9).

As distinct types of network perturbations can result in
diverse phenotypes (Fig. 12.1), these perturbations and their
impact on the underlying interactome have to be taken into
account to improve our understanding of genotype-to-phenotype
relationships (8, 9). Importantly, distinguishing node removal
from edgetic perturbations can explain complex genotype-to-
phenotype relationships associated with human diseases (9). As
demonstrated with the Caenorhabditis elegans antiapoptotic pro-
tein CED-9, systematic isolation of edgetic alleles and their char-
acterization in vivo represents a promising strategy to investigate
gene function(s) (8). This strategy complements gene knockout
and gene knockdown approaches by investigating the biological
relevance of specific interaction network edges instead of concen-
trating on nodes.
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This chapter describes two complementary strategies,
“forward and reverse edgetics,” to systematically investigate the
phenotypic outcomes of specific perturbations of binary protein–
protein interaction in interactome networks. The use of Gateway
(10) vectors in combination with the yeast two-hybrid (Y2H) sys-
tem (11) as a binary protein–protein interaction assay ensures
compatibility with high-throughput manipulations. Since inter-
action defects are considered with respect to the wild-type pro-
tein, the identification of wild-type protein interaction partners by
Y2H is a prerequisite. These interaction partners can be retrieved
from available Y2H interactome maps (3–6, 12) or identified by
performing proteome-wide Y2H screens (3).

Starting from a set of mutations in a gene associated with
particular phenotypes (i.e., disease-associated mutations), the for-
ward edgetics approach uses Y2H to determine the interaction
defects of proteins encoded by open reading frames (ORFs)
where the corresponding mutations have been introduced by site-
directed mutagenesis (Fig. 12.2). Starting from a set of Y2H
interactions for a protein of interest, the reverse edgetics strat-
egy aims to systematically isolate alleles encoding proteins with
desired specific interaction defects (Fig. 12.2). Reverse yeast
two-hybrid (R-Y2H) selections (13, 14) are first used to isolate
interaction-defective alleles from a random library enriched for
full-length ORFs (15). The specificity of the interaction defects is
then determined by Y2H screens to identify edgetic alleles. Such

Fig. 12.2. Forward and reverse edgetics. Y2H: yeast two-hybrid and R-Y2H: reverse
yeast two-hybrid.
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edgetic alleles can subsequently be reintroduced in vivo to investi-
gate the phenotypic consequences of specifically altering the cor-
responding molecular interaction(s).

2. Materials

2.1. Forward
Edgetics

2.1.1.
Gateway-Compatible
PCR-Based
Site-Directed
Mutagenesis

1. KOD Hot Start DNA polymerase (Novagen).
2. Donor vector pDONR223 to generate entry clones of

mutant alleles (Invitrogen). Destination vectors pDEST-DB
and pDEST-CYH2S-AD for Y2H analysis.

3. BP clonase and LR clonase (Invitrogen).
4. Z-competent DH5α cells (Zymo Research).
5. LB medium: dissolve 10 g of bacto-tryptone, 5 g of yeast

extract, and 5 g of NaCl in 1 L of water. Adjust to pH
7.0 with NaOH if necessary. Autoclave and store at room
temperature. Add needed antibiotics before use. For solid
medium, add agar to a final 2% (w/v) concentration prior to
autoclaving and add appropriate antibiotics before pouring
media into 15-cm Petri dishes.

6. SOC medium: dissolve 20 g of bacto-tryptone, 5 g of yeast
extract, 0.5 g of NaCl, 0.186 g of KCl in 1 L of water. Adjust
to pH 7.0 with NaOH if necessary. Autoclave and store at
room temperature. Add 5 mL each of sterilized 2 M MgCl2,
sterilized 2 M MgSO4, and sterilized 40% (w/v) glucose per
liter of medium before use.

2.1.2. Generation of
Yeast Strains Expressing
DB-X and AD-Y Hybrid
Constructs

1. MaV103 yeast strain: MATa leu2-3,112 trp-901 his3-
200 ade2-1 gal4Δ gal80Δ SPAL10-URA3 GAL1-lacZ
LYS2::GAL1-HIS3 can1R cyh2R.

2. MaV203 yeast strain: MATα leu2-3,112 trp-901 his3-
200 ade2-1 gal4Δ gal80Δ SPAL10-URA3 GAL1-lacZ
LYS2::GAL1-HIS3 can1R cyh2R.

3. Non-selective rich medium (YEPD): mix 10 g of yeast
extract, 20 g of bacto-peptone, and 950 mL of water, auto-
clave and store at room temperature. Add 50 mL of ster-
ilized 40% (w/v) glucose per liter of medium before use.
For YEPD agar plates, add 20 g of yeast extract and 40 g
of bacto-peptone to 950 mL of water. At the same time, in
a separate flask, add 40 g of agar to 950 mL of water. Auto-
clave both flasks separately and mix together afterward.
Cool to 55◦C in a water bath. Add 100 mL of sterilized
40% (w/v) glucose before pouring media into 15-cm Petri
dishes.
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4. Synthetic complete (SC) medium amino acid supplement:
mix an equal weight of each of the following amino acids:
alanine, arginine, aspartic acid, asparagine, cysteine, glu-
tamic acid, glutamine, glycine, isoleucine, lysine, methion-
ine, phenylalanine, proline, serine, threonine, tyrosine, and
valine. Tryptophan (Trp), histidine (His), leucine (Leu),
and uracil (Ura) are omitted from the mix and are added
individually to SC-selective medium from stock solutions.

5. Stock solutions for selective SC medium: prepare solutions
at the following concentrations: 100 mM His, 20 mM Ura,
100 mM Leu, and 40 mM Trp. Filter sterilize all solutions.
Store the Ura and Leu solutions at room temperature, store
the His solution light protected at room temperature, and
store the Trp solution at 4◦C light protected.

6. SC liquid medium: dissolve 1.4 g of yeast SC medium
amino acid supplement, 1.7 g of yeast nitrogen base (with-
out amino acids and without ammonium sulfate), and 5 g
of ammonium sulfate into 925 mL of water. Adjust pH to
5.9 with 10 M NaOH. Autoclave and store at room tem-
perature. Add 50 mL of sterile 40% (w/v) glucose before
use. This media is SC-Leu-Trp-Ura-His. To supplement
with a missing amino acid or nucleotide, add 8 mL of the
appropriate stock solution (e.g., to make SC-Leu-Trp, add
8 mL of 20 mM Ura stock solution and 8 mL of 100 mM
His stock solution).

7. SC agar medium and SC medium agar plates: to prepare
2 L of SC medium agar plates, dissolve 2.8 g of yeast
synthetic drop-out medium amino acid supplement, 3.4 g
of yeast nitrogen base (without amino acids and without
ammonium sulfate), and 10 g of ammonium sulfate into
925 mL of water. Adjust pH to 5.9 with 10 M NaOH. In
a separate 2 L flask, add 40 g of agar into 925 mL of water.
Autoclave both flasks, transfer their content into the agar
flask, and mix. Cool to 55◦C in a water bath. Add 100 mL
of sterilized 40% (w/v) glucose and 16 mL of the appro-
priate stock solutions of amino acid or nucleotide before
pouring into 15 cm Petri dishes (e.g., to make SC-Leu-
Trp, add 16 mL of 20 mM Ura stock solution and 16 mL
of 100 mM His stock solution).

8. SC-Leu-Trp-His + 3-AT plates (“3-AT plates”): add 8 mL
of 20 mM Ura stock solution and 1.68 g of 3-amino-1,2,4-
triazole (3-AT, final concentration of 20 mM) per 1 L of
SC agar medium before pouring media into 15 cm Petri
dishes.

9. Cycloheximide stock solution (10 mg/mL): dissolve cyclo-
heximide in 100% ethanol and filter sterilize (store light
protected at –20◦C).
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10. SC-Leu-His + 3-AT + cycloheximide plates (“CHX
plates”): add 8 mL of 20 mM Ura stock solution, 8 mL of
40 mM Trp stock solution, 100 μL of 10 mg/mL cyclo-
heximide stock solution, and 1.68 g of 3-AT powder per
1 L of SC agar medium before pouring media into 15 cm
Petri dishes.

11. SC-Leu-Trp-Ura (“-Ura plates”): add 8 mL of 100 mM
His stock solution per 1 L of SC agar medium before pour-
ing media into 15 cm Petri dishes.

12. For yeast transformation: Salmon sperm DNA (Sigma
D9156), “TE/LiAc” solution, 10 mM Tris-HCl (pH 8.0),
1 mM EDTA (pH 8.0), 100 mM LiAc prepared from
10X TE, and 1 M LiAc. “TE/LiAc/PEG” solution, pre-
pared by adding 50% (w/v) polyethylene glycol 3350 to
TE/LiAc. Both solutions need to be freshly prepared from
stock solutions before use.

2.1.3. Determination
of Allele Interaction
Profiles

1. Y2H controls: MaV203 co-transformed with pDEST-DB
and pDEST-AD (no interaction control); pDEST-AD-
CYH2S-E2F1 and pDEST-DB-pRB (weak interaction con-
trol and no growth on CHX plates); pDEST-AD-Jun and
pDEST-DB-Fos (moderately strong interaction control);
pDEST-AD and pCL1 (positive control of Y2H readout);
pDEST-AD-dE2F1 and pDEST-DB-dDP (strong interac-
tion control); and pDEST-AD-CYH2S-dE2F1 and pDEST-
DB-dDP (strong interaction control and no growth on
CHX plates) (3, 16).

2. Buffer for β-galactosidase assay: Z-buffer, add 16.1 g
Na2HPO4·7H2O, 5.5 g NaH2PO4·H2O, 0.75 g KCl, and
0.246 g MgSO4·7H2O to 1 L of water. Autoclave to steril-
ize and store at room temperature. About 4% (w/v) bromo-
chloro-indolyl-galactopyranoside (X-gal), dissolve 40 mg
X-gal in 1 mL of N,N-dimethylformamide. Store at –20◦C
light protected. β-Gal solution: for each β-gal assay plate,
mix 5 mL of Z-buffer with 120 μL of 4% (w/v) X-gal,
13 μL of 2-mercaptoethanol. Prepare fresh each time.

3. Nitrocellulose filter for β-galactosidase assay (Osmonics) and
Whatman paper filters (Whatman).

2.2. Reverse Edgetics

2.2.1. Generation
of a Random Library
Enriched for Full-Length
Alleles

1. Platinum Taq DNA polymerase (Invitrogen).
2. Donor vector pDONR-Express to generate entry clones and

select for full-length mutants (Invitrogen). Destination vec-
tors pDEST-DB and pDEST-CYH2S-AD for R-Y2H and
Y2H analyses.

3. TOP10 electrocompetent bacteria (Invitrogen).
4. BP clonase and LR clonase (Invitrogen).
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5. S.N.A.P. DNA purification kit (Invitrogen).
6. Midiprep kit (Qiagen).
7. LB plates with kanamycin (10–100 μg/mL) with or without

1 mM isopropyl β-D-thiogalactopyranoside (IPTG) and LB
plates with 100 μg/mL ampicillin.

2.2.2. Isolation of
Edgetic Alleles

1. MaV203 yeast strain (see Section 2.1.2, step 2).
2. YEPD plates (see Section 2.1.2, step 3).
3. SC-Leu-Trp plates (see Section 2.1.2, step 7).
4. 3-AT plates (see Section 2.1.2, step 8).
5. -Ura plates (see Section 2.1.2, step 11).
6. SC-Leu-Trp+ 0.2% (w/v) 5-fluoroorotic acid (5-FOA): add

8 mL of 20 mM Ura, 8 mL of 100 mM His, and 2 g of
5-FOA per 1 L of SC agar medium before pouring into
15 cm Petri dishes.

7. Y2H controls (see Section 2.1.3, step 1).

3. Methods

3.1. Forward
Edgetics

The forward edgetics approach has three steps: (i) generate the
mutant alleles of interest, (ii) introduce each mutant in appropri-
ate yeast cells for Y2H analysis, and (iii) determine the interaction
profile of the mutant alleles.

Mutations are introduced in the wild-type ORF by Gateway-
compatible PCR-based site-directed mutagenesis (17), enabling
high-throughput manipulations. The mutants are next charac-
terized in the Y2H system, which detects interactions between
two proteins through the functional reconstitution of the yeast
Gal4 transcription factor (11). The two proteins (X and Y) are
fused to the Gal4 DNA-binding domain (DB) and the Gal4
activation domain (AD), respectively (see Note 1). The DB-X
and AD-Y hybrid constructs are expressed from the pDEST-
DB and pDEST-CYH2S-AD vectors that harbor the LEU2 and
TRP1 selectable markers for selection of transformants on SC-Leu
and SC-Trp, respectively. The CYH2S counter-selectable marker
on pDEST-CYH2S-AD allows for detection of auto-activating
DB-X hybrid constructs (detectable activation of Y2H reporter
genes in the absence of an interacting partner) by selecting
yeast cells without an AD-Y hybrid construct plasmid (16).
MaV103 and MaV203 are two non-isogenic strains of opposite
mating type a and α, respectively. They both have three Gal4-
inducible reporter genes integrated into their genome: GAL1-
lacZ, GAL1-HIS3, and SPAL10-URA3. By convention, MaV103
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Fig. 12.3. Examples of Y2H readout, scoring and interaction defects observed for six alleles with respect to the wild-type
(WT) allele. A, B, and C: Y2H interaction partners of the WT protein. DB: Gal4 DNA-binding domain. AD: Gal4 activation
domain. Proteins corresponding to the alleles of the gene of interest are expressed as DB-X hybrid constructs. A, B, and C
are expressed as AD-Y hybrid constructs. β-gal: β-galactosidase. Y2H controls from left to right: MaV203 co-transformed
with pDEST-AD and pDEST-DB; pDEST-AD-CYH2S-E2F1 and pDEST-DB-pRB; pDEST-AD-Jun and pDEST-DB-Fos;
pDEST-AD and pCL1; pDEST-AD-dE2F1 and pDEST-DB-dDP.

and MaV203 are transformed with AD-Y and DB-X hybrid con-
structs, respectively.

All mutants are individually tested for interaction against each
interactor known for the wild-type protein. For each interaction,
the expression level of each Y2H reporter is scored by comparison
to a set of Y2H control strains (Fig. 12.3). Expression of the
HIS3 and URA3 reporters are determined by growth on 3-AT
plates and -Ura plates, respectively. The expression of the lacZ
reporter is determined by a filter colorimetric assay. Exclude any
auto-activating DB-X hybrid construct showing growth on CHX
plates.

The forward edgetics strategy presented here does not apply
to the identification of gain of interaction alleles that can also
underlie phenotypic alterations. Such alleles can be identified by
performing proteome-wide Y2H screens (3).

3.1.1.
Gateway-Compatible
PCR-Based
Site-Directed
Mutagenesis

1. Design four specific primers to use in two separate PCR
amplifications: conventional Gateway attB1.1 forward and
attB2.1 reverse end primers plus forward and reverse
internal primers straddling the desired mutation. Gateway
attB1.1 forward and attB2.1 reverse end primers contain
Gateway attB1.1 or attB2.1 sites followed by ORF-specific
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sequence. The ORF-specific sequences for the attB1.1 for-
ward primer start from ATG start codon (shown in bold
below) and the ORF-specific sequence for the attB2.1
reverse primer may or may not contain a stop codon:
attB1.1 forward primer: 5′-G GGG ACA ACT TTG

TAC AAA AAA GTT GGC ACC ATG (ORF 5′ end
sequence)-3′.

attB2.1 reverse primer: 5′-GGG GAC AAC TTT GTA
CAA GAA AGT TGG CAA (ORF 3′ end sequence)-3′.
Design forward and reverse internal primers to cre-

ate 40 bp homologous regions between the forward and
reverse internal primers (see Note 2).

2. Use fully sequenced wild-type DNA as template for PCR
(see Note 3).

3. Carry out two PCR reactions for each mutant allele to be
cloned. Each PCR reaction in 50 μL volume, containing
1 unit of KOD Hot Start DNA polymerase according to
the recommendations from the manufacturer (Novagen).
Carry out the first PCR with the Gateway attB1.1 primer
and the reverse internal primer to generate fragment I.
Carry out the second PCR with the forward internal primer
and the Gateway attB2.1 primer to generate fragment II.

4. Mix equal volumes of the two PCR products contain-
ing fragments I and II (2–3 μL of each) with 150 ng
pDONR223 in a standard 10 μL BP reaction mixture
according to the instructions from the manufacturer (Invit-
rogen) and incubate at 25◦C for 16 h.

5. Combine 2.5 μL of BP reaction mixture with 25 μL DH5α

Z-competent cells (Zymo Research). Incubate on ice for
20 min. Spot the cell suspension on LB agar plates con-
taining 50 μg/mL spectinomycin and incubate overnight
at 37◦C. There should be no growth from bacteria trans-
formed with a BP reaction negative control (pDONR223
vector only, no PCR products).

6. With a sterile toothpick pick four isolated colonies from
each transformation reaction into individual wells of a
96-well deep-well plate containing 1 mL liquid LB media
with 50 μg/mL spectinomycin. Incubate the deep-well
plate on a shaker at 37◦C for 20 h. Combine 80 μL of
the culture and 80 μL of 40% (w/v) sterile glycerol to pre-
pare an archival stock (store at –80◦C). Use the remainder
of the culture for plasmid isolation.

7. To control for clone sequence and correct recombination,
PCR-amplify transferred ORF from DNA isolated from
individual colonies, using KOD polymerase with M13-
based universal primers to generate templates for sequenc-
ing (see Note 4):
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M13GF: 5′-CCCAGTCACGACGTTGTAAAACG-3′.
M13GR: 5′-GTAACATCAGAGATTTTGAGACAC-3′.

8. Full-length, sequence-confirmed mutant alleles are trans-
ferred to Y2H vectors pDEST-DB and pDEST-CYH2S-
AD via a Gateway LR reaction (Invitrogen). Carry out LR
reactions in 10 μL according to the instructions of the
manufacturer (Invitrogen) (see Note 5). Transform 10 μL
of chemically competent DH5α cells with 5 μL of the LR
reaction. There should be no growth from bacteria trans-
formed with an LR reaction negative control (destination
vector only, no entry clone).

9. Grow transformants in liquid LB media containing
100 μg/mL ampicillin in a 96-well deep-well plate on a
shaker at 37◦C for 20 h. Remove 80 μL of the overnight
culture, mix with 80 μL of 40% (w/v) sterile glycerol
to generate archival stocks, and store at –80◦C. Use the
remainder of the culture for plasmid isolation.

10. Confirm successful recombination of mutant alleles into
the two Y2H vectors by PCR amplification using 5′-primers
(AD and DB) specific to pDEST-CYH2S-AD and pDEST-
DB destination vectors, respectively, and 3′-primer (Term)
common for both vectors. End-read sequencing can be
done using the same primers:
AD: 5′-CGCGTTTGGAATCACTACAGGG-3′.
DB: 5′-GGCTTCAGTGGAGACTGATATGCCTC-3′.
Term: 5′-GGAGACTTGACCAAACCTCTGGCG-3′.

3.1.2. Generation of
Yeast Strains Expressing
DB-X and AD-Y Hybrid
Constructs

1. Streak MaV103 and MaV203 on YEPD plates and incubate
for 48 h at 30◦C to obtain isolated colonies. Prepare fresh
cultures for each strain by inoculating a single colony into
20 mL of YEPD media. Incubate the cultures overnight at
30◦C on a shaker. Measure and record the OD600 for the
overnight cultures of MaV103 and MaV203, and then dilute
cells into fresh YEPD media to obtain a final OD600 of 0.1.
Incubate diluted cultures at 30◦C on a shaker until OD600
reaches 0.6–0.8 (4–6 h). Use 100 mL of YEPD culture per
96-well plate of transformations.

2. Harvest cells by centrifugation at 800×g for 5 min. Wash
cells first with 10 mL of sterile water, centrifuge, and dis-
card the supernatant. Then wash with 10 mL of TE/LiAc
solution, centrifuge, and discard the supernatant.

3. Resuspend cells in 2 mL of TE/LiAc solution, and then add
10 mL of TE/LiAc/PEG solution and 200 μL of carrier
DNA (salmon sperm DNA boiled and kept on ice). Mix
the solution by inversion. Aliquot 120 μL of this mix to
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each well in a 96-well round bottom plate. Add 5 μL of
DNA (miniprep of AD-Y or DB-X hybrid construct mutant
clones) to the competent cells and mix. Seal the plate tightly
with adhesive aluminum sealing foil. Incubate at 30◦C for
30 min. Heat shock in a 42◦C water bath for 15 min.

4. Centrifuge the 96-well plate for 5 min at 800×g and care-
fully remove the supernatant using a multi-channel pipette.
To each well add 100 μL of sterile water and resuspend the
cell pellet. Centrifuge the 96-well plate for 5 min at 800×g
and then carefully remove 90 μL. Resuspend pellet on a 96-
well plate vortex. Spot 5 μL of the cell suspension onto
appropriate selective plates (Sc-Trp plates for AD-Y hybrid
constructs and Sc-Leu plates for DB-X hybrid constructs).
Incubate selective plates at 30◦C for 3 days.

5. Pick transformants into a round bottom 96-well plate con-
taining 160 μL of selective media in each well (Sc-Trp media
for AD-Y hybrid construct strains and Sc-Leu media for
DB-X hybrid construct strains). Incubate on a shaker at
30◦C for 2 days. Prepare archival stocks by combining 80
μL of the yeast culture with 80 μL of 40% (w/v) sterile
glycerol and store at –80◦C.

3.1.3. Determination of
Allele Interaction Profiles

1. Grow fresh cultures of MaV103 strains transformed with
AD-Y hybrid construct and MaV203 strains transformed
with DB-X hybrid construct in SC-Trp and SC-Leu media,
respectively, for 2 days at 30◦C in round bottom 96-well
plates (see Note 1). Spot 5 μL of each culture, one on top of
the other, on YEPD agar plates and grow overnight at 30◦C.

2. Select diploid cells by replica plating of cells from YEPD to
SC-Leu-Trp plates and grow for 2 days at 30◦C.

3. Replicate diploid cells from SC-Leu-Trp plates on three phe-
notyping plates, including 3-AT, -Ura, and CHX plates.
Clean 3-AT and CHX plates after overnight growth at 30◦C
by replica plates on fresh velvets (usually three to four times
until no cells are readily detectable by eye). All phenotyping
plates are grown for 5 days at 30◦C before scoring.

4. Resuspend a small amount (200 μL tip end size) of diploid
cells from SC-Leu-Trp plates in 20 μL SC-Leu-Trp medium.
Spot cell suspension onto YEPD agar plates with a nitrocel-
lulose filter laid on top. Incubate YEPD plate overnight at
30◦C for β-gal filter lift assay.

5. Retrieve the YEPD/filter plates. For each plate to be assayed,
get one empty 15 cm Petri dish. Place two pieces of What-
man filter paper in the plate. Add 5 mL of β-gal solution to
each plate. Let the paper soak up the solution and make sure
there are no bubbles under the Whatman paper. Remove
the nitrocellulose filter from the YEPD (with yeast on the
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filter) and place in liquid nitrogen for at least 30 s to lyse
the cells. Remove the filter from liquid nitrogen and allow
it to thaw in the air (approximately 30 s). Once the filter is
flexible again place it into a Petri dish with β-gal solution
soaked Whatman paper. Use forceps to remove any bubbles
that may be under the filter. Incubate the β-gal assay plates at
37◦C overnight (or until control 2 turns blue) before scor-
ing intensity of readout compared to Y2H controls.

6. Growth on 3-AT plates but not on CHX plates indicates
activation of the HIS3 reporter through Y2H interactions.
Growth on -Ura plates indicates activation of the URA3
reporter. Blue coloration on the β-gal assay plates indicates
activation of the lacZ reporter. Interactions of each mutant
are compared to those of the wild type (Fig. 12.3). Wild-
type-like, null-like, and edgetic alleles with specific interac-
tion defects may be observed.

3.2. Reverse Edgetics The first step in reverse edgetics is a PCR-based random muta-
genesis of a wild-type ORF by taking advantage of the inher-
ent error rate of Taq DNA polymerase. The resulting library of
random alleles is subsequently enriched for full-length alleles by
a genetic selection in bacteria using the pDONR-Express vec-
tor (15). This selection relies on the expression of a kanamycin
resistance-encoding gene (KanR) placed in-frame with the ORF
cloning site. In this construct mutant alleles with nonsense or
out-of-frame mutations are selected against in the presence of
kanamycin.

Interaction-defective alleles are then selected by R-Y2H,
which relies on a genetic selection against wild-type interac-
tions that have been reconstituted in the yeast two-hybrid (Y2H)
system (13, 14). In the R-Y2H system, the activation of the
URA3 reporter gene by an interaction confers 5-fluoroorotic acid
(5-FOA) sensitivity (5-FOAS). Events that dissociate or prevent
the interaction and provide 5-FOA resistance (5-FOAR) can be
genetically selected for from a complex random library mutant
cloned in pDONR-Express. Only interactions driving the expres-
sion of the URA3 reporter gene can be used in our version of
the R-Y2H. The interaction profile of the isolated mutants can
subsequently be tested against other partners to determine the
specificity of the interaction defects and to identify edgetic alleles.

Here we describe a mutant library cloned into the pDEST-DB
vector as an example for R-Y2H selection. The mutant library can
be cloned into the pDEST-CYH2S-AD (see Note 1).

3.2.1. Generation
of a Random Library
Enriched for Full-Length
Alleles

1. Design two specific primers that add conventional attB1 and
attB2 Gateway recombination sites to the forward (5′) and
reverse (3′) ORF-specific primers, respectively. It is impera-
tive that the reverse primer contains no stop codon:
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attB1: 5′-ACA AGT TTG TAC AAA AAA GCA GGC
nnn-3′.

attB2: 5′-AC CAC TTT GTA CAA GAA AGC TGG
Gnn-3′.

where “n” represents ORF-specific sequences.
2. Carry out 30 cycles of PCR amplification (see Note 6), using

Platinum Taq DNA polymerase with the designed pair of
Gateway primers following the instructions of the manufac-
turer (Invitrogen). Set up mutagenic PCR reactions in 10
different wells to increase the complexity of the final library
(see Note 7). Pool all PCR products for library construction.

3. Analyze pooled PCR products on a 1% (w/v) agarose gel,
then gel-purify using the SNAP system and measure con-
centration at A260.

4. Mix 4 μL of BP buffer 5X, 300 ng of pDONR-Express,
200 ng of gel-purified PCR product (flanked by attB sites),
and 4 μL of BP clonase mix. Fill up to 20 μL with filter-
sterilized TE buffer 1X, pH 8.0. Incubate at room tempera-
ture (25◦C) for 16 h.

5. Transform electrocompetent TOP10 cells with BP reaction
mix. The transformation protocol is done according to the
instructions of the manufacturer (Invitrogen) (see Notes 8
and 9). First, determine the optimal selection condition
(optimal kanamycin concentration of selective plates) with a
wild-type ORF in pDONR-Express and subsequently apply
this selection condition to the construction of the library of
mutant clones. Scrape all clones from the selective plates,
collect, and pool all cells before isolation of the DNA library
by midiprep (Qiagen).

6. Mix 4 μL of LR buffer 5X, 1 μg of pDEST-DB or pDEST-
CYH2S-AD vector (see Note 1), 500 ng of the library, and
4 μL of LR clonase mix. Complete to 20 μL with filter-
sterilized TE buffer 1X, pH 8.0. Incubate at room tempera-
ture (25◦C) for 16 h.

7. Transform electrocompetent TOP10 cells with LR reaction
mix (see Note 9). The bacterial transformation protocol is
essentially the same one used for BP reaction transformation,
except that the selection is done on ampicillin (100 μg/mL).
After transformation, scrape all clones from the plates, col-
lect, and pool all cells before isolating the DNA library by
midiprep (Qiagen).

3.2.2. Isolation
of Edgetic Alleles

1. Transform MaV203 yeast strain with the plasmids encod-
ing wild-type DB-X and AD-Y hybrid constructs (see
Section 3.1.2). Select co-transformants on Sc-Leu-Trp.
Incubate plates for 72 h at 30◦C. Test for activation of
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the URA3 reporter gene by plating co-transformed yeast
cells on -Ura plates and media with 5-FOA (SC-Leu-Trp
+ 0.2% 5-FOA). Only interactions driving the expression
of the URA3 reporter gene should be kept for further
analysis.

2. Transform MaV203 yeast strain with AD-Y hybrid con-
struct carrying the ORF encoding the interaction partner
of the wild type (see Section 3.1.2).

3. Streak the yeast strain obtained from step 2 on an SC-Trp
agar plate to obtain isolated colonies. Incubate 48 h at
30◦C. Prepare a fresh culture by inoculating a single
colony into 20 mL of Sc-Trp media. Incubate the cul-
ture overnight at 30◦C on a shaker. Measure and record
the OD600 for the overnight culture and dilute cells into
100 mL of fresh YEPD media to obtain a final OD600 of
0.1. Incubate the diluted culture at 30◦C on a shaker until
OD600 reaches 0.6–0.8 (4–6 h).

4. Harvest cells by centrifugation at 800×g for 5 min. Wash
cells first with 10 mL of sterile water, centrifuge, and dis-
card the supernatant. Then wash the cell pellet with 10 mL
of TE/LiAc solution, centrifuge, and discard the super-
natant.

5. Resuspend cells in 2 mL of TE/LiAc solution, and then
add 10 mL of TE/LiAc/PEG solution and 200 μL of car-
rier DNA (salmon sperm DNA boiled and kept on ice).
Mix the solution by inversion. Add 10 μg of mutant library
DNA to the competent cells and mix by pipetting. Dis-
tribute equally into 10 polypropylene tubes. Incubate at
30◦C for 30 min. Heat shock in a 42◦C water bath for
15 min.

6. Centrifuge all tubes for 5 min at 800×g and discard the
supernatant. Wash cells in each tube with 1 mL of ster-
ile water. Plate yeast cells on 10 plates of media with
0.2% (w/v) 5-FOA (Sc-Leu-Trp + 0.2% 5-FOA). In par-
allel, two 100 μL aliquots of transformation mix should
be diluted 103 and 104 times and plated on non-selective
medium (Sc-Leu-Trp) to determine the efficiency of trans-
formation. An average of 3–5 million yeast transformants
should be obtained in total. Incubate all plates at 30◦C for
72 h.

7. Pick 5-FOAR colonies and streak them on non-selective
media (SC-Leu-Trp). Incubate at 30◦C overnight, and
then replicate on 3-AT plates and YEPD plates to assay
HIS3 and lacZ expression, respectively. Only colonies that
can no longer activate the expression of these reporter
genes should be kept for further characterization.
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8. PCR-amplify ORFs directly from yeast cells with pDEST-
DB-specific primers to identify potential mutations. Only
single non-synonymous missense mutants should be kept
for further analysis.

9. Using the protocol given in Section 3.1.2, transform the
strain obtained from step 2 with both linearized pDEST-
DB vector and the PCR product obtained from step 8 (gap
repair (16)). Retest Y2H interaction between DB-X hybrid
construct of the mutant alleles and AD-Y hybrid construct
of the wild-type interactors (see Section 3.1.3).

10. Characterize the interaction profiles of the selected mutant
alleles against other interactors (see Section 3.1.3) and
identify edgetic alleles (Fig. 12.3).

4. Notes

1. In the Y2H system, some interactions between proteins X
and Y can be detected both as DB-X/AD-Y and as DB-
Y/AD-X configuration, whereas others can only be detected
in one of the two configurations. The cloned mutant alleles
can be transferred into pDEST-DB and/or pDEST-CYH2S-
AD vectors, depending on the configuration of the reconsti-
tuted interaction.

2. An overlap shorter than 40 bp between forward and reverse
internal primers may sometimes be sufficient. A larger over-
lap usually increases the recombination efficiency. Mutation
close to the 5′- or 3′-end of the ORF can be introduced
using the Gateway-tailed attB primers.

3. If the wild-type ORF used as PCR template is carried on
a plasmid, it is important to ensure that this plasmid con-
tains an antibiotic marker different from that of pDONR223
(spectinomycin) to avoid contamination in the bacterial
transformation.

4. Unconfirmed clones are usually due to primer synthesis error
or additional mutations introduced by PCR.

5. The volume of Gateway LR reaction can be reduced to 5 μL.
6. Thirty cycles of PCR amplification are suitable for a 750 base

pair (bp) ORF. For ORFs of different lengths, PCR condi-
tions may need to be optimized for number of cycles and/or
dNTP concentrations to increase the fraction of amplicons
with single nucleotide changes, without drastically increas-
ing the fraction of amplicons with multiple mutations.

7. Since ORFs mutated early in the cycling conditions will
be amplified during the subsequent cycles, carrying out
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independent PCR reactions in distinct wells increases
the probability of getting a final library rich in distinct
mutations.

8. The optimal selection condition to enrich the library in
full-length alleles is determined by titration of kanamycin
concentrations (10–100 μg/mL), which yields the highest
number of colonies in the presence of IPTG and minimal
(or zero) colonies without IPTG.

9. The appropriate number of transformants required to suf-
ficiently cover the complexity of the library needs to be
adjusted depending on the size of the ORFs, with longer
ORFs requiring a higher number of clones. In our expe-
rience, for a 750 bp ORF, approximately 500,000 clones
should be sufficient.
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Chapter 13

Use of Proteome Arrays to Globally Identify Substrates
for E3 Ubiquitin Ligases

Avinash Persaud and Daniela Rotin

Abstract

Ubiquitin-protein ligases (E3s) are responsible for target recognition and subsequent modification of
selected substrates within the ubiquitin proteasomal system (UPS). Substrates of this pathway are cova-
lently modified by the attachment of ubiquitin usually onto Lys residues. As a result, these modified
proteins can be targeted for degradation, endocytosis, protein sorting, subnuclear trafficking, or other
fates. Despite the advancements in understanding the underlying mechanisms of the ubiquitin system,
the substrates of most E3 enzymes remain largely unknown. Here, we describe the development of a
high-throughput method to identify in vitro substrates for E3 ligases on a global proteomic scale. The
enzymatic activity (ubiquitylation) and binding of ubiquitin ligases to their substrates are performed using
protein (proteome) microarrays as the experimental platform, and using Nedd4/Rsp5 family members
as examples of HECT E3 ligases. The in vitro ubiquitylation and binding substrates identified in these
screens can provide invaluable insight into the cellular pathways in which E3 ligases participate.

Key words: E3 ubiquitin ligase, ubiquitin proteasomal system (UPS), microarray, proteomics,
HECT, Nedd4, high-throughput.

1. Introduction

Ubiquitin-mediated proteolysis is a major proteolytic pathway
in the cell and is essential for normal cell functioning and
survival (1). Ubiquitin also targets proteins for other cellular
fates, such as endocytosis, vesicular transport, sorting of trans-
membrane and cargo proteins, histone modification, and others
(2–5). The ubiquitylation cascade involves the sequential activ-
ity of three enzymes: E1 (ubiquitin-activating enzyme), E2
(ubiquitin-conjugating enzyme), and the E3 (ubiquitin ligase);
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the latter is responsible for substrate recognition and transfer of
ubiquitin onto it. The major classes of E3 ubiquitin ligases are the
HECT and RING classes. While HECT E3s can directly transfer
ubiquitin onto its target proteins, RING E3s facilitate transfer of
ubiquitin from an E2 to the substrate (6). Given the importance
of E3s for both substrate recognition and ubiquitin transfer, the
identification of their substrates is essential for understanding the
cellular pathways in which they participate and their biological
function.

Protein microarray technology provides a powerful tool to
assess the selectivity of protein–protein interactions and protein
modifications on a system-wide or proteome-wide scale, an advan-
tage that is limiting in other high-throughput methods. However,
only a few studies to date have used this technology to assess sub-
strate recognition and specificity of ubiquitin ligases.

In a recent study, we have utilized the yeast Saccharomyces
cerevisiae and proteome microarrays (chips) to globally identify
ubiquitylation substrates and binding partners for Rsp5, a HECT
E3 that is the ortholog of Nedd4 in yeast (Fig. 13.1a); this
screen identified both known and novel substrates for this E3
ligase (7). The validity of this approach was further confirmed
by recent studies, which demonstrated that some of the novel
Rsp5 substrates (hits) identified in our proteome array screen
(e.g., Sna3, Ear1P, and the arrestin-related trafficking adaptors
(ARTs) Ygr068c, Rod1, Rog3, Aly1, and Aly2 [i.e., Art5, Art4,
Art7, Art6, and Art3]) were indeed ubiquitylated in vivo by Rsp5
in yeast cells, a process that was required for their biological
function (8–13). In a subsequent study, we performed a similar
screen in order to identify substrates for the mammalian Nedd4
(Nedd4-1) and Nedd4-2 (Nedd4L) E3 ligases and decipher
their substrate specificity using human proteome microarray (14)
(Fig. 13.1). In addition, proteome microarrays have been used
for the identification of ubiquitylated substrates of E3s in cel-
lular extracts obtained from cells at different stages of the cell
cycle (15). Furthermore, earlier studies by Hesselberth and col-
leagues utilized yeast proteome microarrays to identify Rsp5 WW
domain-interacting partners (16).

Thus, the aim of the ubiquitylation-on-chip screen is to iden-
tify, on a global proteomic scale, all or most substrates for specific
ubiquitin ligases. The method to achieve this is described here,
which was utilized to identify Nedd4 family substrates, employing
a Human ProtoArray Microarray PATH slide (currently available
from Invitrogen). These slides contain purified proteins immo-
bilized at a high spatial density on standard size slides. By per-
forming both ubiquitylation and binding reactions on these slides,
proteins that are modified by the attachment of ubiquitin or
that bind directly to E3 can be rapidly identified. This method
works well also for E3s that are not from the HECT family (e.g.,
a cullin complex, which includes a RING E3) and others. The
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Fig. 13.1. Ubiquitylation and binding assays to identify substrates for E3 ubiquitin ligases. (a) Schematic representation
of several Nedd4 family members (the yeast Rsp5 and the mammalian mouse (m) and rat (r) Nedd4-1 and human
(h) Nedd4-1 and Nedd4-2) showing their domain architecture. Not to scale. (b) Control protein microarray spotted with
decreasing concentrations of known positive control proteins (containing PY motifs), or negative controls, and probed with
hNedd4-1. Positive controls: (1) βENaC-PY motif; (2) Rnf11; (3) LAPTM5-C terminus; (4) Xenopus Nedd4-HECT domain;
(5) CNrasGEF-C terminus. Negative controls: (6) GST; (7) rNedd-4 –C2 domain; (8) RNF11 (Y to A mutant); (9) Grb10-SH2
domain; (10) CNrasGEF-PDZ domain. (c) Ubiquitylation of the proteome array (ProtoArrayTM) by hNedd4-1. The array
was incubated with E1, E2 (UbcH5b), E3 (hNedd4-1), FITC-Ub and Mg-ATP. Subarrays from duplicate proteome array
are shown, to demonstrate reproducibility of the assay. (d) Binding of hNedd4-1 to the proteome array (ProtoArrayTM).
The array was incubated with Alexa647-hNedd4-1. Subarrays from duplicate proteome array are shown, to demonstrate
reproducibility of the assay, as in (c). Intensity of ubiquitylation and binding to protein on the arrays is revealed by the
color bar, which is depicted in (14) and in the online version of the volume. Adapted from (14) with permission from
Nature Publishing Group (NPG).

improvements made over our previous screen of yeast proteome
microarray probed with Rsp5 are described here as well.

2. Materials

The ProtoArray technology used in this study contains puri-
fied proteins immobilized at a high spatial density on standard
nitrocellulose-coated glass slides and is based on the yeast protein
microarray technology developed by Zhu and colleagues (17) to
detect molecular interactions of proteins.
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The ProtoArray Human Protein Microarray contains thou-
sands of purified human proteins that have been expressed
using a baculovirus expression system, purified from insect cells
and printed in duplicate on a PATH protein microarray slides
(nitrocellulose-coated glass slide). Currently, ProtoArray Human
Protein Microarray v5.0 is available from Invitrogen that contains
9,483 proteins, as well as 2,016 controls, all spotted in duplicate.
Previously, ProtoArray Yeast Protein Microarrays were printed
that contained >4,000 S. cerevisiae proteins. However, these yeast
proteins were printed on a FAST protein microarray slide and are
no longer in production. The PATH slide is coated with an ultra-
thin film of nitrocellulose, which confers the advantage of very
low background fluorescence and excellent signal-to-noise ratio,
as compared to the older FAST slide, thus providing a higher
quality data. The methods described in Section 3 are for per-
forming ubiquitylation screens, as well as parallel binding screens,
using ProtoArrays.

2.1. Materials for
Printing Control
Microarray PATH
Slides

1. PATH R© Protein Microarray slides (Gentel Biosciences).
2. Biochip Arrayer (Perkin Elmer PiezoArrayer or any standard

microarray arrayer) to print the control slides.
3. Purified proteins of interest to be spotted on slide (positive

and negative controls; see Note 1).

2.2. Materials for
Ubiquitylation Assay

1. Respective E1, E2, and E3 enzymes required for ubiquityla-
tion reaction (see Note 2).

2. Ubiquitylation reaction buffer (10X): 250 mM Tris-HCl pH
7.5, 500 mM NaCl, 1 μM DTT, 40 mM MgCl2. Store in
aliquots at –20◦C for up to 2 months (see Note 3).

3. Blocking buffer (1X): 50 mM HEPES pH 7.5, 200 mM
NaCl, 0.08% (w/v) Triton X-100, 25% glycerol, 20 mM glu-
tathione, 1.0 mM DTT, 10 M NaOH, 1% (w/v) BSA. Store
at 4◦C for up to 4 months.

4. Wash buffer: 0.5% PBST (phosphate-buffered saline (PBS)
pH 7.4 with 0.5% (w/v) Triton X-100. Store at room
temperature.

5. Fluorescein-N terminus ubiquitin, FITC (U-580, Boston
Biochem). Store in aliquots at –20◦C for up to 2 months.

6. 100 mM Mg-ATP dissolved in distilled water.
7. Invitrogen Human ProtoArray R© Microarray PATH slide.
8. ProScan Array HTTM (Perkin Elmer) slide scanner.

2.3. Materials for
Binding Assay

1. Fluorescently labeled E3 ligase of interest (see Note 2).
2. Ubiquitylation reaction buffer (10X): 250 mM Tris-HCl pH

7.5, 500 mM NaCl, 1 μM DTT, 40 mM MgCl2. Store in
aliquots at –20◦C for up to 2 months (see Note 3).
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3. Blocking buffer (1X): 50 mM HEPES pH 7.5, 200 mM
NaCl, 0.08% (w/v) Triton X-100, 25% glycerol, 20 mM glu-
tathione, 1.0 mM DTT, 10 M NaOH, 1% (w/v) BSA. Store
at 4◦C for up to 4 months.

4. Wash buffer: 0.1% PBST (PBS, pH 7.4 with 0.1% (w/v) Tri-
ton X-100). Store at room temperature.

5. Invitrogen Human ProtoArray R© Microarray PATH slide.
6. Alexa Fluor 647 Microscale protein Labeling Kit (A30009,

Molecular Probes).
7. ProScan Array HTTM (Perkin Elmer) slide scanner.

3. Methods

Ubiquitin ligases are required for the targeted recognition of spe-
cific substrates within the ubiquitylation system. The E3 must first
interact with the substrate before modifying it or facilitating its
modification. This provides the rationale for the use of binding
screens to complement the ubiquitylation screens. However, it
is worthwhile to note that the ubiquitylation assay is more sen-
sitive than the binding assay (Fig. 13.1c, d) and usually results
in a higher quality data set. One possible explanation for this is
that the binding of E3 ligases to their targets is relatively weaker
and more transient as compared to the covalent attachment of
ubiquitin onto these substrates. Furthermore, polyubiquitylation
(or multi-monoubiquitylation) of substrates on the proteome
microarray may result in fluorescent signal amplification. In addi-
tion to being more sensitive, the ubiquitylation screen is also a
more direct assay of the E3 ligase’s activity (7).

Both the ubiquitylation and binding screen are performed in
duplicate on the ProtoArray R© Microarray slides in order to ensure
reproducibility.

3.1. Printing Control
Microarray PATH
Slides

Control microarray slides (Fig. 13.1b) are printed in order to
optimize conditions for both ubiquitylation and binding assays.

1. Printing of control microarray PATH slides can be done
using a Biochip arrayer (for example, PiezoArrayer from
Perkin Elmer).

2. Purified proteins (epitope tagged) are diluted such that the
total amount of control proteins spotted within a subarray
range from 0.016 to 0.8 ng per spot (usually 4 serial dilu-
tions per protein, see Note 1).

3. Each control protein subarray can be reprinted in a six
row by two-column format for testing multiple optimiza-
tion conditions simultaneously on the same microarray
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slide using a multiplexing gasket (SIMplexTM Multiplexing
System, Gentel Biosciences).

4. The quality of the print can be assessed by probing the slide
with a primary antibody against the epitope tag on the con-
trol proteins followed by a secondary antibody–fluorophore
conjugate. The slide can be scanned using a standard
fluorescent-based microarray scanner such as ProScan Array
HTTM scanner (Perkin Elmer) or ScanarrayTM 4000 laser
scanner (Perkin Elmer) to visualize protein spots.

3.2. Ubiquitylation
Assays

3.2.1. Optimizing
Ubiquitylation-On-Chip
Assay Using Control
Microarray PATH Slides

1. Rinse the control PATH slide briefly with 0.5% PBST.
2. Following rinsing, the slide is blocked at room temperature

for 40 min by gentle agitation in ubiquitylation blocking
buffer (see Note 3).

3. Wash slide gently with 1X ubiquitylation reaction buffer
(prepared by diluting the 10X stock in water) at room tem-
perature for 5 min. Slide is then placed on moistened filter
paper (in a petri dish) on a flat surface following this wash
step.

4. Ubiquitylation reaction mixture: To optimize the ubiquity-
lation screen, it is recommended that you maintain similar
concentrations to those used in an in vitro ubiquitylation
reaction with your cascade enzymes as the starting platform.
If this is not known, the following can be used: 3 μg E1,
6 μg E2, 10 μg E3, 8 μg of FITC-Ub, and 8 mM Mg-
ATP in ubiquitylation reaction buffer to a final volume of
300 μL (see Note 4). The concentration of the contents of
the ubiquitylation reaction mixture can be varied to increase
the signal-to-noise ratio and to selectively ubiquitylate the
positive controls.

5. Incubate ProtoArray slide with ubiquitylation reaction mix-
ture by pipetting the mixture onto the slide surface. Ensure
that the entire slide surface is covered with ubiquitylation
reaction mixture (see Note 5). The slide is left in the dark
for 1.5 h.

6. Following this incubation, wash slide gently 3×5 min each
with 0.5% PBST.

7. Place the slide in a 50 mL Falcon tube and dry it by cen-
trifugation at 1,000×g for 5 min at room temperature (see
Note 6).

8. The slide is then air dried by gentle shaking in the dark.
9. Scan slide at 10 μm resolution using a 488 nm laser on

ProScan Array HTTM scanner (Perkin Elmer) using Scan
Array Express software. Quantitation of fluorescent signal is
also accomplished using this software.



Use of Proteome Arrays to Globally Identify Substrates 221

3.2.2. Ubiquitylation
Assay Using ProtoArray
Microarray PATH Slides

To conduct the actual ubiquitylation screen, use the same pro-
tocol and stoichiometric ratios of E1, E2, and E3 enzymes, as
well as FITC-Ub and Mg-ATP, as those optimized for the control
PATH slides, in order to probe the human ProtoArray Microarray
(Fig. 13.1c).

3.3. Binding-On-Chip
Assays

3.3.1. Optimizing
Binding-On-Chip Assay
Using Control Microarray
PATH Slides

1. Follow the instructions in the Alexa Fluor 647 Microscale
protein Labeling Kit for labeling the purified E3 of
interest.

2. Rinse the control PATH slide briefly with 0.1% PBST.
3. Following rinsing, the slide is blocked at room temperature

for 40 min by gentle agitation in ubiquitylation blocking
buffer (see Note 3).

4. Wash slide gently with 1X ubiquitination reaction buffer
(prepared by diluting the 10X stock in water) at room tem-
perature for 5 min. Slide is then placed on moistened filter
paper (in a petri dish) on a flat surface following this wash
step.

5. Binding reaction mixture: Starting amounts of labeled
E3 can vary between 2 and 6 μg (or 0.15–0.5 μM of
Alexa647-E3 as a function of the ubiquitin ligase) in ubiq-
uitylation reaction buffer to a final volume of 300 μL (see
Note 7). This can be varied subsequently to maximize
signal-to-noise ratio and to selectively bind the positive
controls.

6. Incubate the control slide with binding reaction mixture
by pipetting the mixture on the slide surface. Ensure that
entire slide surface is covered by the binding reaction mix-
ture (see Note 5). The slide is left in the dark for 1 h.

7. Following this incubation, wash slide gently 3×5 min each
with 0.1% PBST.

8. Place the slide in a 50 mL Falcon tube and dry it by cen-
trifugation at 600×g for 5 min at room temperature (see
Note 6).

9. The slide is then air dried by gentle shaking in the dark.
10. Scan slide at 10 μm resolution using a 633 nm laser

on ProScan Array HTTM scanner (Perkin Elmer or any
standard fluorescent-based microarray scanner) using Scan
Array Express software.

3.3.2. Binding Assay
Using ProtoArray
Microarray PATH Slides

To conduct the actual binding screen, use the same protocol and
concentration of Alexa-647-labeled ubiquitin ligase established in
optimizing the binding assay on the control PATH slides to probe
the human ProtoArray Microarray (Fig. 13.1d).
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3.4. Quantitation
and Data Analysis

Spot fluorescent intensity is quantitated using ProScan Array
HTTM (Perkin Elmer) software. Comparison of hits on replicate
slides is accomplished using Protein Prospector Analyzer software
(Invitrogen).

Duplicate screens are compared using Protein Prospector
Analyzer (Invitrogen) software to align similar protein spots on
both slides. Spots in which 50% of the pixels produced a sig-
nal greater than 2 standard deviations (SD) above background
were identified as ‘hits.’ These proteins are included in the sub-
strate and interaction data sets only if both duplicate spots in the
two replicated slides (i.e., all four spots) meet the criteria. Once
the data sets are generated, the spots are normalized and ranked
according to their signal intensity per unit protein spotted on slide
[signal intensity = mean signal on the spot – background)/RFU
(relative fluorescent units) of the protein spotted] (see Note 8).
The RFU of the proteins spotted on the slide is provided upon
purchase of the ProtoArray.

4. Notes

1. Control proteins are spotted in specified amounts so as to
replicate the range of proteins spotted on the Human Pro-
toarray Microarray PATH slide. These control proteins can
be epitope tagged as it allows the visualization of the spot-
ted proteins on the control slide after probing with specific
antibody/fluorophore conjugate.

2. The ubiquitin ligase probe should not be a GST fusion pro-
tein; most of the proteins printed on the Human Protoar-
ray Microarray PATH slide are GST tagged and thus dimer-
ization of GST can lead to false positives. If it is absolutely
necessary to generate the E3 protein first as a GST fusion,
ensure GST is completely removed prior to the assay (for
example, through proteolytic cleavage).

3. DTT is omitted when making the ubiquitylation blocking
buffer. This is added to the buffer prior to blocking the Pro-
toArray slide. It is also important to prevent the slide from
drying for most of the duration of the ubiquitylation and
binding assays, in order to reduce background noise when
scanning. Protocol steps should therefore flow smoothly into
each other.

4. The amounts of E1, E2, and E3 needed for the ubiquityla-
tion reaction will vary depending on the activity of your E3.
In our assay we used the following concentrations: 0.303
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μM E1, 1.96 μM E2 (UbcH5b), 0.49 μM E3 (Nedd4
protein), and 8 mM Mg-ATP. Volume of ubiquitylation
reaction mixture pipetted on entire slide surface ranges from
300 to 700 μL.

5. Ensure that reaction mixture is evenly distributed over
the slide surface, since uneven distribution would result in
inconsistent ubiquitylation (or binding) of targets between
replicate experiments.

6. When drying by centrifugation, ensure that the surface of
the slide with proteins spotted on it is facing the center of
rotation and that slide barcode is facing upward. This orien-
tation reduces background noise considerably.

7. The amounts of Alexa647-E3 needed for the ubiquityla-
tion reaction will depend on the amount used in your bind-
ing optimization reaction. Starting amount used can vary
between 0.15 and 0.3 μM of Alexa647-E3 as a function
of the ubiquitin ligase. Volume of ubiquitylation reaction
mixture pipetted on entire slide surface ranges from 300 to
700 μL.

8. It is difficult to measure the amount of protein spotted per
spot on the microarray slide. As such, their amounts are
given in terms of relative fluorescent units (RFU). These
were derived from comparing the fluorescence from these
spots (after treatment with an antibody–fluorophore con-
jugate) to those of standard protein controls with known
amounts spotted.

Previously, we had used the Nedd4 homologue in the
yeast S. cerevisiae, Rsp5, to probe the yeast ProtoArray in
order to identify substrates for this ubiquitin ligase within
the yeast proteome (7). However, the yeast proteome was
printed on a FAST microarray slide. This slide has a thicker
layer of nitrocellulose on its surface in comparison to the
PATH slide used for printing the human ProtoArray and
results in higher background noise. There are also few dif-
ferences with regard to the protocol used to conduct the
ubiquitylation and binding assays. The major differences for
both assays are outlined below:
(a) Gupta et al. (7) used 5% skim milk to block the microar-

ray slide in their screen while a blocking buffer (recipe
given) was used for the new PATH slide.

(b) Incubation time with the ubiquitylation reaction mix-
ture in the yeast microarray screen was 3 h vs. 1.5 h used
in the revised current protocol (for the binding screen,
incubation times were 2 h vs. 1 h, respectively).

(c) Although both methods used centrifugation to dry the
slide, the orientation of the slide during this step is cru-
cial to reducing the background noise (see Note 6).
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Chapter 14

Fit-for-Purpose Quenching and Extraction Protocols
for Metabolic Profiling of Yeast Using
Chromatography-Mass Spectrometry Platforms

Catherine L. Winder and Warwick B. Dunn

Abstract

Metabolomics involves the investigation of the intracellular (endometabolome) and extracellular
(exometabolome) pools of metabolites in biological systems. Methods to sample the exometabolome and
to quench metabolism and extract intracellular metabolites for the model eukaryote Saccharomyces cere-
visiae are presented here. These methods have been developed and validated to provide a fit-for-purpose
protocol for global analyses of the S. cerevisiae metabolome. The protocol allows the extraction of a wide
variety of metabolite classes and provides reproducible results to allow relative and semi-quantitative com-
parisons between samples of different origin. For exometabolome studies, fast sampling and separation
of cells by syringe filtration is recommended. For endometabolome studies, fast quenching of intracel-
lular metabolism is performed using a 60:40 (v/v) methanol:aqueous ammonium hydrogen carbonate
solution at –48◦C. Extraction of intracellular metabolites is performed using multiple freeze/thaw cycles
in a 60:40 (v/v) methanol:water solution at temperatures lower than 0◦C.

Key words: Metabolomics, endometabolome, exometabolome, metabolite quenching, metabolite
extraction, mass spectrometry, metabolic footprinting.

1. Introduction

Metabolomic studies involve the qualitative and quantitative
investigation of low molecular weight chemicals present in bio-
logical systems (typically lower than 1,500 Da), at the intracel-
lular and extracellular level (1–3). The aim is to analyze a rep-
resentative picture of the whole pool of metabolites present in a
biological system, the “metabolome,” whose definition originates
from the microbial research community (4, 5). Metabolomics is
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playing an important role in microbial-focused research (6, 7),
biotechnological and clinical studies, and systems biology (8, 9).

Two experimental strategies are applied in metabolomics,
“targeted” and “non-targeted.” Targeted investigation of a lim-
ited number of metabolites (typically less than 20) entails sample
preparation and the use of analytical protocols for absolute quan-
tification, with high specificity and accuracy. These investigations
require the previous knowledge of the metabolites to be stud-
ied and the availability of chemical standards (10). Non-targeted
metabolomic strategies (i.e., “metabolic profiling” studies), do
not require previous knowledge of the metabolites of interest (11)
and can provide a global (holistic) picture of metabolic patterns.
These methods can be used for hypothesis-generation strategies
(12) to investigate, for example, the effect of a gene deletion or
an environmental perturbation on the metabolome, or relative
changes in metabolite concentrations, without the need for abso-
lute quantification. In this case, sample preparation and analyti-
cal protocols are developed to provide a representative unbiased
profile of all metabolites in the biological system, with suitable
accuracy and precision. Since different metabolites exhibit differ-
ent physicochemical properties there is no single method that can
be applied for the analysis for all metabolites (2, 13). The selected
“fit-for-purpose” method should be able to extract a high number
of compounds, prevent loss of metabolites and should be non-
destructive (13).

When developing non-targeted methods a validation compar-
ing the technical variability (from multiple analyses of biologically
identical samples) against the biological variability (single analy-
sis of biologically discrete samples) can be performed, to confirm
low technical variability (this should be lower than between bio-
logical replicates). In our validation protocol we used a continu-
ous culture system, with cellular metabolism in steady state (sub-
strate, product concentrations and metabolic fluxes are constant
at a constant growth rate). A batch culture in exponential phase,
with a higher number of replicates can also be used to validate the
methods (14).

The sampling, quenching, and extraction procedures to be
applied are defined by the strategy and biological system to
be studied. In microbial systems, two metabolic profiles can be
investigated (1, 15): the intracellular (endometabolome) and the
extracellular (exometabolome) pools, this is also defined as the
“metabolic footprint” in cultures where metabolite-rich medium
(medium with a high number of metabolites) is used (16). A
fit-for-purpose protocol to enable the sampling and untargeted
metabolic profiling of both metabolomes in Saccharomyces cere-
visiae will be described in this chapter. This is summarized in
Fig. 14.1.
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Fig. 14.1. Workflow describing the collection of exometabolome samples and the quenching and extraction method for
the analysis of intracellular metabolites (endometabolome).

The collection of samples for exometabolome studies requires
the separation of the biomass from the growth medium, which
can be performed by filtration (17, 18) or centrifugation (13).
Endometabolome sampling is technically more demanding due
to the high rates of conversion of metabolites (high rates of
intracellular reactions; e.g., the rate of ethanol synthesis from
acetaldehyde can be as high as 2 mmol/L/s (19)). Therefore,
a two-step process is applied where step 1 involves the fast
quenching of enzymatic and chemical reactions, followed by per-
meabilization or lysis of cells and the release of intracellular
metabolites into a suitable solvent as the second step. Quench-
ing can be performed by a decrease or increase in temperature.
Permeabilization or cell lysis can be performed with a number of
mechanical or non-mechanical approaches including temperature
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increase (20) or rupturing of cell walls by freezing or sonica-
tion (21). Different protocols have been reported for each of
these processes (21). Here we describe the protocols applied to
acquire a sample representative of the whole metabolome where
multiple metabolite classes are detected, with methods which
are reproducible and robust across a wide range of concentra-
tions. These methods have been validated using two analyti-
cal platforms: gas chromatography-mass spectrometry (GC-MS)
and ultra-performance liquid chromatography-mass spectrome-
try (UPLC-MS). More targeted protocols specific for certain
metabolites or metabolite classes (for example, ATP extraction
using perchloric acid) may be applied separately (10, 13).

2. Materials

2.1. Collection
of Exometabolome
Samples

1. Sample bottles for bioreactors, accurately graduated in 5 mL
increments. For example, screw top glass vials, universal fit-
ting, depending on sample port fitting (Moulded Pathology
Media Vials, LSL).

2. 5 and 10 mL sterile syringes.
3. Syringe filters 0.22 μm (Millex Filter Units, Millipore).
4. Pipette capable of handling 5 mL sample volume, for fast

sampling and manipulation of samples.
5. 15 mL centrifuge tubes (good quality plastics, previously

tested to ensure no chemical leakage into solutions) (e.g.,
polypropylene tubes, Sterilin).

6. 2 mL centrifuge tubes for sample storage (good quality plas-
tics previously tested to ensure no chemical leakage into
solutions; e.g., see above).

7. Liquid nitrogen, appropriate gloves, and material for sample
manipulation (e.g., metal ladle).

8. For samples to be analyzed by GC-MS, succinic d4 acid and
d15 octanoic acid (Sigma-Aldrich) solutions can be added
as internal standards (final concentration, 0.17 mg/mL in
water). For samples to be analyzed by UPLC-MS no internal
standards are added.

2.2.
Endometabolome
Studies: Sampling
and Quenching of
Intracellular
Metabolism

1. Quenching solution: 60:40% (v/v) solution of methanol/
water containing ammonium hydrogen carbonate at a final
concentration of 0.85% (w/v), adjusted to pH 5.5. Use ana-
lytical or higher grade solvents and chemicals. The quench-
ing solution should be cooled to –48◦C (for example, in a
cryostat, in a dry ice/ethanol bath with controlled addition
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of dry ice or in a –80◦C freezer for a minimum of 2 h). The
temperature can be measured using a digital thermometer.

2. Sample bottles for bioreactor, graduated in 5 mL incre-
ments. For example, screw top glass vials, universal fitting,
depending on sample port fitting, minimum volume of 50
mL (e.g., Moulded Pathology Media Vials, LSL, UK).

3. Digital thermometer (to operate at temperature between
–45 and +150◦C).

4. Dry ice, frozen carbon dioxide.
5. 50 mL centrifuge tubes (good quality plastics, previously

tested to ensure no chemical leakage into solutions) (e.g.,
polypropylene tubes, Sterilin).

6. Pipette capable of handling 10 mL sample volumes, for fast
sampling and manipulation of samples.

7. Centrifuge, able to cool to below –20◦C and provide a min-
imum of 3,000×g.

8. Saline solution: 9 g/L aqueous solution of sodium chloride
at 4◦C.

2.3.
Endometabolome
Studies. Extraction of
Intracellular
Metabolites

1. Extraction solution. 60:40% (v/v) solution of methanol:
water using analytical or higher grade solvents. The extrac-
tion solution should be cooled to a temperature lower than
–20◦C for a minimum of 2 h in a –80◦C freezer or on dry
ice for a minimum of 2 h.

2. Centrifuge tubes, 2 mL (good quality plastics, previously
tested to ensure no chemical leakage into solutions).

3. Centrifuge, able to be cooled to –20◦C and operate at
13,000×g.

4. Liquid nitrogen, gloves, and material for sample manipula-
tion (e.g., metal ladle).

5. Dry ice (frozen carbon dioxide).
6. Vortex mixer.
7. For samples to be analyzed by GC-MS, succinic d4 acid and

d15 octanoic acid (Sigma-Aldrich) solutions can be added
as internal standards (final concentration, 0.17 mg/mL in
water). For samples to be analyzed by UPLC-MS no internal
standards are added.

2.4. GC-MS and
UPLC-MS Analysis

1. Solvents, HPLC grade methanol, water, pyridine, and hex-
ane. Pyridine and hexane should be anhydrous.

2. O-Methylhydroxylamine (Sigma-Aldrich).
3. N-Acetyl-N-(trimethylsilyl)-trifluoroacetamide, MSTFA

(Acros Chemicals).
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4. Appropriate chromatography vials and inserts.
5. Heater and heating blocks for 2 mL centrifuge tubes, with

efficient heat transfer.
6. Retention index solution: 0.6 mg/mL C10/C12/C15/

C19/C22/C25 n-alkanes in pyridine/hexane 50:50% (v/v)
(Sigma-Aldrich).

7. Vacuum-based lyophilization system (e.g., Lyopro 3000
Freeze dryer, ThermoFisher Scientific).

8. GC-MS instrument (e.g., the authors use an Agilent
6890 N gas chromatograph coupled to a Leco Pegasus III
electron impact time-of-flight mass spectrometer).

9. GC column (e.g., SPB50 column, Supelco).
10. UPLC-MS instrument (e.g., Waters Acquity UPLC sys-

tem coupled to a ThermoFisher hybrid electrospray LTQ-
Orbitrap XL mass spectrometer).

11. UPLC column (e.g., Acquity BEH C18 chromatography
column; 1.7 μm, 2.1 × 100 mm).

12. Centrifuge tubes, 2 mL (good quality plastics, previously
tested to ensure no chemical leakage into solutions) (e.g.,
Eppendorf brand tubes).

13. Vortex mixer.

3. Methods

3.1. Collection of
Exometabolome
Samples

3.1.1. Sample
Withdrawal from a
Bioreactor

1. Connect sample bottle to the bioreactor.
2. Transfer 5 mL of culture into the empty sample container.

This can be performed using the relatively high pressure
in the reactor to expel the sample or with a syringe con-
nected to the sampling system to pull sample into the
container.

3. Immediately transfer the culture sample to a 5 mL sterile
syringe and filter to separate the exometabolome (filtrate)
from the cell biomass using a 0.22 μm syringe filter.

4. Snap-freeze the exometabolome samples in liquid nitrogen.
5. Store the sample at –20 or –80◦C for further analysis (see

Note 1).

3.1.2. Sample
Withdrawal from a Flask

1. Fill a sterile 5 mL syringe with 5 mL of culture.
2. Immediately filter the sample through a 0.22 μm syringe

filter to separate the exometabolome (filtrate) from the cell
biomass.
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3. Snap-freeze the exometabolome samples in liquid nitrogen.
4. Store the sample at –20 or –80◦C for further analysis (see

Note 1).

3.2.
Endometabolome
Studies. Sampling
and Quenching of
Intracellular
Metabolism

For quenching and extraction of intracellular metabolites an
amount of 30 mg of dry weight biomass is recommended. With
a 10 mL sampling volume this corresponds to a S. cerevisiae cul-
ture with a biomass concentration of 3 mg/mL (dry weight). For
cultures with lower biomass concentrations, strategies to combine
cell pellets for optimum quenching and extraction are presented
below.

The use of organic solvents (methanol) and low tempera-
tures (–48◦C) may compromise the integrity of the cell mem-
brane resulting in leakage of intracellular metabolites during the
quenching (13, 14, 22). A quantitative method can be used
to determine the extent of the leakage in the quenching step.
It has been shown that the level of leakage is metabolite spe-
cific and some metabolites may be differentially affected (23).
It is recommended that the extent of the leakage is assessed
by analysis of the quenching and washing solutions together
with an exometabolome sample using identical analytical meth-
ods. Ensure that the residence times of cells in the quench-
ing solution are identical as it has been shown that longer res-
idence times may provide greater leakage (14). The aim is to
assess, qualitatively and quantitatively, which metabolites were
present in the medium before quenching and which appear from
leakage.

After quenching, the cells need to be rapidly separated from
the external environment. This can be performed by centrifuga-
tion or rapid filtration. In our experience, for the recommended
amount of biomass, a centrifugation step is the most appropriate
method.

A range of quenching methods have been reported (21).
These can be separated in two classes: (a) those applying
water:organic solvent solutions at low (e.g., –48◦C) (13, 14, 22)
or high (90◦C) (21) temperatures and (b) those which apply an
aqueous solution containing either glycerol, a saline solution (24)
or buffer (25) at 4◦C.

When high temperatures are used to quench metabolism, this
is generally followed by extraction at high temperatures, in a com-
bined quenching and extraction protocol (21). This combined
method has some limitations when a metabolite-rich medium is
used. When many metabolites are already present in the external
medium these metabolites cannot be assayed in the intracellular
metabolome and should be removed from any subsequent data
analysis. Alternatively, a defined medium with a minimum set of
known metabolites can be used.
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When low temperatures are used to effectively quench
metabolism, an organic solution (e.g., methanol/water) to keep
the temperature below –20◦C is necessary (20, 26).

3.2.1. Quenching
Metabolism in Samples
Taken from a Bioreactor

1. Add 40 mL of quenching solution at –48◦C to the sample
bottle, connect it to the bioreactor.

2. Fast sampling. Quickly transfer 10 mL of culture into the
quenching solution (see Note 2). If a vacuum system cou-
pled to the sampling port is not available, fast sampling can
be achieved using the pressure in the reactor to expel the
sample or a syringe for fast sampling into the quenching
solution (see Notes 3 and 4).

3. Transfer the solution rapidly by pouring into a 50 mL cen-
trifuge tube.

4. Centrifuge for 5 min at a recommended temperature of
–20◦C and at a maximum of 4,000×g (see Notes 5, 6,
and 7).

5. Remove all supernatant (quenching solution) and store
supernatant and cell pellet at –80◦C for subsequent
analysis.

6. If a “metabolite-rich” medium is used, after removal of the
supernatant in step 5 perform steps 7–9 (see Note 8).

7. Add 10 mL of saline solution (4◦C) to the cell pellet, vortex
mix for 15 s to resuspend the biomass.

8. Centrifuge for 5 min at 4◦C and at 4,000×g.
9. Remove all supernatant and store cell pellet and supernatant

for subsequent analysis at –80◦C.

3.2.2. Quenching
Metabolism in Samples
from Flasks

1. Add 40 mL of quenching solution at –48◦C to a 50 mL
centrifuge.

2. Using a pipette rapidly transfer 10 mL of culture to the
quenching solution (see Note 2). Add the sample to the
central part to ensure cell pellets do not freeze on container
surfaces (see Notes 3 and 4).

3. Centrifuge for 5 min at –20◦C and at a maximum of
4,000×g (see Notes 5, 6 and 7).

4. Remove all supernatant (quenching solution) and store
supernatant and cell pellet at –80◦C for subsequent
analysis.

5. If a “metabolite-rich” medium is used, after removal of the
supernatant in step 5 perform steps 7–9 (see Note 8).

6. Add 10 mL of saline solution (4◦C) to the cell pellet, vortex
mix for 15 s to resuspend the cells.
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7. Centrifuge for 5 min at 4◦C and at 4,000×g.
8. Remove all supernatant and store cell pellet and supernatant

for subsequent analysis at –80◦C.

3.3.
Endometabolome
Studies: Extraction
of Intracellular
Metabolites

Once metabolism has been arrested the metabolites need to be
extracted from the cells. At this point the endogenous enzymes
should be permanently deactivated and permeabilization of the
cells should be performed to release the intracellular metabo-
lites into a suitable solvent with the highest possible recovery. To
perform global metabolic profiling we recommend that the equiv-
alent of 30 mg dry weight is used per profile (see Note 9). A
minimum of three replicates is recommended for samples from
steady-state continuous cultures. For batch cultures whose
metabolic pattern can be less reproducible a minimum of six repli-
cates is recommended:

1. Add 500 μL of extraction solution (see Notes 10 and 11)
to the 50 mL centrifuge tube containing the frozen cell
pellet (see Note 2).

2. Vortex mix for 15 s to resuspend the cell pellet.
3. Transfer cell suspension solution into a 2 mL centrifuge

tube. Store on dry ice.
4. Add 250 μL of extraction solution to the 50 mL centrifuge

tube, vortex mix for 15 s and transfer the cell suspension to
the 2 mL Eppendorf tube. This results in a cell suspension
of 750 μL.

5. Vortex mix the solution for 15 s.
6. Place the sealed Eppendorf tube in liquid nitrogen for

1 min (or until frozen) and then remove and store on
dry ice.

7. Allow the frozen solution to thaw on dry ice and then vor-
tex mix for 15 s.

8. Repeat steps 5–7 three times.
9. Centrifuge for 5 min at 13,000×g at –20◦C.

10. Transfer the supernatant to a new 2 mL centrifuge tube
and store on dry ice.

11. Add 500 μL of extraction solution to the cell pellet and
repeat steps 5–9.

12. Pool both volumes of supernatant to produce a solution of
ca. 1250 μL.

13. The combined extraction solution is suitable for analysis by
GC-MS or UPLC-MS (see Note 12).

3.4. GC-MS and
UPLC-MS Analysis

1. For GC-MS and UPLC-MS analysis, lyophilize the exo-
metabolome, extraction, quenching and washing solutions
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in 2 mL centrifuge tubes with a vacuum-based lyophilization
system. Typically 50–400 μL of exometabolome sample,
500–1,250 μL of intracellular extraction and 1,000–3,000
μL of quenching and washing solutions are lyophilized (see
Notes 13, 14, 15, 16, and 17).

2. For reversed-phase UPLC-MS analysis no internal standards
are used. Reconstitute the lyophilized sample in water and
transfer to a suitable high recovery LC vial and seal with a
screw cap. A reconstitution volume of 100–200 μL is recom-
mended. The samples can then be analyzed using a range of
reversed-phase methods. The authors apply a method which
entails analysis on a Waters Acquity UPLC system coupled
to a ThermoFisher hybrid electrospray LTQ-Orbitrap XL
mass spectrometer using an Acquity BEH C18 chromatog-
raphy column (1.7 μm, 2.1 × 100 mm). Elution is per-
formed over 22 min with a non-linear gradient from 100% A
(water + 0.1% (w/v) formic acid) to 100% B (methanol +
0.1% (w/v) formic acid). An injection volume of 10 μL is
applied and samples are analyzed in positive and negative
ion modes (28). Other methods are perfectly valid. All sam-
ples should be stored in an autosampler at 4◦C and analyzed
within 48 h of reconstitution.

3. For GC-MS analysis, two internal standards can be used. The
authors use succinic d4 acid (0.17 mg/mL) in the extrac-
tion solution to compensate for physical variations during
the extraction process and d15 octanoic acid (0.17 mg/mL)
in the solution before lyophilization, to compensate for
physical variations during derivatization and analysis. The
use of two internal standards allows the researcher to dif-
ferentiate the experimental variability from the two sepa-
rate processes of sample extraction and sample derivatiza-
tion/analysis. The next step is the chemical derivatization of
the lyophilized sample, to reduce the boiling point of the
metabolites (11). A range of protocols can be performed
with different derivatization schemes. The authors apply a
two-step process of (a) oximation and (b) trimethylsilylation.
An aliquot (50 μL) of 20 mg/mL O-methylhydroxylamine
solution in pyridine is added, vortex mixed, and heated
at 40◦C for 80 min followed by addition of 50 μL
of MSTFA (N-acetyl-N-(trimethylsilyl)-trifluoroacetamide),
vortex mixed and heated at 40◦C for 80 min. A retention
index solution is added for chromatographic alignment (20
μL, 0.6 mg/mL C10/C12/C15/C19/C22 n-alkanes in pyri-
dine/hexane 50:50% v/v). From here, the samples can be
analyzed with a range of different methods available. The
authors use an Agilent 6890 N gas chromatograph cou-
pled to a Leco Pegasus III electron impact time-of-flight
mass spectrometer (11). About 1 μL of derivatized sample is
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injected onto an SPB50 (Supelco) column at an initial tem-
perature of 70◦C and with a split ratio of 1:4. A tempera-
ture ramp is operated between 70 and 290◦C over a 20 min
period with detection provided by electron impact time-of-
flight mass spectrometry. Other methods are perfectly valid.
All samples should be processed within 24 h of derivatization
completion.

4. Notes

1. Unless lysis or high production of extracellular enzymes
is expected, the concentration of enzymes in the
exometabolome can be considered negligible in the major-
ity of cases (i.e., no need for additional steps to inhibit
enzymatic activities).

2. If the biomass is low (i.e., a maximum of 10 mL of sam-
ple does not result in a 30 mg of biomass) do not collect
more than 10 mL of sample, the use of larger volumes may
increase the temperature during the quenching step and
may result in longer times to pellet the biomass during the
centrifugation step. Instead collect multiple 10 mL sample
volumes and combine cell pellets at the extraction stage. If
multiple cell pellets are to be combined, suspend the cell
pellet in the first tube and transfer the cell suspension solu-
tion to tube 2 (containing the second pellet), suspend the
cell pellet in tube 2, and continue the procedure for all cell
pellets.

3. When sampling from bioreactors do not remove more than
5% of the total working volume, to avoid disruption of the
steady-state culture conditions during sampling.

4. The quenching temperature after adding the sample should
be less than –20◦C. An independent test to ascertain
the volume of quenching solution required to maintain
this temperature is recommended. Quenching solution
volumes can be optimized, though a minimum ratio of 2:1
(v/v) (quenching solution/sample) is recommended.

5. Previous optimization of the centrifugation step is recom-
mended to ensure that the biomass is harvested in the min-
imum amount of time. However do not exceed 5,000×g
as higher regimes may result in cell wall permeabilization.

6. The extent of metabolic quenching can be assessed using
the adenylates energy charge ratio (EC) (27). This is a
quantitative measurement of the halting of metabolism by
the comparison of the concentrations of ATP with those
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of ADP and AMP. For yeast an EC of 0.8–0.9 is typical.
Quenching methods which do not halt metabolism rapidly
can be expected to have lower EC values.

7. Minimize the residence time of cells in organic solvents as
this will minimize the leakage of metabolites from cells.

8. When a metabolite-rich medium is used (17) a washing
step to remove external metabolites is required. Use saline
washing solution at 4◦C and analyze washing solutions to
assess metabolite leakage.

9. An amount of biomass lower than 30 mg dry weight
may compromise the detection of specific metabolites (low
sensitivity).

10. The extraction solution should always remain at a temper-
ature lower than 0◦C during the extraction process.

11. Other solvent systems can be used for quenching and
extraction of specific metabolites or metabolite classes. For
example, perchloric acid for adenosine nucleotides (10).
The complexity of metabolites present in the medium influ-
ence the sample composition, as the final sample may
contain intracellular and external metabolites. Cultures in
defined media with a limited number of metabolites are
recommended.

12. Part of the extract can be analyzed by GC-MS and the rest
by UPLC-MS. However, for high sensitivity purposes the
extract should be analyzed by a single technique only.

13. The volume of solution to be lyophilized varies depend-
ing on the metabolite concentration and the medium com-
position. For exometabolome studies, large volumes can
only be dried if the concentrations of sugars and salts are
low (typically less than 1 mM). Higher sugar and salt con-
centrations result in incomplete lyophilization of large vol-
umes, which is detrimental to the precision and robustness
of the analytical steps.

14. Volumes to be lyophilized in endometabolome studies.
Determination of biomass levels by optical density or dry
weight in cultures allows normalization of raw analytical
data to the amount of biomass extracted. Thus, for sam-
ples with different amounts of biomass the volumes to be
lyophilized can be adjusted to account for the differences.
For example, if the extracted biomass for samples A and
B were 30 and 35 mg the volumes to lyophilize would be
1,000 and 857 μL, respectively.

15. Ensure samples are fully dried before analysis. The presence
of water or methanol can influence the efficiency of the
derivatization reactions for GC-MS analyses.
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16. Some reported methods have been applied and tested in
one analytical platform only, typically GC-MS (14). We
have assessed and validated the described methods on both
GC-MS and UPLC-MS platforms.

17. The periodic injection of quality control (QC) samples
is recommended to assess instrumental reproducibility.
For GC-MS and UPLC-MS applications, respectively, the
authors inject five and ten QC samples at the start of the
analytical batch and then five analytical samples followed
by a new QC sample. The procedure is repeated until com-
pletion of the analysis. All metabolite peaks with a relative
standard deviation (RSD) of less than 20% for GC-MS and
30% for UPLC-MS compared to all QC samples from injec-
tion 5 to the end of the analytical batch are filtered and
retained for further data analysis whereas those metabo-
lite peaks with an RSD greater than 20% are removed.
Only biological samples for which repeated analyses result
in reproducible results are retained. Further information on
the use of quality control samples can be found elsewhere
(28, 29).
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System (ACCESS) for Chemogenomic Screening
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Abstract

The automated cell, compound and environment screening system (ACCESS) was developed as an auto-
mated platform for chemogenomic research. In the yeast Saccharomyces cerevisiae, a number of genomic
screens rely on the modulation of gene dose to determine the mode of action of bioactive compounds
or the effects of environmental/compound perturbations. These and other phenotypic experiments have
been shown to benefit from high-resolution growth curves and a highly automated controlled environ-
ment system that enables a wide range of multi-well assays that can be run over many days without any
manual intervention. Furthermore, precise control of drug dosing, timing of drug exposure, and precise
timing of cell harvesting at specific generation times are important for optimal results. Some of these
benefits include the ability to derive fine distinctions between growth rates of mutant strains (1) and the
discovery of novel compounds and drug targets (2). The automation has also enabled large-scale screen-
ing projects with over 100,000 unique compounds screened to date including a thousand genome-wide
screens (3). The ACCESS system also has a diverse set of software tools to enable users to set up, run,
annotate, and evaluate complex screens with minimal training.

Key words: Robotics, phenotypic screening, genome-wide screening, yeast, bacteria, drug
discovery.

1. Introduction

This chapter describes an automated cell, compound and envi-
ronment screening system (ACCESS) that was developed as a
platform for chemogenomic research. In Saccharomyces cerevisiae
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a number of genomic screens rely on the modulation of gene
dose to determine the mode of action of bioactive compounds
or the effects of environmental/compound perturbations. These
genomic screens operate by either reducing the gene dose of a
drug target (and thereby increasing drug sensitivity) or increasing
gene dose and conferring resistance to a compound. For exam-
ple, the haploinsufficiency profiling (HIP) (4) assay uses a pool of
heterozygous yeast knockout (YKO) mutants (5, 6). Each indi-
vidual strain is barcoded with two unique 20 base-pair sequences
to determine the gene dose reduction that leads to a growth
defect. Briefly, the strains are pooled at approximately equal vol-
ume and grown competitively in a single culture. At an opti-
mum time (empirically determined), cells are collected, genomic
DNA is isolated, and the barcodes, following amplification using
common primers incorporated into every barcode, are hybridized
to a microarray carrying the barcode complements. The multi-
copy suppression profiling (MSP) assay is performed in a converse
assay, based on a gene dose increase using a pool of overexpres-
sion strains carrying a random genomic DNA library on a 2 μm
plasmid under the endogenous promoter. Such a collection of
overexpression clones can be treated with a high dose of drug
and screened for surviving strains (2). The ensuing growth defect
or relative resistance is assayed using a commercial microarray
(TAG4, Affymetrix Item No. 511331), which has been designed
to carry all molecular barcodes of the YKO collection as well as
two probes for each predicted open reading frame (ORF) (7).
ACCESS was designed to streamline and automate such assays
and thereby increase their reproducibility.

Although these experiments can be performed by growing
the mutant pools in flasks as described in Pierce et al. (8) this
approach is labor intensive and requires large (and often pro-
hibitive) volumes of drug. Furthermore, precise control of drug
dosing, timing of drug exposure, and precise timing of cell har-
vesting at specific generation times are important for optimal
results. To address these needs for reproducibility and precision,
we developed the automated cell, compound and environment
screening system (ACCESS). ACCESS miniaturizes the culture
volume, increases the throughput, and automates the assays to
minimize user-induced variation. The ACCESS has been instru-
mental in several large-scale genome-wide screening efforts (1–3,
8–13). The genome-wide screens using the pooled YKO collec-
tion have been miniaturized to 48-well plates, using 700 μl of
medium (plus compound) per well for HIP and MSP screens
(2, 4). Currently, an ACCESS equipped with a commercial liq-
uid handler can process 48–72 HIP assays and 192–288 MSP
assays per week taking into account typical assay run times and
the microplate capacity of ACCESS. All the ACCESS versions can
run a minimum of 4,032 single-strain growth assays per week.
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In this chapter and its accompanying web site, we describe the
ACCESS platform, different versions of ACCESS robot installa-
tions, and the variety of applications they can serve. The ACCESS
platform is an extensive system that includes robot control of
instruments, user interfaces, and laboratory information manage-
ment system (LIMS)-type environment for sample tracking and
data analysis. On the supplementary web site we provide a step-
by-step user manual and suggestions for assembling and operating
an ACCESS in your own laboratory.

2. Materials

2.1. Microplates
AND Plate Seals

1. Microplates format (see Note 1).
2. Microplates from Greiner Bio One, Monroe, NC, USA;

CELLSTAR 48-well microplates, Cat. No. 667 102; and
CELLSTAR 96-well microplates, Cat. No. 655 180.

3. Microplates from Nunc/Thermo Fisher Scientific,
Rochester, NY, USA. 96-well microplates, Cat. No.
269787 and 384-well microplates, Cat. No. 242757.

4. Microplates from Falcon/BD Biosciences, Franklin Lakes,
NJ, USA. 384-well microplates, Cat. No. 353233.

5. Plate seals, Cat. No. AB-0580, ABgene/Thermo Fisher Sci-
entific, Rockford, IL, USA (see Note 2).

2.2. Manual Liquid
Handling ACCESS
Robot Equipment

1. Computer with multiple serial ports (see Note 3) and Inter-
net access (see Note 4).

2. File server.
3. Web server configured to run Perl scripts.
4. MySQL database server, co-hosted with web server or

remotely hosted.
5. National Instruments LabVIEW version 8.5 or later,

National Instruments, Austin, TX, USA.
6. ACCESS software. The software, supporting manual and

additional documents can be found on the supple-
mental web site http://chemogenomics.med.utoronto.ca/
supplemental/ACCESS/.

7. RdrOLE reader server (Tecan Group Ltd., Männedorf,
Switzerland) version 4.62, install with XFluor4.

8. Any of the following Tecan readers that communicates via
RdrOLE (see Note 5). The Sunrise absorbance reader with
temperature control module, firmware version 3.31. The
GENios reader, firmware version 4.5 or 6.0.2 or later. This

http://chemogenomics.med.utoronto.ca/supplemental/ACCESS/
http://chemogenomics.med.utoronto.ca/supplemental/ACCESS/
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instrument is no longer produced and has been replaced by
the Infinite series (see Note 6). The Safire2 reader, Firmware
v1.90, software version XSafire2 2.4.

9. Fan and portable air conditioner (see Note 7).

2.3. ACCESS Version
1 Liquid Handling
Equipment

1. Computer hardware and operating system recommended
by PerkinElmer (see Note 8) expanded with multiple serial
ports and PCI bus for Packard robot communication card.

2–7. As in Section 2.2.
8. GENios reader (Tecan) with plate tray clip modification

(see Note 9).
9. Packard Multiprobe IIEx (Perkin Elmer Life and Ana-

lytical Sciences, Waltham, MA, USA) – without physical
extended deck. The extended deck is configured in soft-
ware to enable access to the plates in the readers. This
platform has been replaced by the JANUS automated plat-
form, which should perform comparably (see Note 10).
Disposable tips, supplies, and accessories are still available.

10. 200 μl disposable conductive tips Cat. No. 6000683.
11. Winprep version 1.22.0.252 or later and Winprep scripts

for the Packard robot (see supporting web site).
12. Positioning hardware to fix the readers in the correct

position; machinist drawings are provided in the online
manual.

13. Plate tray support stands – provides support for plate tray
during pipetting; machinist drawings are provided in the
online manual.

14. 4◦C save plate coolers; machinist drawings are provided in
the online manual.

2.4. ACCESS Version
2 Liquid Handling
Equipment

1. Computer – specified and supplied by Tecan.
2–7. As in Section 2.2.

8. Freedom EVO 150 (or 200) robot (Tecan) with Free-
dom EVOware version 2.2 SP1 (Tecan) and EVOware
scripts written for ACCESS plate movement and liquid
handling steps (see supporting web site). The Freedom
EVO deck contains the following Tecan hardware: two
cooling plate decks (three plate positions each) for saved
samples, a wash stand for pipet tips, and a 3-position plate
deck for transient plate rest – i.e., for save/inoculation
execution.

9. Thermoshakers (Inheco, Martinsried/Munich, Ger-
many).

10. Reader with a robot friendly tray (Safire2 recommended
(Tecan)).
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11. Circulating water bath that can cool to –2◦C.
12. Incubator enclosure for the Thermoshakers with a heat-

ing element and fan above the plate (see Note 11).

3. Methods

3.1. ACCESS Platform
Overview

The ACCESS platform consists of three major components
assembled from a mix of custom-designed and commercially avail-
able hardware and software. These components consist of (1) a
hardware robot component, (2) a robot control and user inter-
face software component, and (3) a data management/database
server and software component. The custom design and imple-
mentation of all components was performed in-house. The layout
of each component and communication between them is shown
in Fig. 15.1.

The details of the different ACCESS robot versions are
described in Sections 3.2, 3.3, and 3.4. Briefly, each ACCESS
robot comprises a computer and multiple microplate shakers and
a microplate reader for optical measurements. In most versions
of ACCESS the microplate reader also acts as the shaker and
temperature-controlled incubator. For screens requiring sample
manipulation, the ACCESS robot is integrated with a liquid han-
dling robot (Figs. 15.1a and 15.2). In Fig. 15.2 the two dif-
ferent versions of the liquid handling ACCESS are shown. One
version is based upon a Packard robot (Fig. 15.2a) and the other
on a Tecan Freedom EVO robot (Fig. 15.2b), described in detail
later.

Advanced protocol execution is possible using comprehen-
sive, in-house developed user interfaces and robot control soft-
ware written in LabVIEW (National Instruments). The ACCESS
software is the master application that continuously monitors and
controls up to six microplate readers and, optionally, a liquid han-
dling robot. In addition, the ACCESS software also has powerful
experiment configuration, data visualization, and analysis capabil-
ities (Sections 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13).

The software structure has a modular design, i.e., each
robotic part and user interaction service of the ACCESS pro-
gram work independently and in parallel (Fig. 15.1b). Each
microplate reader or shaker is controlled by its own copy of the
reader software module and runs independent from other read-
ers or shakers. The reader software module can autonomously
request services from the liquid handling, the database, or data
analysis modules. The ACCESS software communicates with
hardware either directly or through the manufacturer’s ActiveX
software driver libraries such as RdrOLE.ddl and Evoware.exe for
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Fig. 15.1. ACCESS platform overview. This figure shows the major components of the ACCESS robot. (a) shows a
picture of the version 1 liquid handling ACCESS composed of a Packard Multiprobe IIEx robot with four GENios readers
positioned for direct access by the Packard robot and two GENios readers below deck (see Fig. 15.2 and Section 3.2
for a more detailed description). (b) shows the modular structure of the ACCESS command and control software that
coordinates the physical robot modules. It also hosts the user interface windows that allow the users to configure, view,
analyze, and annotate the experiments (see Section 3 for more details on ACCESS software). The ACCESS modules
run independently and coordinate and communicate between themselves using message queues that send command
requests either autonomously or upon request from the users. Each robot part has its own physical link and copy of its
control module to enable it to run independently of the other parts. The Database module communicates with the data
management and database server (c) and handles data uploads, status updates, and many of the ACCESS configuration
parameters that enable remote administration. (c) shows the database and data management server that uses a web
server to handle the requests from the ACCESS robot or web interfaces that can also be used to interface with the robot
and the experiment configuration, annotations, or data (see Sections 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13).
The web server executes Perl scripts that manipulate the data before upload to the database or after retrieval from the
ACCESS track database before passing the data back to the ACCESS robot or web interface.
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Fig. 15.2. ACCESS robot layout. This figure shows a detailed schematic layout of the version 1 Packard based (a) and
version 2 Freedom EVO based (b) ACCESS robots. In (a) the four GENios readers are placed beside the Packard deck
and the microplates are accessible to the Packard probes when the reader plate tray is in the open position. The probe
reach area is indicated by the gray dashed lines. A peltier-cooled plate station for saved cell culture storage is placed
in close proximity to each reader. The Packard uses disposable tips that pierce a transparent plate seal when there is a
need to aspirate or dispense to a well. The positions of tip boxes, drug source plate, probe wash/flush station, and tip
chute position on the physical Packard robot deck are indicated. (b) shows the layout of the ACCESS version 2 based
on the Tecan Freedom EVO robot in combination with the Safire2 reader. The Freedom EVO is configured with eight
fixed-tip liquid handling probes and a plate gripper arm. Tip probes are washed and decontaminated in the probe wash
and decontamination station. The EVO robot deck contains two cooled plate stations (three plate positions each) that are
used to store saved cell culture samples. An ambient plate deck provides stations for a drug source plate, inoculation
and save actions, and plate loading. Arrayed along the back of the deck (out of range for the liquid handling probes) are
the Thermoshakers plate shakers/incubators. The Safire2 is placed to the side of the EVO deck. The reader plate tray is
accessible to the robot plate gripper arm in the open position.
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Tecan instruments and MPIIX.exe for the Packard. Data collec-
tion integrity is protected against mechanical or software failures.
During an experiment, each reader receives independent instruc-
tions for each shake–read cycle and reports the results of the read
back to the software at the end of that cycle. These read results
are written immediately to a text file stored on the local computer
and are also uploaded to the ACCESS Track database (ATDB).

The data management/database component is custom
designed using a MySQL database server (http://www.mysql.
com) and Perl scripts (http://www.perl.org) that are used to
communicate between the ACCESS robot and ACCESS Track
database (ATDB) (Fig. 15.1c). They are typically hosted on a
centralized server. The ATDB is designed to service multiple
installations of ACCESS robots. The robots’ data requests sent to
the ATDB are handled by a web server, such as Apache (Apache
Foundation, http://www.apache.org). The web server executes
Perl scripts to perform the desired data management or database
request tasks. The advantage of this design is that it uses public
available software that is flexible to configure and scales easily with
increasing system use and not tied to any computer system archi-
tecture. A further advantage of the web server/Perl script design
is that the same Perl scripts can also serve web interface requests.
This allows for the development of web interfaces that users
can remotely view and manipulate data and to set up, monitor,
and modify the robot or experiment and their statuses. We have
designed other web interfaces (Sections 3.12 and 3.13) to man-
age and analyze multi-plate experiments or large-scale projects
that run over many experiments.

A comprehensive set of system monitoring measures has been
implemented, including e-mail notifications to users regarding
the status of their experiments as well as the status of the ACCESS
robot. All ACCESS operations and reader errors reported by the
RdrOle software (Tecan) are written to a log file. Notifications
of errors, run startup, or run completion are relayed to the user
and administrator by e-mail. At each read cycle, the status of the
reader (with timestamp) is written to the ATDB. Every 30 min,
each ACCESS installation checks that all attached readers and liq-
uid handling robots have a valid timestamp. A server script, that
runs remotely, also monitors the status and timestamps stored in
the ATDB for each ACCESS installation. If any status or times-
tamp shows that either the ACCESS or any of its components has
an error, the error is reported both to the user and to the system
administrator by e-mail. In addition, the quality of the growth
curves is also monitored. This quality control feature is particu-
larly useful when testing new compounds, conditions, or strains,
whose behavior cannot be predicted beforehand. When the dif-
ference between any two reads is higher than the predetermined
threshold, the user will receive an e-mail reporting a data jump.

http://www.mysql.com
http://www.mysql.com
http://www.perl.org
http://www.apache.org
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Data jumps can be caused by a number of biological and technical
reasons, e.g., flocculating cells, air bubbles on the surface of the
medium, condensation on the film, a precipitate in the medium,
or if the growth plate is no longer secured correctly in the reader’s
plate tray.

3.2. ACCESS Robot
Version: Manual
Liquid Handling

The simplest version of the ACCESS robot is composed of a com-
puter that controls up to six microplate readers that shake and
incubate the experiment plates. This version of ACCESS is used
for experiments that do not require pipetting, such as prescreen-
ing compounds, phenotypic analysis of mutants, or fluorescence
experiments. However, an experiment can be configured to e-mail
the user when the culture in any well of a plate has reached its
predefined target OD or other inoculation trigger. At this point,
the user can pause the experiment, take out the microplate, inoc-
ulate the next well, add drug or save the samples as instructed
in the e-mail, and then continue the experiment (see supplemen-
tary manual for instructions). This basic version of the software
permits one to prototype different assays and is also a useful way
for users to familiarize themselves with the different capabilities
of the software prior to integrating one or more liquid handling
robots.

3.3. Liquid Handling
ACCESS Version 1

The full ACCESS installation includes a liquid handling robot.
These robots are used (i) to inoculate from one well to another
well to keep cultures in logarithmic growth for many generations,
(ii) to save cultures on a cooled destination plate when a prede-
fined target OD is reached (or after a predetermined time inter-
val), or (iii) to add drug at the beginning of an experiment or
when a new well is inoculated.

The original liquid handling version of ACCESS comprised
one computer controlling up to six microplate readers and a
Packard Multiprobe IIEx liquid handling robot (PerkinElmer)
(Fig. 15.2a). Four of the microplate readers are positioned such
that the plate trays in the open position overlap with the Packard
deck and are directly accessible for liquid handling.

The Packard robot is controlled by Winprep software. The
Winprep environment contains the deck layout of experiment
plates, e.g., cooled sample saving plates, drug plates, and tip
boxes. The Winprep scripts are written to perform the liq-
uid handling operations such as saving and inoculating samples
and adding drug. The details, e.g., which wells to pipet, well
source position, volume, and destination well, are all read from
pipetting map files written by the ACCESS software just before
the Winprep script is activated. When a liquid handling exper-
iment reaches the predetermined target OD (or other parame-
ter), ACCESS opens the microplate reader plate tray, activates
the Winprep script, and provides instructions to the robot with
the well positions and the volumes to add drug, inoculate next
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well, or save the sample. After the Packard robot performs the
liquid handling action, ACCESS checks for errors reported by
the Packard robot, the plate tray is closed, and the experiment
continues on to the next shake–read cycle.

3.4. Liquid Handling
ACCESS Version 2

The ACCESS robot versions described in the earlier sections
use the reader as a shaking incubator. This is particularly hard
on the shaking mechanism of the microplate readers and limits
the scalability of the robot due to size constraints of the robot
deck. The latest version of the liquid handling ACCESS uses
temperature-controlled plate shakers (Thermoshakers, Inheco)
that are more compact and intended for continuous operation.
This configuration allows increased liquid handling throughput.
This version 2 liquid handling ACCESS consists of a higher per-
formance plate reader, six Thermoshakers, and one Tecan EVO
robot (Fig. 15.2b). The EVO robot has a liquid handling arm
with fixed pipet tips and a robot gripper arm for microplate
manipulation.

On the EVO_ACCESS robot, the experiment plates need to
be moved to and from different deck positions such as Ther-
moshakers, the reader, and pipet positions. Furthermore, the
experiment plates are competing for (i) the liquid handling arm,
(ii) the plate moving robot arm, and (iii) the plate reader time.
To coordinate these demands, the EVO_ACCESS software has
a Growth Control Center (GCC) module that receives requests
from the plate or user for all tasks that need coordination and
puts them in the GCC waiting list queue. Most tasks are grouped
into action sets that perform a sequential series of operations with
the target experiment plate. The next action set is performed
only after the action set for the preceding target plate has been
completed.

A typical shake–read cycle in the EVO_ACCESS robot ver-
sion is as follows. After the set shake time has elapsed, ACCESS
appends a task action set (stop shake, move plate to the reader,
read OD, etc.) to the GCC queue. Once the EVO robot arm and
the reader become available, ACCESS stops the Thermoshaker
and activates the EVOware script to move the experiment plate
to the reader. The reader is then configured to the measurement
parameters defined for that experiment plate, such as OD and flu-
orescence reads. If after the evaluation of the OD reads a liquid
handling event is needed, ACCESS inserts a new task into the
GCC queue that instructs the EVO robot to move the plate to an
inoculation/save position on the deck that is accessible by the liq-
uid handling component of the EVO robot. An EVO inoculation-
save script then executes a sample manipulation worklist writ-
ten by ACCESS for those samples that need manipulation. Any
errors from the Freedom EVO robot are reported to the user or
administrator by e-mail. If an error requires user intervention, the
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robot pauses all operations except plate shaking until the error has
been cleared.

The advantage of the EVO_ACCESS is that it can be
integrated with a significantly more capable plate reader that
is available to all experiments. This is especially advantageous
for fluorescence assays. With the Tecan Safire2 installed, the
monochromator-based wavelength selection and detection allows
for fine-tuning to optimize the light detection at multiple wave-
lengths in one assay. Another advantage is the added flexibility
in the growth environment, e.g., one can grow light-requiring
photosynthetic organisms and operate at an expanded range of
growth temperatures. To date we have successfully used tempera-
tures ranging from 16 to 42◦C. This robot has a higher through-
put (six shakers vs. four readers) for assays that require liquid
handling. However, its total throughput is limited by the need
to channel all experiment plates through one robotic arm and
one reader. Incorporation of a second reader and/or second arm
would alleviate this bottleneck and increase capacity. If all six shak-
ers are active the shortest possible shake–read cycle interval is
15 min. A long inoculation/save step will hold up the queue, but
as the plates are kept shaking until it is their turn to be read, there
is no detriment to the quality of the data. The EVO_ACCESS
uses fixed tips that are cleaned with a bleach wash and high-speed
flush. This results in a considerable savings compared to the cost
of disposable tips needed in the Packard-based ACCESS.

One constraint of the EVO_ACCESS setup is that the plates
are manipulated by one arm and read using one reader. If any of
the robot components fail then all the experiments stall. In con-
trast to the ACCESS version where the plates never leave the plate
reader, when plates are moved about the system error recovery is
more complex. Accordingly, cameras and remote login capabili-
ties for the computer are recommended to aid in error recovery.

3.5. Post Hoc
Analysis

For reader models that do not yet communicate directly with
the ACCESS software, it is possible to create an ACCESS for-
mat data file and import it into the system after the experiment
is completed (see manual for details). The user would still have all
the advantages of output of all growth metrics, annotation, data
storage, data retrieval, and data views. A Perl Script to convert
measurements from the Infinite reader (Tecan) using I-Control
software (Tecan) is already available (see supplementary web site).

3.6. ACCESS
Software User
Interaction Features

The main user interface to the ACCESS robot is shown in
Fig. 15.3a. Each shaker/incubator has its own separate column
of controls for the user to quickly access the experiment config-
uration interfaces, view the data, and manipulate the run if nec-
essary. When appropriate, individual controls are grayed out to
prevent mistaken operation. None of the allowed user operations
can inadvertently interfere with the running experiments. The
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Fig. 15.3. Main user and configuration interface windows. (a) shows the main user interface window. Each
shaker/incubator has its own separate column of controls to allow the user to quickly access experiment configura-
tion interfaces, view the data, and manipulate the run if necessary. To load the plates into the readers there is a control to
open or close the reader plate tray (or for the EVO ACCESS to move a plate from the load position to the Thermoshaker).
The experiment status section shows the status of the reader/shaker, number of reads completed, shake time left, and
experiment name and user. On the right are liquid handler controls, status and controls to access the plate data view,
analysis and annotation interfaces. (b) shows the Run_Details tab of the configuration interface used to set the experi-
ment parameters such as temperature (6), duration (2, 3) and read modes (7). Table 15.1 lists a detailed description of
each numbered item.
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experiment status section gives an overview of the present
ACCESS tasks. The status of the reader/shaker, number of reads
completed, shake time left, and experiment name and user are
listed for each instrument. On the right are liquid handler con-
trols, status and controls to access the plate data view, and analysis
and annotation interfaces.

3.7. Experiment
Configuration

Each ACCESS screen begins by defining the experiment configu-
ration. This will set the parameters for the screens and ensure that
all subsequent screen steps are properly associated. Experiment
parameters are set in the configure interface (Fig. 15.3b) and
accessed from the main interface (Fig. 15.3a – experiment setup).
Pull-down menus are available for the most often used parame-
ters. This simplifies and helps manage the many available options
(Fig. 15.3b, Table 15.1). Parameters that are rarely changed are
edited in the All_Params tab. Reader-specific parameters (such as
shaking intensity, shaking mode, and measurement wavelength
settings) can be changed in the Instrument tab. A step-by-step
instruction for experiment configuration and setup and a list of
all experiment parameters can be found in the supplementary
manual.

Table 15.1 lists a selection of parameters that can be set in the
configuration screen. For each parameter, options and comments
are listed and the most commonly used option is highlighted in
bold italic. All parameters in the configuration can be changed
during the course of an experiment (although currently not all
from the configuration user interface; for exceptions and instruc-
tions see supplementary manual). This feature of the ACCESS
platform is particularly helpful if an experiment is taking longer
than expected or if a mistake was made during the initial config-
uration and a modification can rescue the screen. To help with
the setup of complex screens, experiment templates can be saved
to the DB and retrieved for quick configuration of subsequent
experiments.

3.8. Data Read
Configuration

The ACCESS measures high-resolution growth curves with data
reads taken every 1–15 min. This allows for very precise phe-
notypic analysis required in the drug-discovery experiments for
which ACCESS was initially developed. In addition, ACCESS can
be configured for any of the available readers’ detection mode,
such as optical density (OD) or fluorescence (Fig. 15.3b.7).

A typically read cycle is as follows:
• shake 15 min (see Note 12).
• read OD.
• read fluorescence (optional) (see Note 13).
• liquid handling intervention if needed.

This read cycle is then repeated 95–500 times (Fig. 15.3b.3,
Table 15.1). If the experiment is configured to include a
fluorescence measurement, it is read immediately after the OD
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to allow for the precise normalization of the fluorescence sig-
nal by the OD. Figure 15.4 shows an example of quantitative
fluorescence measurements, which could potentially be used to
quantify and monitor changes in expression levels during different
growth phases. Using green fluorescent protein (GFP) the pro-
moter strength of the histone gene HTA1 was measured in yeast
swi4, hir1, and asf1 deletion mutants. Hir1 and Asf1 are known
repressors of HTA1 transcription (14, 15), and deletion of these
genes would cause de-repression of the GFP expression. In con-
trast, Swi4 plays a role in activation of HTA1 transcription, and
deletion of SWI4 should repress GFP signal (16). Figure 15.4
shows the growth curves (a), fluorescence curves (b), and the flu-
orescence/OD (c) of the GFP constructs in the different dele-
tion backgrounds. In agreement with previously published data,
the GFP fluorescence is increased in the hir1 and asf1 deletion

Fig. 15.4. Near-simultaneous OD–fluorescence measurements. Yeast deletion strains swi4::kan, hir1::kan, asf1::kan,
and a wild-type control in the Y7092 genetic background containing HTA1 promoter upstream of the reporter gene GFP
were grown in low fluorescence medium (18) in a 96-well plate in the ACCESS version 2 robot using the Safire2 reader.
OD595 and fluorescence measurements (excitation wavelength 485 nm bandwidth 9 nm, emission wavelength 535 nm
bandwidth 9 nm, and PMT gain 90 V) were taken every 15 min. (a) shows the OD curves, (b) the fluorescence curves,
and (c) the fluorescence corrected for culture OD. Curves were plotted by interpolation between the 15 min measurement
points, and the strains are indicated as follows: wild type (•), swi4::kan ( ), hir1::kan ( ) and asf1::kan (�).
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strains and decreased in the swi4 deletion strain (Fig. 15.4b, c).
The application of high-resolution correlated OD and fluores-
cence measurements can be seen when the cultures reach station-
ary phase, and GFP fluorescence decreases due to downregulation
of HTA1 expression in the stationary phase (17).

3.9. Liquid Handling
Screen Configuration

A large number of screen configurations are possible and are dis-
cussed in the supplementary manual. As an example, Fig. 15.5

Fig. 15.5. A “down” plate liquid handling screen configuration and execution. This figure shows configuration settings
and a cartoon of a liquid handling screen that inoculates wells down a column. (a) shows the Run_Details and the
Screen_Details for a Screen_Run_Type = “innoc_well_to_well” set when the experiment needs liquid handling (a1–
a5 are described in Table 15.1). (b) shows the tab configuring the sample manipulation during the experiment. In the
example shown (b, c) the inoculations are set to move down (b1) the columns and the plate is divided into two sections
(b3) each with four wells. Samples selected for saving are moved to the equivalent well on the save plate (b2, one-to-
one) and the save button (b4) is set for that well. (c) shows a cartoon and resulting growth curves of the “down” plate
experiment. For every five generations of growth as determined by the target OD (set in another window), an inoculant
of sample is moved to the following well. Samples moved to the save plate have a corresponding dip in the OD of the
adjacent growth curve.
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Fig. 15.6. ACCESS data views. The ACCESS software has a variety of interfaces used to view the growth data and
analysis metrics. These interfaces also contain controls to manually perform curve fits, set reference wells and access
growth condition, and annotate interfaces and update the ACCESS Track database (ATDB). The Analyze_Data interface
(a) displays up to 24 curves in one plot and contains the curve fitting controls. Other data sets such as fluorescence,
luminescence, or temperature can also be selected and plotted singularly or combined with the OD data set. Buttons at
the top of the interface are used to move to other data views, select another data file, and save any data analysis results
to the data files. The Plate_View interface (b) plots the growth curves on independent axes for each well, viewed in plate
sections of 24 wells. The controls along the top give access to other viewing options and to save or export the analysis
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shows configuration and experiment in which the wells are inoc-
ulated down a column. In addition to the basic configuration
parameters such as temperature and shaking time (Fig. 15.3b.6
and 15.3b.2, Table 15.1) the setup of a liquid handling screen
requires setting parameters, such as the robot script that executes
the liquid handling events (Fig. 15.5a.2, Table 15.1) and pipet
trigger target type (Fig. 15.5a.3, Table 15.1). In this example
the plate is divided into two sections (Fig. 15.5b.3). Samples that
are to be saved are selected using the save button (Fig. 15.5b.4).
At the start of the experiment, rows 1 and 5 are inoculated with
cells. When the culture reaches its target OD for five generations,
the inoculant is pipetted into the following well as illustrated in
Fig. 15.5c. As the sample is moved down the plate (e.g., from
well F01 to F04) the culture maintains growth in the exponen-
tial phase over 20 generations. Note the dip in the growth curves
where a sample has been moved from the growth well to the save
plate (Fig. 15.5c). If an add drug step is specified (Fig. 15.5a.4,
Table 15.1), the drug is aspirated from a drug source plate and
dispensed into the well just before the inoculant is added. This
could reduce the loss of efficacy of unstable drugs due to expo-
sure to the growth medium or condition.

The two primary limitations on the miniaturization of liquid
handling screens are (i) to have enough representative of each
strain in the pool (i.e., at least 150–300 cells of each strain (8))
and (ii) to use inoculation volumes that are large enough so as not
to induce errors from the limitation of the liquid handling robot
(e.g., ±1 μl plus any inoculant residue on the outside of the tip).

3.10. On-The-Fly
Data Analysis and
Visuals

During the course of an experiment, the data can be viewed in a
variety of plate view formats. As each new data point is collected,
the plate views and data analysis screens are updated. The user can
monitor the results in real time, make adjustments to the config-
urations, and decide when to end the experiment.

There are three main plate view formats. Format 1 shows
the growth curves from a plate section overlaid in one plot
(Fig. 15.6a). Individual curves or sub-groups of up to 24 curves
can be selected (see supplementary manual). This format is best
for viewing many curves in detail, to perform curve fitting, and
for viewing the overall progress of the experiment. Other data

�
Fig. 15.6. (continued) metrics to the ATDB. Reference curves can be selected plate wide or separately for each well. Each
well plot displays (inset in b) selected data analysis metrics, such as average generation time (Avg_G, ratio_Avg_G) and
total time to five generations (time_to_OD), and the area between the curves (for detailed description, see Table 15.2).
(c) shows the zoom view used to view details of the growth curve and its reference curves and the complete listing of
growth conditions, annotations, and data analysis metrics stored in the ATDB. (d) shows the complete plate wide view of
the growth data shown in this example with the area between the curve and the reference curve highlighted.
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modes such as fluorescence, luminescence, or temperature can
also be selected and plotted singularly or combined with the OD
data set.

Format 2 plots the growth curves on independent axes for
each well, viewed in plate sections of 24 wells (Fig. 15.6b).
Reference curves can be selected across the entire plate or indi-
vidually for each well. Selected data analysis metrics such as aver-
age generation time (Avg_G), the Avg_G ratio of the reference
to the condition (ratio_Avg_G), total time to five generations
(time_to_OD), and the area between reference and sample curve
are shown in the inset of Fig. 15.6b. Details on the data analy-
sis metrics are provided in Section 3.11. For each well, one can
zoom in to view the details of the growth curve, and its references,
and the complete listing of growth conditions, annotations, and
data analysis metrics stored in the ATDB (Fig. 15.6c).

Format 3 displays all the growth curves plotted on separate
axes in a single window (Fig. 15.6d) laid out in the growth plate
format. This View_All option is useful for a quick visual inspec-
tion of all the growth curves or, after the experiment is finished,
to prepare a paper record of the experiment. For screen plates
where the samples are collected for genomic analysis, this view
also includes the option to print barcodes for each well to allow
for sample tracking in downstream sample analysis.

3.11. Data Analysis Several growth metrics are automatically calculated during an
experiment and after an experiment is finished. Table 15.2
describes a number of growth metrics available from the ACCESS
data analysis module. For quick and reproducible calculation of
the generation times, we initialize our experiments at 0.0625
OD595. The metrics Avg_G and G_by_Interval (illustrated in
Fig. 15.7) are calculated using a culture OD that is equivalent
to five doublings from the start OD. This “OD generation time”
was chosen empirically as the point at which most cultures are still
growing exponentially. It is derived from a calibration curve used
in the microplate experiments (typically 100 μl in 96-well plates
and 700 μl in 48-well plates). The calibration curve correlates
OD595 measured in a cuvette of 1 cm path length in a spectropho-
tometer to that of the reader OD595 in the microplate. Each plate
type and volume of medium needs to be calibrated in this manner.
Avg_G is the average generation time from start to the OD gen-
eration point and includes both the lag and exponential phases in
its calculation. G_by_Interval calculates the doubling time of the
exponential growth phase by excluding the first doubling from
the calculation and estimates the lag phase.

For precise calculation of Avg_G and G_by_Interval, high-
quality growth curves are important. Shaky growth curves or
cultures that undergo only one or a few doublings diminish the
precision of these growth metrics. Sum, which records the area
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Fig. 15.7. Data analysis metrics. This graph shows the time intervals used to calculate
the growth rates Average_G and G_by_Interval (Table 15.2). Time interval for Aver-
age_G is calculated from the start of the experiment to the time that the culture has
grown for five generations. OD5 generations, the calibrate OD equivalent to five gen-
erations, also called the OD generation point, is indicated by (∗). The time interval for
G_by_Interval is calculated back four doublings (4G) from OD5 generations (∗).

under the curve, is less affected by these limitations but is less
precise in detecting small differences between two growth curves.
Therefore, the exact choice of metric will depend on both the
experiment and particular conditions, and it is useful to explore
several of these automatically generated metrics.

In the case of large data sets, where not every growth curve
is visually inspected, metrics such as saturation OD and sum are
used to check the quality of the growth curves and verify the valid-
ity of the Avg_G and G_by_Interval values.

3.12. The ACCESS
Track Database
(ATDB): Data
Annotation and
Tracking

One ACCESS installation can generate 288 (48-well plates) to
2,304 (384-well plates) growth curves per day with six read-
ers. This large amount of data produced must be properly
tracked and stored. To avoid data loss, each experiment must be
saved along with its experimental conditions, strains, and com-
pounds/conditions used. At the start of the experiment, the user
is prompted to select a username, project name, growth medium,
and other well annotations such as compound, concentration, and
strain. This information, together with all the experiment con-
figuration parameters (such as temperature and plate type), the
growth data, and analysis metrics, is automatically uploaded to
the ATDB at the end of the experiment. In addition, the data file,
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which also contains all experiment parameters and well annota-
tions, is copied to a file server that stores all data files organized
by year, month, and plate reader ID.

For large-scale projects, or for experiments that require many
variables to be tracked, we established a pipeline using barcodes
to minimize operator errors and increase tracking capabilities.
First, source plates containing strains or compounds are labeled
with a unique barcode. These source plates can be supplied pre-
barcoded from a vendor. Plate layouts that define the strains or
compounds on the source plates are loaded into the ATDB and
linked to the source plate’s unique barcode. Each experiment
plate receives a unique barcode, which is entered into the soft-
ware and associated with the source plate via the barcodes. An
experiment protocol is assigned to the experiment plate by select-
ing from a menu of appropriate protocols supplied by the ATDB.
At the start of an ACCESS run, the user scans the reader’s bar-
code and the barcode of the experiment plate. With no further
intervention from the user, the robot verifies the validity of bar-
code, retrieves the plate annotations and experiment parameters
from the ATDB, and automatically configures and starts the run.

If the source and experiment plates are defined with barcodes,
several web interfaces can be used to generate scripts to robot-
ically prepare the growth plates. For example, determining the
optimal drug dose is essential for experimental success. Toward
this end, the Titrate_Drugs web interface (Fig. 15.8a) analyses
the growth rates from multi-plate sets of data, for each compound
listed in the master source plate to compute the ideal concen-
tration for uniform growth inhibition. The user can review the
growth curves and analysis for quality (Fig. 15.8b) and deter-
mine if any of the compounds need further dilution. The script
then creates a daughter source plate in the ATDB and generates a
robotic script that is used to dilute the compounds to, e.g., IC20
or IC10 concentrations (the preferred concentrations for sensitiv-
ity assays). These daughter plates then become the source plates
for further experiments using barcode tracking. An example is the
full automation of multi-generational compound screening using
the liquid handing robot capability. With only the need to scan
three barcodes, reader, source drug plate, and growth plate, a
just-in-time add drug screen is configured, annotated, and run to
completion with no user intervention, including the end of run
analysis and linking to the ATDB that tracks downstream use of
the saved samples such as the HIP assay microarray analysis. This
dramatically reduces operator workload and setup errors, improv-
ing accuracy in annotation, sample tracking, and data analysis.

3.13. Data Recall
and Database Tools

A non-robotic ACCESS version of the software (called
DB_Interface) exists for both Mac and PC platforms, so users can
pre-configure experiments, annotate, view, and analyze data at any
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Fig. 15.8. ACCESS web interfaces. This figure shows examples of ACCESS web data interfaces. (a) shows the Titrate
Drug Interface that tracks titration experiments used to find the desired inhibition rate for compounds for downstream
studies. The titration data management script retrieves and analyses data stored in the ATDB to collate growth data
from nearly 600 wells. Using the controls (1) the user can create liquid handling scripts to automate the compound
dilution and reformatting to create daughter compound plates with uniform inhibition rates. Item 2 shows the review of
the titration analysis to determine the optimum dilution and if compounds need further dilution. Clicking the compound
names (circled) brings up the interface in (b) that shows the growth curves and analysis results (3) of the serial dilutions
of that compound. Only compounds that are flagged as problematic need user review. Items 4 and 5 show the curves that
straddle the desired inhibition. An interpolation between their inhibition rate and drug concentrations is used to calculate
the dilution volumes needed to create the daughter plate. (c) shows the web interface to review experimental data from
a large-scale study of a small-molecule compound library. The growth data and analysis are retrieved from the ATDB for
on-the-fly presentation. Compounds that give a reduced viability phenotype are colored with different levels of gray that
indicate the level of growth inhibition. The user can quickly review those compounds and mark them to be added to the
bioactive list. Bioactive compounds are then reformatted into “hit plates” to be used in downstream studies.

computer. This version of the ACCESS software can perform all
tasks except running the experiments. Both the ACCESS robot
and DB_Interface software contain several database tools. These
tools query the compounds and strains entered in the ATDB,
view each experiment plate, as well as view the layouts of source
plates listed by experiment type, project, or user. Another pow-
erful ATDB query is the ability to list all experiments associated
with a specified drug or strain. From the returned list, one can
select the growth curve data and the full annotations of the plate
of interest.
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The ATDB is also easily integrated with custom and project-
specific web-based tools, such as the example for visualization
and well selection shown in Fig. 15.8c. In this particular exam-
ple, project-specific tools were developed for a large-scale 50,000
compound library screening project. Scripts query the ATDB
to retrieve data belonging to the screening project. Growth
curves, colored by ratio_avg_G cutoffs, create an online plate
view. Each plate is visually inspected and active compounds are
selected/confirmed by clicking the on-screen well.

Several freeware tools exist to directly query MySQL
databases. This allows users to run custom queries that are not
integrated in the ACCESS software or part of a web-based tool.
For instance, users can retrieve specific data analysis metrics for
one particular strain or compound from several different growth
experiments and export this data.

3.14. Future
Directions and
Perspectives

Although the majority of screens performed to date on ACCESS
have used S. cerevisiae, ACCESS is very versatile and the only
limitation for screening is that the microbes grow planktonically
and aerobically. Furthermore, ACCESS can incorporate almost
any standard plate reader measurement, including optical density
(OD), fluorescence, or luminescence in a temperature range of
16–42◦C, every 1–15 min. If necessary, for anaerobic conditions
or lower temperatures, the entire reader can be placed in an envi-
ronmentally controlled enclosure. This flexibility allows screens
of temperature-sensitive mutants or, for example, GFP-tagged
strains. Besides S. cerevisiae, ACCESS has been used successfully
to culture a variety of microbes including Schizosaccharomyces
pombe, Cryptococcus neoformans, Candida albicans, Escherichia
coli, Bacillus subtilis, and Chlamydomonas reinhardtii. The ver-
satility and high-throughput nature of this platform makes it a
promising tool for the systematic use in screening microorgan-
isms for drug discovery and for understanding cell physiology. We
are continually improving on the ACCESS and have established
a web site to support these efforts: http://chemogenomics.med.
utoronto.ca/supplemental/ACCESS/

4. Notes

1. The Tecan microplate readers can read almost any plate for-
mat that fits in the plate tray. We generally use sterile, clear
polystyrene microplates with flat bottom wells. Some plate
types, such as the Nunc 48-well plates, have wells too close
to the edge of the plate and the measurement light path is
obstructed by the reader’s plate tray.

http://chemogenomics.med.utoronto.ca/supplemental/ACCESS/
http://chemogenomics.med.utoronto.ca/supplemental/ACCESS/
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2. Use a pierceable plate seal such as the plate seals from
ABgene. So-called breathable seals are too elastic and will
only deform and not pierce, whereas plate seals that are too
stiff will resist piercing.

3. Multiple USB to serial port converters do not work well
with the Tecan RdrOLE server, so it is best to provide each
computer with dedicated serial port cards.

4. At the cost of reduced data security from computer fail-
ure, it is possible to run ACCESS using a stand-alone
computer (i.e., without Internet access). In this case the
MySQL database server, web server, and Perl script engine
would be installed on the same computer as the ACCESS
software.

5. Other microplate readers can be integrated with ACCESS.
Readers that communicate via a serial port require moder-
ate additions to the software.

6. A comparable reader is the Infinite F200, option PMT
enhanced, heating, filter fluorescence top, and filter
absorbance. In the future, the ACCESS software will be
able to communicate with the Infinite readers.

7. For accurate temperature control, the Tecan microplate
readers are limited to assay temperatures that are ∼5◦C
above ambient. During use, the continuous shaking cycles
cause the readers to heat up by a few degrees. To ensure
that assay temperatures are maintained, it is recommended
to use a fan to circulate air underneath the reader and
to cool the room to ∼7◦C below the desired assay tem-
perature. This can be accomplished with an inexpensive,
portable room air conditioner.

8. The Packard software Winprep was not designed to work
with computers with dual core processers; it is therefore
recommended to switch this option off in the computer
configuration.

9. It is important that the microplate is fixed in the reader
plate tray while the robot is pipetting. In this version of
ACCESS, the reader plate tray clamps are modified to
ensure that they continue to clamp the plate even when
the plate tray is in the open position.

10. ACCESS can be modified to use other liquid handling
robots with suitable deck access and remotely controlled
software.

11. Because Thermoshakers heat only from the bottom, con-
densation can occur on the plate seal and interfere with
the reader measurements. This is solved by building a
heating element above the Thermoshaker that keeps the
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temperature ∼5–8◦C above the Thermoshaker setting (see
online manual and supporting web site).

12. For cultures at medium or high density it is recommended
to use longer (>10 min) shaking times, especially if the
plate has to be at rest, as shorter times may not be
enough to completely re-suspend the cells for accurate OD
measurements.

13. For fluorescence measurements, grow yeast in low fluores-
cent medium such as described in Sheff and Thorn (18).
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Chapter 16

Competition Experiments Coupled with High-Throughput
Analyses for Functional Genomics Studies in Yeast

Daniela Delneri

Abstract

Competition experiments are an effective way to provide a measurement of the fitness of yeast strains.
The availability of the Saccharomyces cerevisiae yeast knock-out (YKO) deletion collection allows scientists
to retrieve fitness data for the ∼6,000 S. cerevisiae genes at the same time in a given environment. The
molecular barcodes, characterizing each yeast mutant, serve as strain identifiers, which can be detected
in a single microarray analysis. Competition experiments in continuous culture using chemically defined
media allow a more specific discrimination of the strains based on their fitness profile. With this high-
throughput approach, a series of genes that, when one allele is missing, result in either defective (haplo-
insufficient) or favored (haplo-proficient) growth phenotype have been discovered, for each nutrient-
limiting condition tested. While haplo-insufficient genes seemed to overlap largely across all the media
used, the haplo-proficient ones seem to be more environment specific. For example, genes involved in
the protein secretion pathway were highly haplo-insufficient in all the contexts, whereas most of the
genes encoding for proteasome components showed a haplo-proficient phenotype specific to nitrogen-
limiting conditions. In this chapter, the method used for implementation of competition experiments for
high-throughput studies in yeast is presented.

Key words: Competition experiments, continuous culture, chemostat, molecular barcode,
haplo-insufficient, haplo-proficient, fitness, genome-profiling.

1. Introduction

Biological fitness is defined by the relationships between geno-
type, phenotype, and the environment. In higher eukaryotes, the
fitness value is usually difficult to estimate due to the multitude
of variables associated with this concept (i.e., mating behavior,
survival and reproductive rates, and seasonal mating). However,
in single-celled asexual organisms such as yeast and bacteria the
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relative fitness is simply given by their growth rate as they com-
pete for a pool of resources. Competition experiments between
microorganisms are always in relation to the environment, and so
is their output fitness, which is the “relative fitness” of the strains
in that particular environment context.

Typically, two yeast strains with different auxotrophic or drug
markers were grown together for a number of generations, in a
one-to-one competition. The final frequencies of the strains were
then identified via quantitative PCR analysis or via plate essays
using different selective media (1–3). However, in the last 15
years, scientists tried to develop large-scale quantitative methods
to detect differences in fitness.

A major step forward in yeast molecular biology and genomic
study happened about a decade ago when an international consor-
tium of yeast laboratories created an almost complete collection of
yeast mutants carrying two unique barcodes (4). This collection
was unique in the sense that every gene that was deleted was also
marked by two unique 20 bp sequences (UP-TAG and DOWN-
TAG) flanking the selectable marker (KanMX). So each and every
mutant strains created was “barcoded” and could be identified
from the population via its TAG sequences. Furthermore, all these
mutation-specific oligonucleotides were flanked by two universal
sequences that could be used to amplify, in only two PCR reac-
tions, all the up-TAGs and down-TAGs present in the population.
DNA arrays (i.e., Affymetrix TAG3) were created with oligonu-
cleotides complementary to the TAGs, so that these could be dis-
criminated upon hybridization, since the intensity of the signal
from each individual spot directly relates to the amount of TAG
and consequently to the abundance of that particular strain in
the population. So, if a gene is important for growth in a par-
ticular condition, the corresponding mutant strain will be disad-
vantaged during the competition experiment, and the associated
molecular tags will diminish in the population. This technologi-
cal advance meant that competition experiments could be carried
out using simultaneously the entire yeast mutant collection and
functional data could be collected for all the genes in one single
experiment.

This methodology, pioneered in Ronald Davis’s laboratory in
1996 (5), has been extensively applied over the years to study
gene function, drug target, and the adaptive response to altered
environmental conditions.

The homozygous yeast deletion collection was used to deter-
mine gene function of all non-essential genes in different con-
ditions such as lack of amino acids, osmolarity, variation of pH,
growth on non-fermentable source, or plasma membrane mainte-
nance, (4, 6, 7). Genes involved in the biogenesis of the endoplas-
mic reticulum (8) and in maintaining plasma membrane integrity
(9) were identified using this approach.
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The heterozygous yeast deletion collection, with strains in
which only one of the two copies of the gene is deleted, has been
originally exploited to uncover molecular mechanisms of action
of drugs, and several comprehensive genome surveys in the pres-
ence of chemical compounds have been carried out over the years
(10–12). Moreover the heterozygous collection has been used to
study the effect of the copy number variation on the fitness of
the mutant strains in rich media (13), in nutrient-limited envi-
ronments (14), and in the presence of toxic metals (15).

Most of the barcode experiments had been carried in batch
(discontinuous) cultures (i.e., cultures without addition and/or
removal of medium) in which the nutritional and chemical con-
text in which the mutants were grown cannot be kept constant.
Over time, the environmental changes, such as the level of sugars,
vitamins, salts, minerals, secondary metabolites, and pH, could
favor different mutants. Thus, a strain that could be in disad-
vantage at the beginning of the competition may regain fitness
as the conditions change, confusing the outcome of the compe-
tition experiment. Serial dilutions in batch can partially alleviate
this problem by resuspending the cell population in new fresh
medium every few generations, so that the original nutritional
conditions are recovered (13).

Although it is difficult to discriminate small changes in the
growth rate by direct measurement in “batch” conditions, com-
petition experiments in continuous (chemostat) culture provide a
powerful approach to the analysis of the growth rate. Keeping the
environment constant (see Section 3.1), the background variation
is minimized allowing a sharp discrimination between strains with
different fitness. Moreover, using chemically defined medium,
such as F1, over rich (YPD) or minimal (SD) medium also allows
the detection of smaller differences among strains (14). In par-
ticular, by using continuous cultures, both haplo-insufficient and
haplo-proficient genes could be identified in a given context (14).

2. Materials

1. Strains and oligonucleotides
a. The heterozygous yeast deletion collection deletion

strains, in the diploid BY4743 background (MATa/
MATαhis3�1/his3�1 leu2�0/leu2�0 met15�0/
MET15 LYS2/lys2�0 ura3�0/ura3�0), were obtained
from the Saccharomyces Deletion Consortium (http://
www-sequence.stanford.edu/group/yeast_deletion_
project/deletions3.html).

http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
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b. The sequences of the biotinylated primers used to amplify
the TAGs are the following: 5′ biotin-GATGTCCACGA
GGTCTCT-3′ (BU1) and 5′ biotin-GTCGACCTGCAG
CGTACG-3′ (BU2-comp) for amplifying the UP-TAGs;
5′ biotin-CGGTGTCGGTCTCGTAG-3′ (BD1) and 5′-
biotin-CGAGCTCGAATTCATCG-3′ (BD2-comp) to
amplify the DOWN-TAGs.

c. The sequences of the eight oligonucleotides used in the
hybridization mixture are U1 5′-GATGTCCACGAGGT
CTCT-3′ (U1), D1 5′-CGGTGTCGGTCTCGTAG-3′
(D1), 5′-CGTACGCTGCAGGTCGAC-3′ (U2), 5′-CG
ATGAATTCGAGCTCG-3′ (D2); 5′-AGAGACCTCGT
GGACATC-3′ (U1comp), 5′-CTACGAGACCGACAC
CG-3′ (D1comp), 5′-GTCGACCTGCAGCGTACG-3′
(U2comp), and 5′-CGAGCTCGAATTCATCG-3′ (D2-
comp).

2. Medium
a. The F1 medium (2, 14) can be limited for glucose (car-

bon limitation), nitrogen, phosphorus, or sulfur (see Table
16.1). YPD medium contains 1% (w/v) yeast extract,
2% (w/v) peptone, and 2% (w/v) glucose. YPD/glycerol
contains same amounts of nutrients in 15% (v/v)
glycerol.

b. First, the stock and final solutions of mineral salts, trace
elements, and vitamins are prepared, according to whether
the medium is C-, N-, P-, or S-, limited (see Table 16.1).
The mineral salts are individually dissolved in 1 L of H2O
and then poured in a 20 L vessel (Nalgene) containing
18.5 L of water.

c. All the trace elements, except for FeCl3, were dissolved in
1 L of sterile water (trace element mix). The FeCl3 solu-
tion was dissolved separately in 1 L of sterile water. These
solutions are autoclaved.

d. The vitamin stock solution is prepared as described in
Table 16.1 and filter-sterilized (0.22 μm Millex-LG fil-
ter, Millipore, # SLGV013SL). 33 mL aliquots are made
in 50 mL Falcon tubes and stored at –20◦C.

e. Filter-sterilized uracil, histidine, and leucine are then
added to the medium (0.4 g Ura, 0.4 g His, and 2 g Leu
for a 20 L final volume).

f. The sugar is dissolved in the medium: 400 g glucose is
added except for the C-limited medium where only 50 g
of glucose is included.

g. Sartopore 2 150 filters, 0.2 μm (Sartorius) for filter-
sterilization of the medium (see Section 3.2).
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Table 16.1
F1 nutrient-limited medium

C-lim N-lim P-lim S-lim
Mineral salts solution
(Final concentration, g/L)
(NH4)2SO4 3.13 0.46 3.13 0.024
NH4CI 2.5
KH2PO4 2.0 2.0 0.054 2.0
KC1 1.10
MgSO4·7H2O 0.55 0.55 0.55
MgCl2·2H2O 0.45
NaCl 0.10 0.10 0.10 0.10
CaCl2·2H2O 0.09 0.09 0.09 0.09

Trace elements solutions
Trace elements mix 1 10,000X stock (g/L) Final concentration (mg/L)
ZnSO4·7H2O 0.7 0.07
CuSO4·5H2O 0.1 0.01
H3BO3 0.1 0.01
KI 0.1 0.01
–
Trace elements mix 2a

FeCl3·6H2O 0.5 0.05
Vitamins solutionb

Vitamins stock solution 600X stock (g/L) Final concentration (mg/L)
Inositol 37.2 62
Thiamine/HCl 8.4 14
Pyridoxine 2.4 4.0
Ca-pantothenate 2.4 4.0
Biotin 0.18 0.3

aThe 10,000X FeCl3·6H2O stock solution is prepared and kept separately.
bThe 600X vitamin stock solution is filter-sterilized.

h. Air filters (Acro R© 50 Vent with 0.2 μm PTFE membrane,
Pall).

i. The feeding and the pH lines of the chemostat are cleaned
and sterilized with 1 M NaOH solution and 70% (v/v)
ethanol solution.

3. Hybridization
a. The Genomic DNA is extracted using the DNA tissue

kit (Qiagen). The concentration of DNA in the extract
was determined using a Nanodrop spectrophotometer
(Thermo Scientific).
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b. Platinum PCR Supermix (Invitrogen) has been used to
amplify the TAGs and Microcon YM10 columns (Milli-
pore) to purify them.

c. Hybridization buffer composition: 100 mM MES, 1 M
MES-Na+, 20 mM EDTA, and 0.01% (v/v) Tween (see
Note 1).

d. TAG3 (or TAG4) chips, 213B oligonucleotide con-
trol, and eukaryotic control (Affymetrix). Streptavidin/
R-phycoerythrin conjugate (SAPE) (Invitrogen).

e. Non-stringent wash buffer: 6X SSPE, 0.01% (v/v)
Tween 20.

f. Stringent wash buffer: 100 mM MES, 0.1 M MES-[Na+],
0.01% (v/v) Tween 20.

g. Stain buffer: 100 mM MES, 1 M MES-[Na+], 0.05%
(v/v) Tween 20 (see Note 2).

h. SAPE solution: 1X Stain buffer, 2 mg/mL acetylated
BSA, and 10 μg/mL SAPE. The stock solutions are
2X SAPE solution, 50 mg/mL acetylated BSA, and
1 mg/mL SAPE (see Note 3).

i. Standard Goat IgG antibodies (Sigma-Aldrich). A
10 mg/mL stock solution is prepared by resuspending
50 mg of IgG in 5 mL PBS.

j. Anti-streptavidin (goat) and biotinylated antibodies (final
concentration 3 μg/mL) (Vector laboratories). Prepare a
0.5 mg/mL stock solution.

k. Antibody solution: 1X Stain buffer, 2 mg/mL acetylated
BSA, 0.1 mg/mL goat IgG, 3 μg/mL biotinylated anti-
streptavidin antibodies (see Note 3).

l. GeneChip R© Hybridization Oven 645, GeneChip R© Flu-
idics Station 450, and GeneChip R© Scanner 300 7G
(Affymetrix) are used to hybridize, wash, and scan the
TAG3 microarrays (Affymetrix).

3. Methods

3.1. The Chemostat
System

The chemostat culture is an open system in which the input
medium is fed at a fixed dilution rate (D) with (D = F/V ), where
F is the input flow (liter/hour) and V the volume of the fermenter
(in liters). The volume is controlled and kept constant by pump-
ing out medium from the system. The pH is also kept constant
by addition of acid or base (using ammonium as nitrogen source
the pH tends to decrease and main pH control can be achieved
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Fig. 16.1. Small-scale parallel fermentation system Fedbatch-pro (DASGIP Technology).
Up to 16 flasks can be set up for continuous cultures inside a shacking incubator (Infors
HT, UK); For optimum performance, a maximum number of 12 vessels per fermentation
series was used.

by addition of base, such as NaOH). The population is initially
grown in batch to early stationary phase and then the system is
switched to continuous culture. After a number of generation
times the population reaches a steady state, characterized by con-
stant conditions (e.g., pH and temperature) and concentrations
of substrates and products. In order to study several conditions at
the same time a small-scale parallel fermentation system, such as
Fedbatch-pro (Das Gip AG), is ideal in order to monitor up to 16
flasks (Fig. 16.1).

3.2. Preparation
of the Medium and
the Pool of Mutant
Strains

The mineral salts, amino acids, and glucose are dissolved in water.
1 mL of trace element mix, 1 mL of FeCl3, and 33 mL of vitamin
stock are then added to the 20 L vessel and water is added to
reach 20 L final volume. The medium is then filter-sterilized into
another sterile 20 L vessel.

For the construction of the pool of yeast mutants, the strains
were grown in YPD with 15% (v/v) glycerol using 96-well plates
at 30◦C until they reached stationary phase (48 h). Using a mul-
tichannel pipette, 10 μL of each heterozygous strain was put
together in a sterile Petri dish. The pool was then divided in 1
mL aliquots, which were stored at –80◦C in YPD with 15% (v/v)
glycerol.

3.3. Preparation of
the Fermenters

1. First, the calibration of the pH probes is carried out using
the relative Fedbatch-pro software. The caps, labeled with
numbers 1–16, which are connected to the machine, are
screwed onto the relative probes and the calibration is car-
ried out by placing the probes in a standard buffer at pH
7 and subsequently at pH 4. The temperature probe is also
placed in the same buffers.
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2. Once the pH probes are calibrated, they are inserted into the
flask fermenters and prepared for autoclaving. Two air filters
are screwed on the flasks and covered with aluminum foil.
Medium inlet and outlet and base inlet are closed with their
respective caps. The medium outlet is controlled mechani-
cally, with the metal rods connected to the output feeding
lines accurately positioned to maintain the desired constant
volume, typically 100 mL (see Note 4).

3. Cleaning of the medium and pH buffer feeding lines: The
pH buffer lines require two cleaning procedures, one with
70% (v/v) ethanol and the other with 2% (w/v) NaOH. This
is done through the FedBatch software and takes approx-
imately 2 h for 16 flasks. The medium feeding lines are
cleaned manually by pumping through the lines first 70%
(/v) ethanol, then 2% (w/v) NaOH, and finally rinsing them
with sterile water and the sterilized medium to be used in the
experiment (see Note 5).

4. The flasks are now ready to be connected to their feeding
lines (see Note 6).

3.4. Batch and
Continuous Culture

1. The medium is pumped in the flasks till it reaches the desired
volume, typically 100 mL. Then the pumps are switched off
and the yeast inoculum is added (ca. 500 μL of a stationary
phase culture mix) by injecting it directly into the flask.

2. The batch phase will last ca. 24 h, where the microorganisms
are grown at 30◦C with shaking at 170 rpm. A sample is
then collected, and the cultures are switched to continuous
culture by turning on the pumps and the pH control.

3. The cultures are switched to continuous culture with a dilu-
tion rate, D = 0.1/h, and a constant pH of 4.5. A dilu-
tion rate of 0.1/h corresponded to about 3.5 generations
per day. After ca. 36–40 h of growth the culture reaches a
steady state. Each competition experiment was conducted in
four replicates for about 35–42 generations (10–12 days) to
avoid the incidence of secondary mutations, usually occur-
ring after 50 generations. Samples of 10–15 mL were col-
lected every day (see Note 7) and stored at –20◦C. For each
collection, OD600 values were measured and the genomic
DNA extracted.

3.5. TAGs
Amplification and
Hybridization

To monitor the changes in the population profile, four samples
were chosen to carry out the genomic hybridization using the
TAG3 array: the initial population of cells before the inoculum,
the sample after the batch culture phase, the culture at begin-
ning of the steady state, and after 18–22 generations and at the
end of the competition. The batch sample was useful for the
identification of mutations that severely hamper the fitness of the
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strains resulting in their complete disappearance from the culture
after the first 24 h of growth.

In this experiment, we have followed the standard protocol
for the discrimination of the strains via their barcodes. This has
been exhaustively described in several reviews (16–18); however,
for the purpose of this chapter the major steps of the hybridization
procedure and data analysis can be summarized as follows:

1. The genomic DNA is extracted from the samples and the
amplification of all the barcodes is carried out using the uni-
versal primers. The UP-TAGs and DOWN-TAGs are ampli-
fied separately in two different PCR reactions using universal
primers. Typically, the PCR mix contains 200 ng of genomic
DNA as template, 0.2 μM of biotinylated BU1 and BU2-
comp primers (for amplification of the UP-TAGs) or 0.2 μM
of biotinylated BD1 and BD2-comp (for amplification of the
DOWN-TAGs), 5 U of Platinum Taq DNA polymerase and
1X Buffer (Platinum PCR Supermix). The total volume of
the PCR is 100 μL. The PCR cycle is as follows: 1 cycle at
94◦C for 5 min, 35 cycles of 94◦C for 20 s, 56◦C for 20 s,
72◦C for 30 s, and the last cycle at 72◦C for 5 min. The
PCR products are cleaned using Microcon YM10 columns
and run on a 2% (w/v) agarose gel (5 μL). The total amount
of the UP-TAGs and DOWN-TAGs is estimated by densit-
ometry using a low DNA mass ladder as reference.

2. The PCR products are then hybridized to the TAG3 array.
The chip is pre-washed with 180 μL of hybridization buffer
before the hybridization mix is added. Hybridization mix:
500 ng of UP-TAGs, 500 ng of DOWN-TAGs, hybridiza-
tion buffer, 1.8 μL of 50 mg/mL of BSA solution, 1.8 μL
of 5 nM 213B control oligonucleotide solution (hybridize
to the rim of the microarray), eight oligonucleotides solu-
tions (25 μM final concentration each) corresponding to
the four universal primers used for the tag amplification and
their four complements (these primers serve to block the
communal regions of the amplified TAGs before hybridiza-
tion), and 7.2 μL of eukaryotic control. The hybridization
mix (total volume 180 μL) is boiled for 2–5 min and cooled
in ice, before being added to the chip. The hybridization
is carried out for 18 h at 42◦C with constant rotation in
the GeneChip R© Hybridization Oven 645. The chips are
then mechanically washed with stringent and non-stringent
buffers before being stained with 600 μL of streptavidin–
phycoerythrin (SAPE) solution, followed by 600 μL of anti-
body solution and again 600 μL of SAPE solution in the
GeneChip R© Fluidics Station 450, according to manufacturer
instructions. The SAPE solution is then removed and the
chips washed with non-stringent buffer and scanned using
the GeneChip R© Scanner 300 7G, see Note 8.
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3. The intensity of the hybridization signal from each individual
spot reflects the amount of that specific barcode and conse-
quently of that particular strain in the population.

The arrays are normalized by median centering intensity val-
ues from TAGs corresponding to the yeast strains, while the inten-
sity values from the TAGs not corresponding to deletion mutants
were taken as being representative of the background intensity
and used to determine the presence or absence of deletion strains
in the initial pool.

The log ratios are calculated from two biological replicates
taken at three time points during the steady state: t0 (beginning
of the steady state), t1 (mid-point), and t2 (end of the competi-
tion). Growth rates are estimated by robust linear regression on
the normalized log ratios. Type I error rates (p values) are esti-
mated by model-based resampling, with suitably rescaled residu-
als. To account for multiple testing, the false-discovery rate (FDR,
q values) is estimated, according to the method of Benjamini and
Hochberg, using the R statistical software environment (http://
www.r-project.org/). Growth rates with q < 0.01 are considered
as statistically significant and the corresponding ORFs selected for
further bioinformatics analysis.

3.6. Conclusions
and Future Directions

Several competition studies have now been carried out in either
batch or chemostat cultures, using the TAG3 chip. Continuous
cultures are capable of uncovering more haplo-insufficient genes
than batch cultures due to their higher discriminatory power.

Quality control study of the yeast deletion collection was car-
ried out by re-sequencing the molecular barcode (19). It was
found that 31% of the TAGs contained differences from those
designed originally. However, only a small subset of those caused
decreased hybridization signal, below the background.

A new generation of array, TAG 4, was designed to improve
the detection of the strains with sequence errors in their barcodes
(20). In this array five replicates of each barcode are present and
a larger set of control tags were added.

High-density microarrays provided so far an excellent tool
for genome-wide assays such as the one described; however, the
rapid advances in the next generation sequencing technology
is now revolutionizing most of the array-based applications. A
new method, barcode analysis by sequencing (Bar-seq), has been
recently developed where the TAGs are discriminated by sequenc-
ing on the Illumina/Solexa platform (21). The Bar-seq method
outperformed the classical hybridization array in terms of sen-
sitivity, dynamic range, and detection. Moreover, using a DNA
sequencer allows multiplexing (sequencing of several samples on
the same flow cell) and eliminates the need of designing new
microarray for different types of TAGs in other organisms.

http://www.r-project.org/
http://www.r-project.org/
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4. Notes

1. A 12X MES stock (1.22 M MES and 0.89 M [Na+]) is pre-
pared, and the pH is checked in order to be between 6.5
and 6.7. The stock solution is filter-sterilized and stored at
4◦C and protected from light. If the solution turns yellow it
should be discarded.

A 2X hybridization buffer is prepared to be added to the
hybridization mixture to reach the final 1X final concentra-
tion. The 2X hybridization buffer should be stored at 4◦C.

2. A 2X stain buffer is prepared to be added to the staining
solution (so that the final concentration is 1X).

3. For each array, prepare a total volume of 1,200 μL of SAPE
solution and divide in two 600 μL aliquots. Prepare 600 μL
of antibody solution.

4. It is advisable that the diameter of the outlet tubing is at least
1.4 mm. Smaller tube sections may cause problems because
the yeast cells can clog them up, provoking overspilling of
the culture from the flasks that can damage the incubator.

5. When not in use, all feeding lines (pH buffer and medium
input and output lines) should be kept in ethanol.

6. When connecting the lines, special care should be taken in
order to avoid contaminations. Usually a 70% (v/v) ethanol
solution is sprayed on the caps, connectors, and gloves,
before linking the lines to the flasks.

7. The samples are collected from the outflow to keep the vol-
ume in the flask constant and to avoid oscillations of the
steady state.

8. The array should be checked for air bubbles. If present, they
need to be removed before scanning, by replacing the wash-
ing solution in the chip.
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Chapter 17

Fluorescence Fluctuation Spectroscopy and Imaging
Methods for Examination of Dynamic Protein
Interactions in Yeast

Brian D. Slaughter, Jay R. Unruh, and Rong Li

Abstract

Protein interactions are inherently dynamic. In no system is this more true and important than in signaling
pathways, where spatial and temporal control of specific protein interactions is key to signaling specificity
and timing. While genetic and biochemical interactions form a necessary and important starting point
for deciphering interactions among signaling components, they struggle to provide precise information
of where and when interactions occur in a live cell setting. In contrast, live cell fluorescence studies such
as those outlined below are able to provide quantitative information on the strength, nature, timing, and
location of homotypic and heterotypic protein interactions.

Key words: Fluorescence fluctuation spectroscopy (FFS), fluorescence correlation spectroscopy
(FCS), fluorescence cross-correlation spectroscopy (FCCS), number and brightness analysis (N&B),
photon counting histogram (PCH), 2D PCH, fluorescence resonance energy transfer (FRET),
signaling pathway.

1. Introduction

Signaling pathways consist of numerous components, each with
a specific role or function in facilitating the general goal: a cel-
lular response to a particular stimulus (1). In many cases, sig-
naling molecules have many potential downstream targets that
can lead to different responses. Therefore, mechanisms must be
in place to control when and where the regulator–target interac-
tions occur, as well as the strength and duration of these inter-
actions. A well-characterized example is the dual targets of the
mitogen-activated protein (MAP) kinase – kinase Ste7. It is able
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to bind and phosphorylate the MAP kinases Fus3 and Kss1 – yet
specificity is important for proper response to different stimuli,
such as mating pheromone or nutrient conditions (2). In this
case and others, in order to better understand how specific sig-
naling responses are generated, it is necessary to work toward an
understanding of when and where in a cellular context interac-
tions between components of these highly intertwined signaling
pathways occur.

Dynamic interactions in live cells may be characterized by
a variety of fluorescence methods. In this chapter, we define
dynamic interactions as those that occur with appreciable disso-
ciation rates, and those that may occur transiently at a particu-
lar stage of the cell physiology or at a specific location. These
interactions may occur between molecules with varying degrees
of mobility, which is an important factor in determining the suit-
ability of some of the detection methods. For example, in fluores-
cence resonance energy transfer (FRET), the interaction between
two molecules, a donor and an acceptor, can be observed pro-
vided a close spatial relationship (< ∼10 nm) exists. While this
technique does not address the mobility of the molecules per se,
it is able to diagnose where in the cell, or at what stage of the
cell cycle, an interaction occurs. In contrast, fluorescence fluctua-
tion spectroscopy (FFS) techniques such as fluorescence correla-
tion spectroscopy (FCS), cross-correlation spectroscopy (FCCS),
photon counting histogram (PCH), and number and brightness
analysis (N&B) probe mobile particles only and reveal hetero-
oligomeric interactions (FCCS) or homo-oligomeric interactions
(PCH, N&B).

Below, we describe in detail methods for applying FRET and
FFS techniques to examine dynamic protein interactions in live
yeast cells. We do not include any discussion on fluorescence
recovery after photobleaching (FRAP), reviewed elsewhere (3),
which is a valuable tool for examining dynamics of protein inter-
action with the membrane or other structures but does not nec-
essarily directly examine the interaction of specific protein pairs.
For new work employing FFS techniques to examine fluctuation
in time or space of pixels in a series of images, combining the
examination of mobility and interactions of single-point FFS with
spatial information, we point the reader to the following subset
of references (4–8).

2. Materials

2.1. Media and Cell
Culture

1. Yeast agar plates: For 500 mL, which makes 20 plates,
mix 5 g Bacto-yeast extract, 10 g Bacto-peptone, 10 g
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Bacto-agar, and 475 mL ddH2O. Add 25 mL of sterile 40%
(w/v) glucose after autoclaving.

Pour onto sterile plates (e.g., 25384-302, VWR) and
allow plates to cool and harden.

For synthetic plates, which allow for selection in the
absence (drop-out) of an essential amino acid, we use the
following recipe: 3.35 g Bacto-yeast nitrogen w/o amino
acids (Becton, Dickinson and Company, Franklin Lakes,
NJ), 1 g synthetic complete drop-out mix (Sunrise Science,
San Diego, CA), 10 g Bacto-agar (Becton, Dickinson and
Company, Franklin Lakes, NJ), and 475 mL H2O.

Autoclave, add 25 mL of separately autoclaved 40% (w/v)
glucose. Pour onto sterile plates.

2. Synthetic liquid medium: (YPD medium is not used for liq-
uid cultures used for microscopy observations due to its
high level of autofluorescence): 3.35 g Bacto-yeast nitro-
gen w/o amino acids (Becton, Dickinson and Company,
Franklin Lakes, NJ), 1 g Synthetic complete of drop-out mix
(Sunrise Science, San Diego, CA), and 475 mL H2O.

Autoclave: 25 mL of sterile 40% (w/v) glucose (or other
sugar as desired) will be added before use for a final con-
centration of 2% (w/v) (20 g/L). Keep in closed cabinet
or wrap in foil. Light exposure over long times will lead to
increased autofluorescence.

2.2. Microscopy When choosing a microscope for fluctuation spectroscopy, there
are several points to be noted:

(1) The microscope must be confocal or two photon with
the capability to stably record intensity in a single spot
for long periods of time. It is important that the micro-
scope objective be as free of color and spherical aberra-
tions as possible to minimize the size of the focal volume
and maximize the overlap between red and green detection
channels. These requirements are often easier to fulfill on
a two-photon microscope with non-descanned detection.
The microscope must also have the appropriate filters to
separate colors well and eliminate scattered excitation light.

(2) The microscope must be equipped with detectors that have
true photon counting detection with the highest sensitiv-
ity possible. It has become popular in recent years to per-
form gain calibration and back-calculate the number of
“photons” from the observed intensity. These systems are
advertized as photon counting, but will not work as effec-
tively as true photon counting systems for correlation anal-
ysis and will fail completely for any PCH analysis. Typi-
cally, FCS measurements are made on systems with highly
sensitive single photon counting avalanche photodiodes
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(spAPDs) or gallium arsenide phosphide photomultiplier
tubes (GaAsP-PMTs). Less sensitive detectors may work
but with significant losses in sensitivity and the ability to
detect single-molecule fluctuations. The data recording sys-
tem should have the speed necessary to record the fluctu-
ations of interest. Fluorescein, which is typically used as a
calibration dye for FCS measurements, diffuses through a
confocal focal volume in ∼30 μs. Therefore, it is wise to
have at least 10 μs time resolution for detection.

(3) It is advantageous to have a microscope with the ability to
record images of live cells and select positions for FCS mea-
surements. There are several systems commercially avail-
able. These include the Confocor module available with
the Zeiss LSM microscopes (Jena, Germany), the Leica
TCS SMD microscope (with electronics from PicoQuant
(Berlin, Germany)), the MicroTime 200 system from Pico-
Quant, the Alba module from ISS (Champaign, IL), and
the DCS 120 system from Becker and Hickl (Berlin, Ger-
many). It is also possible to build an FCS system. This is
much easier for two-photon systems than confocal systems.
Several of the above products are available for user-built
systems to make acquisition easier.

(4) In terms of software for data analysis, all of the above
systems are shipped with software to acquire data, calcu-
late correlation curves, and histogram data in at least one
dimension. The Globals suite of software from the Lab-
oratory for Fluorescence Dynamics (UC Irvine, CA) can
also aid in acquisition for user-built systems. Most soft-
ware packages also allow for fitting of correlation curves to
complex models including multiple components and triplet
blinking. All software packages support data export for
analysis in other nonlinear least squares fitting programs.
A few of the software packages allow data import from
other acquisition systems. We have found the OriginPro
(OriginLab Corp., Northampton, MA) software package
especially useful for nonlinear least squares fitting. Only the
Confocor, Alba, and Globals packages allow for fitting of
PCH data. To our knowledge there are no software pack-
ages available for 2D PCH fitting. To this end, we have
created a 2D PCH software plugin for the free image pro-
cessing program, ImageJ. This plugin is available at http://
research.stowers.org/imagejplugins. It is also worth noting
that the Alba and Globals software packages as well as our
software allow for simulation of FCS data. This can be use-
ful for testing fitting models and learning how data analysis
works.

http://research.stowers.org/imagejplugins
http://research.stowers.org/imagejplugins
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(5) For FRET using acceptor bleaching, the system require-
ments are less stringent. The system must have capabilities
for multichannel imaging. It must be possible to acquire
image series, either pausing in the middle to scan with high
red laser intensity to bleach the acceptor or acquiring sepa-
rate donor time series before and after bleaching the accep-
tor (see Section 3.3).

3. Methods

The methods for detecting whether, when, and where interactions
among signaling components occur in live yeast include FRET,
FCS, FCCS, PCH, and number and brightness (N&B) analysis.
There are a large number of technical references and protocols
and research papers on these methods; here is a subset (5, 6,
9–13). In this chapter, we discuss protocols for applying these
methods in live yeast cells, where in general the expression of
fluorescent proteins can be kept at their low, native levels. This
provides a huge advantage in yeast over systems where non-native
overexpression is the main method for visualization of autofluo-
rescent proteins (AFPs)-tagged proteins. Therefore, these proto-
cols likely would need to be modified to work effectively in other
systems.

The method that is best suited for observing interacting com-
ponents depends on the nature of the interaction and protein
mobility. We recommend first analyzing what is known about a
group of proteins before deciding which technique is most likely
to yield beneficial information on its interactions. For example,
while FRET is limited to detection of direct interactions between
proteins because it requires close proximity (< ∼10 nm), it can
detect interactions among not only highly mobile populations but
also immobile populations. FRET also can provide highly specific
information on the location of the interaction, for example, outer
membrane vs. cytosol or internal membrane. In addition, under
some conditions, distance information may provide useful infor-
mation on the structural layout of a large protein complex both in
vivo and in vitro (14, 15). Techniques based on fluorescence fluc-
tuation spectroscopy (FFS), such as FCCS and PCH, are useful
for detecting heterotypic or homotypic interactions, respectively,
regardless of whether the interaction occurs directly or rather is
on opposite ends of a large complex, because they simply mea-
sure co-diffusion. In contrast to FRET, FFS techniques require
mobile particles. An attempt to apply FFS to immobile particles
will result in rapid photobleaching and will not give meaningful
results. Therefore, FFS is most easily applied toward rapidly mov-
ing cytosolic proteins, and we will limit our discussion to these
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scenarios. For recent work on combining scanning and fluctua-
tion measurements to observe dynamics and interactions among
slowly moving proteins, including membrane proteins, see the
following subset of references (5, 7, 8, 16, 17).

3.1. Yeast Growth
and Culture

(1) Yeast strains expressing one or more AFPs are grown in
synthetic medium between 23 and 30◦C for 8–10 h. Check
optical density (OD) at 600 nm. Imaging experiments are
best performed when the OD is between 0.5 and 0.8 (see
Note 1). If OD is above 1.0, dilute cells to an OD of
0.2–0.3 and grow for 2–4 h to an OD between 0.5 and
0.8 before measurements are made.

(2) When possible, we highly recommend tagging genes with
AFPs using homologous recombination. Direct C-term
tagging, if not affecting protein function, is convenient and
allows for observation of tagged proteins that are under
their endogenous promoter and that represent the only
copy present in the cell. Cassettes are available as templates
for PCR to accomplish this (18, 19). In the case of pro-
teins that are not functional with a C-term tag, necessitat-
ing N-term tagging, or if a mutation must be made, the
gene may be cloned into a centromeric plasmid, such as the
pRS313-pRS316 series (20). Alternatively, the N-terminus
may be tagged with the AFP through a multi-step process
in the endogenous locus under the control of the native
promoter or a single-step process if a different promoter
is sufficient (19, 21, 22). For a general protocol for gene
tagging in yeast, see (23).

(3) A variety of AFPs are available for use in yeast experiments.
In our experience, virtually any AFP used in other systems
can be examined in yeast. However, we note that there
may be large differences in expression level depending on
whether the codon usage of the AFP has been optimized
for yeast. For single-channel measurements, green (GFP)
and yellow (YFP) fluorescence proteins and their variants
are very effective. For multi-color applications, the cyan–
yellow (CFP-YFP) pair will work, though there is signif-
icant spectral cross-talk, and we find cellular autofluores-
cence is a factor at the wavelengths used to examine CFP.
The best pair of monomeric AFPs for two-color measure-
ments to date, in our opinion, is GFP paired with mCherry
(24) for both FRET and FFS.

(4) When a yeast strain is first established on a yeast agar plate
(2% w/v glucose), grow the yeast strain to OD ∼1.0 and
mix 50:50 with 50% glycerol. Freeze the glycerol stock and
keep at –80◦C. Keep fresh yeast cells on plates for 3–4 days
at 23–30◦C, and use a small amount of cells to inoculate
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liquid culture. Plates may be kept up to 10 days at 4◦C.
After 10 days, it is recommended to discard old plates and
plate fresh cells from the frozen glycerol stock (see Note 2).

3.2. Slide Preparation Yeast cells are first grown to the optimal OD range for fluores-
cence imaging experiments.

(1) (Optional) 1.0 mL cells may be spun down and
re-suspended in 50–100 μL prior to pipetting onto a glass
slide to increase cell density. For imaging experiments, if
cells are spotted too densely such that cells are touching or
are stacked on top of one another, dilute cells and repeat
until the desired plate density is reached.

(2) For short-time experiments, or experiments that do not
include time-lapse series longer than 20 min, cells may be
pipetted directly on glass cover slips (see Note 3). Pipette
3–4 μL onto a microscope slide and gently cover with a
22 × 22 mm micro cover glass. To help immobilize cells
on the slide, turn slide over and press downward very gen-
tly onto lens paper. If pressed too roughly, it may cause cells
to rupture (see Note 4).

(3) For experiments longer than 20 min, i.e., long time-lapse
movies, an agarose or gelatin pad can be used to sup-
ply nutrients to the yeast to allow for survival. We find
this results in a slight increase in background fluorescence.
Details for this protocol can be found elsewhere (25).

3.3. FRET
Measurements in
Live Yeast Cells
Using Acceptor
Photobleaching

There are a number of methods for measuring FRET, includ-
ing sensitized emission, acceptor photobleaching, and quench-
ing of the fluorescence lifetime of the donor. In our experience,
acceptor bleaching is the most straightforward and easily quan-
tified method for detecting FRET in live yeast cells and will be
the method discussed here. In addition, acceptor bleaching does
not require quantitative measurement of the fluorescence of the
acceptor, but it has to be only ensured that it is bleached. As red
AFPs are generally less bright than GFP, this provides an advan-
tage for acceptor bleaching over sensitized emission, which relies
on quantitative measurements of the intensity of the red probe.
For a general review on FRET, see (26).

(1) For FRET experiments, it is necessary to have one protein
tagged with a donor, such as GFP, and a separate protein
tagged with an acceptor, such as mCherry or mStrawberry
(24). Great care must be taken to avoid extended imag-
ing prior to measurement of FRET due to the possibility
of AFP bleaching during normal image acquisition, espe-
cially for the red AFPs, which are less photostable than
GFP (24, 27) (see Note 5). Photobleaching, especially
of the red AFP, during regular confocal imaging prior to
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FRET measurement will lead to underestimation of FRET.
If possible, for medium to low expressing proteins, we
recommend avalanche photodiodes (spAPDs) as opposed
to PMTs for greater detection sensitivity, which corre-
spondingly allows for use of lower excitation powers (see
Section 2.2 and Note 5). If spatial resolution in the z-axis
is not required, open the pinholes on a confocal microscope
to allow greater signal at low excitation powers.

(2) Verify that the chosen cell is expressing both donor and
acceptor probes by imaging individual channels.

(3) Choose a region of interest for acceptor bleaching. This
may include a certain area in the cell or may be the entire
cell. If the entire cell is not bleached, rather only a cer-
tain area, mobility of the species must be accounted for.
We generally recommend to bleach the acceptor in the
entire cell.

(4) Acquire 3–5 images, exciting the donor and collecting only
donor fluorescence, then bleach the acceptor with a red
laser line (544 or 561 nm, for example) with 5–10 scans
at high laser power. After acceptor bleaching, acquire 3–5
images of the donor.

(5) Verify that the red AFP is bleached by scanning once with
the red laser and comparing with the initial red image
before bleaching.

(6) Separately sum the scans of the green channel before and
after bleaching of the red probe and compare. Divide the
summed after bleach image by the before bleach image.
An increase represents FRET. For an example of FRET
between the MAPK signaling pathway scaffold Ste5 and the
kinase Fus3, see Fig. 17.1.

(7) Verify that FRET is not underrepresented or missed alto-
gether due to donor photobleaching during regular image
acquisition, and that donor is not bleached by the rep-
etitions with the red laser (see Note 6). As a control,
repeat the above protocol with a yeast strain expressing
only donor, and not acceptor, using the exactly same image
acquisition protocol and laser powers. Verify that donor flu-
orescence does not change during the time-course of the
control experiment. If there is donor bleaching during nor-
mal acquisition, if possible, adjust image acquisition param-
eters to reduce or eliminate acquisition photobleaching. If a
small amount of image photobleaching occurs at excitation
powers necessary for sufficient signal to noise to quantitate
the data, a correction factor may be employed from the
control, donor only measurements to apply to the experi-
mental measurement.
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Fig. 17.1. Example of a FRET acceptor bleaching experiment between Ste5-GFP and
Fus3-mStrawberry in pheromone-treated cells (adapted from Ref. (28), with permis-
sion). (a) Intensity line trace of a yeast cell expressing Ste5-GFP. Fus3-mStrawberry has
a similar profile (not shown). Ste5-GFP intensity along the line trace is shown before and
after acceptor bleach. (b) Ratio of Ste5-GFP intensity after acceptor bleaching relative
to before. A ratio above 1.0 is observed at the tip, indicative of interaction between Ste5
and Fus3.

(8) FRET efficiency is calculated as E = 1− (IB/IA), where IB
and IA are the donor intensity before and after acceptor
bleach. FRET efficiency is converted to a distance using
the following formula, though for FRET between AFPs,
there are very significant assumptions that must be made
to convert FRET efficiency to a quantitative distance (see
Note 7). For this reason, often simply a FRET efficiency is
given as qualitative evidence of an interaction

R =
(

1− E
E

)1/6
·R0. [1]

In addition, we note that this method does not distin-
guish % FRET of interacting proteins from the percentage
of interacting proteins.

(9) In theory, any AFP pair can be used where there is an over-
lap of the donor emission with the acceptor absorption. For
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acceptor photobleaching studies, we find that bleaching of
CFP at wavelengths necessary to photobleach the accep-
tor YFP or its variants complicates analysis. We recommend
pairing GFP with a monomeric red AFP, such as mStraw-
berry or mCherry (24).

3.4. Fluorescence
Correlation
Spectroscopy (FCS)

FCS, FCCS, and PCH are based on statistical analysis of fluctua-
tions in emission intensity (Fig. 17.2). The mathematics of FCS
and FCCS was developed many years ago (29, 30), but it is only
recently that these techniques have gained popularity for live cell
measurements as improvements in commercial microscopes have
made them accessible to scientists with a wide range of exper-
tise. The base form of the data in fluctuation studies is a single
or double fluorescence trace of photon counts at a given loca-
tion as a function of time (Fig. 17.2a). These traces are analyzed
with auto- or cross-correlation functions or number and bright-
ness analysis (N&B) or PCH to expose underlying dynamics and
interactions of the AFP-tagged components. We start here with a
general protocol for acquiring fluctuation data and then diverge
into the different methods of data analysis to examine homotypic
or heterotypic interactions.

(1) The use of photon counting avalanche photodiodes spA-
PDs is recommended for FCS and FCCS experiments (see
Section 2.2.2).

(2) Once a cell is located, orient the beam at the chosen loca-
tion in the cell. On commercial microscopes, this is often
included as an option in the software (see Section 2.2.3)
If desired, a separate color AFP can be used to mark loca-
tions for analysis, for example, by tagging a protein that
localizes to that structure with mCherry. However, analy-
sis inside organelles is limited in yeast due to the small size
of many of these structures. The focal volume on most
standard confocal scopes is approximately 0.4–0.5 μm
in diameter in the radial dimension, and approximately
1–2 μm in the axial dimension. Attempts to take measure-
ments in yeast organelles smaller than this will not truly
probe that particular region. In addition, small structures
will likely move out of the focal volume during the acqui-
sition time. Thus, measurements are typically made either
in the cytosol or in the nucleus.

Immediately following the start of fluorescence data
collection, roll the focus up, and then down through the
cell before settling in the center. This center may or may
not correspond to maximum counts, and likely will not for
proteins with a large membrane pool. However, the center
point between the focal volumes outside the cell on either
end (as photon counts drop sharply) should correspond
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Fig. 17.2. Examples of FCS and FCCS analyses. (a) Fluctuations in emission inten-
sity are obtained as molecules diffuse through the focal volume (adapted from Ref.
(34), with permission). (b) Fluctuations in individual channels may be autocorrelated
to reveal information on concentration, mobility, and heterogeneity. Simulated results
are shown. (c) In two-channel experiments, the two channels may be cross-correlated.
A high cross-correlation amplitude relative to the amplitude of the autocorrelation of
the individual channels indicated co-diffusion of the two species. Example curves from
live yeast are shown for cross-correlation between MAPK pathways proteins Ste11 and
Ste50 (adapted from Ref. (34), with permission). The strong cytosolic interaction of these
two proteins is disrupted by mutation of the SAM domain of Ste50.

to the middle. This avoids measurements where a signifi-
cant part of the focal volume is outside of the cell (due to
the small size of yeast cells, in some cases the axial resolu-
tion of the confocal measurement may approach the axial
dimension of the cell).
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(3) Collect 3–5 measurements, each 3–7 s in length, per cell
(see Note 8).

(4) The laser power necessary to achieve sufficient signal to
noise will vary depending on the overall detection effi-
ciency of the system and the objective. For reference,
using a commercially available Zeiss Confocor 3, and a
40x 1.2NA C-Apochromat, we typically use a laser power
of ∼3.0 μW or 0.15% laser power at the back aperture.

(5) Once the fluorescence fluctuation trace is obtained,
it is analyzed by autocorrelation (equation [2]) (see
Fig. 17.2).

G(τ ) = 〈I (t) · I (t + τ )〉
〈I (t)〉2 [2]

(6) For free 3D diffusion, data can be fit to equation [3],
where N is the average number of molecules in the focal
volume, τD is the transit time through the focal volume,
and r0 and z0 represent the ∼1/2 radial and axial dimen-
sions of the focal volume, respectively. See Note 9 for dis-
cussion of γ . This equation can be expanded to include
multiple components.

G(τac) = γ

N
1

1+
(

τ
τD

) 1(
1+ r02

z02

(
τ
τD

))1/2 [3]

It is sometimes difficult to freely fit the “structure
parameter,” r0/z0. The value of z0 is often restricted to
three to five times larger than the value of r0.

(7) A least squares fitting algorithm is used to fit the correla-
tion decay to the chosen function.

(8) The most reliable way to find the size of focal volume is to
acquire FCS data on a sample of known concentration and
diffusion coefficient. Fluorescein in 0.1 M NaOH works
well. The size of the confocal volume is found by compar-
ison of the concentration of the sample with the average
number of molecules in the focal volume (31).

(9) We recommend fitting fluorescein correlation data to
equation [3] to find τD and the structure parameter
(r0/z0), then using the diffusion published coefficient of
fluorescein (32, 33) and equation [4] to find the 1/2 radial
dimension of the focal volume. A known radial dimension
of the focal volume will then allow for calculation of dif-
fusion coefficient for complexes of interest, using the τD
from the fit of their correlation curves.
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D = r0
2

4τD
. [4]

(10) Diffusion is related to molecular size by the Stokes-
Einstein equation

D = kT
6πηr

, [5]

where k is the Boltzmann constant, T is temperature in
Kelvin, η is viscosity, and r is molecular radius. For prac-
tical applications in yeast, we recommend constructing a
control strain to observe the transit time τD of monomeric
GFP in the yeast cytosol. From combination of equations
[4] and [5], we see that change in τD is proportional to
change in molecular radius, which goes as the cube root
of molecular weight (assuming spherical geometry). By
comparison of τD of the protein of interest to τD of GFP,
which has a known molecular radius, the size of the dif-
fusing complex can be estimated.

3.5. Fluorescence
Cross-Correlation
Spectroscopy (FCCS)

While FCS is the starting point for any fluorescence fluctuation
study and gives useful information on complex size, mobility, and
mobile concentration (Fig. 17.2), in reality it must be expanded
to truly identify heteroprotein interactions. One channel fluctu-
ation data can be treated with N&B or PCH analysis to observe
homotypic protein interactions (see Section 3.6). To detect the
strength of interactions among two different proteins in live cells,
some form of two-color analysis must be applied, for example,
FCCS or two-color N&B. In FCCS, the basic concept is the same
as FCS, but in this case two spectrally distinct AFPs are used.
Their individual fluctuations are analyzed and cross-analyzed to
detect co-diffusion, and thus interaction, of the signaling pathway
components (Fig. 17.2). GFP and mCherry form one effective
pair of AFPs that can be used together for FCCS measurements
in live yeast (28, 34, 35).

(1) Steps 1–3 of Section 3.4 are followed. Take special care
to find cells from imaging with as few scans as possible to
minimize photobleaching of AFPs prior to obtaining FCCS
data. We typically use 488 and 561 nm excitation for GFP
and mCherry, respectively, separate emission with a 565LP
emission dichroic and collect GFP and mCherry emission
through 505–540 BP and LP580 filters, respectively.

(2) The individual fluorescence traces of the individual chan-
nels are autocorrelated and fit as discussed in Sections
3.4.5 and 3.4.6.

(3) The cross-correlation of the channels is calculated from
equation [6],
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G(τ ) = 〈IG(t) · IR(t + τ )〉
〈IG(t)× IR(t)〉 [6]

where G and R represent green and red channels,
respectively.

(4) From the amplitudes of the curves, the number of green
and red particles is used to calculate the number of bound
species (equation [7]) (36), where NGT = γ /(G0Green −
1), for example. Ncc is defined similarly by the inverse
amplitude of the cross-correlation curve. Importantly, the
factor Q is used to correct for spectral leakage of green
fluorescence into the red channel. This parameter must
be accurately determined and taken into account to avoid
false-positive cross-correlation results due to cross-talk,
most notably from the green probe into the red emission
channel (see Note 10).

Nbound = NGT(NRT +Q ·NGT)
Ncc

−NGT ·Q [7]

(5) We highly recommend employing a negative control
to verify that observed cross-correlation in experimen-
tal samples is not due to spectral cross-talk. This can be
accomplished by measuring cross-correlation in a yeast
strain co-expressing cytosolic GFP and mCherry. Better
yet, if possible, a biological control can be implemented
where a mutation is made to one of the proteins that has
been shown biochemically to reduce the interaction. For
example, a SAM-domain mutation in Ste50 is known to
disrupt the interaction of Ste50 and Ste11 (37). We find
that this mutation also disrupts the in-vivo cross-correlation
(Fig. 17.2c). Likewise, we recommend employing a posi-
tive control, such as linked GFP-mCherry, as a compari-
son point for strength of interactions in other samples. We
find that even with a linked construct, we observe much
less than 100% cross-correlation, likely due to bleaching or
incomplete expression or folding of the AFPs (28, 34).

3.6. Detection
of Homotypic
Interactions Through
One Color Number,
Brightness Analysis,
and the Photon
Counting Histogram

Oligomerization of proteins plays a key role in many cellular sys-
tems. Proteins may oligomerize in order to assume an activated
or inhibited state or to form structural polymers. While struc-
tural and biochemical studies may detect the ability of a protein to
oligomerize at relatively high concentrations, it is often difficult to
know if oligomer formation occurs in native settings and at native
expression levels. The photon counting histogram (PCH) and the
more computationally straightforward N&B analysis are biophys-
ical techniques that enable quantitative observation of oligomer-
ization in live cells.
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The development of moment-based methods (also known as
number and brightness analysis, N&B) for the determination of
molecular brightness was begun by Quian and Elson in the early
1990s (38, 39). The basic concept has not changed significantly
since that time, though several studies have expanded on the orig-
inal principles. For a subset of this work, see (40–42). The tech-
nique discussed here makes use of the first two moments: the
average and the variance (see Fig. 17.3a). Following the pro-
tocols discussed above, we start with fluctuation data consisting
of a single- or dual-color time trace of photons and their arrival
times.

(1) If a photon counting intensity trace contains only molecular
diffusion and shot noise, the average molecular brightness
is defined as follows:

〈ε〉 = σ 2 − 〈I 〉
γ〈I 〉 =

∑
i

fiεi [8]

where σ 2 is the variance of the intensity in time, I is
the average intensity of that signal, γ is a factor account-
ing for the shape of the focal volume (see Note 9), fi is
the fractional intensity of species i, and εi is the molec-
ular brightness of that species. The molecular brightness
is defined as the counts per sampling time per molecule
at the center of the confocal focus. This is usually repre-
sented as counts per second per molecule (CPSM). The
intensity is simply the product of the molecular bright-
ness and the average number of molecules in the focal
volume.

(2) If only a single species is present, the number of molecules
is calculated as follows:

N = 〈I 〉〈ε〉 =
γ 〈I 〉2

σ 2 − 〈I 〉 . [9]

Concentration can then be calculated from the num-
ber of molecules given that the size of the focal volume
is known (see Section 3.4.8) (see Note 11).

(3) Once the molecular brightness is known, it is straight-
forward to calculate many biologically relevant parame-
ters. The most straightforward of these is an estimation
of oligomeric state and heterogeneity. First, if the average
molecular brightness is greater than the brightness of the
monomeric species, there must be some oligomerization.
In the case of dimerization, one can typically approximate
the brightness of the dimer as double the brightness of
the monomer. In this case the relative concentrations of
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Fig. 17.3. N&B and PCH analyses. (a, b) Simulated data of monomer and tetramer diffusing particles. The average
brightness can be calculated directly from the data using N&B (a) or (b) by calculating and fitting a photon counting
histogram (PCH). (c) Fit of data from live yeast cells with N&B to find average brightness of controls, along with Ste11
and Ste50. (d) Representative photon histograms and fits for controls, and average brightness values for controls and
Ste11 and Ste50 fit using PCH (adapted from Ref. (34), with permission). Note that one-component fits with N&B and PCH
are shown here, and these values represent average brightness for Ste11 and Ste50. (e) Application of two-color N&B to
observe interaction of GFP and mCherry in live yeast. Dual-color brightness divided by brightness of the red species is
plotted for linked GFP-mCherry and a yeast strain co-expressing cytosolic GFP and mCherry. εgr/εr is an estimation of
% interaction and is consistent with FCCS results between monomeric GFP and mCherry in live yeast cells (28, 34) (see
Section 3.5.5). Note that εgr/εr is not zero for the negative control due to spectral cross-talk. (f) Example of 2D PCH
histogram, fit, and average results for various yeast strains (adapted from Ref. (34), with permission). Ste11 and Ste50
are present in a complex with 2:1 stoichiometry, while Ste50 also exists as a high order oligomer in a complex without
Ste11. A SAM-domain mutant of Ste50 disrupts the interaction and the oligomerization.
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the monomer and dimer can easily be determined from the
average brightness as follows:

Nm = 〈I 〉 (〈ε〉 − εd)

ε2
m − εmεd

[10]

Nd = 〈I 〉 (〈ε〉 − εm)

ε2
d − εdεm

[11]

where the subscripts m and d denote monomer and dimer
species. This can be expanded to include higher order
oligomers, with some limitations (see Note 12).

(4) In addition to diagnosis of oligomerization, the average
brightness is sensitive to the immobile species as well as
the background in a measurement. One can show that the
background has zero molecular brightness. Nevertheless,
it contributes to the total intensity observed and therefore
influences the fractional intensity from equation [8]. The
fractional intensity of the immobile and background signal
is then given by

f immobile = 〈ε〉mobile − 〈ε〉
〈ε〉mobile

. [12]

The average molecular brightness of the mobile species
must be known beforehand.

Obviously, most biological systems do not fit perfectly
into the two state solution above. It would be useful to
have an analysis method which contains more flexibility in
the measurement of complex equilibrium. Two basic solu-
tions have been proposed in the literature. The first is to fit
the intensity histogram (43, 44) and the second is to ana-
lyze higher order intensity moments (40). We will describe
the first approach because of its historical context and rel-
ative simplicity. In 1999, two algorithms were published
for intensity histogram analysis: the photon counting his-
togram (44) and fluorescence intensity distribution analysis
FIDA (43). While these algorithms differ in the details of
calculation they contain essentially the same basic elements
(45). We will describe the PCH method here.

If shot noise did not exist and the confocal volume
was sharply bounded, the intensity histogram of photon
events in a given bin size would have multiple peaks corre-
sponding to the different oligomers present. Each of these
peaks would be distributed according to the distribution
in the number of molecules in the focus. This distribution
is Poisson for most systems. In reality, this distribution
is further broadened by the diffuse nature of the focal
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volume and shot noise (Fig. 17.3b). The final distribu-
tion is often referred to as “super-Poisson.” Any method-
ology for analyzing the intensity histogram must take these
noise contributions into account. The PCH method begins
by calculating the intensity histogram for a single parti-
cle based on all of its possible positions within the focal
volume, its molecular brightness, and shot noise. Multiple
particle histograms are then calculated by convolving the
single particle histogram with itself. The final PCH is cal-
culated by weighting the multiple particle histograms by
the probability of having each possible number of particles
in the focal volume given an average concentration. Mul-
tiple species are convolved with one another to obtain a
final PCH. This curve is compared with the experimen-
tal intensity histogram and then updated using a tradi-
tional nonlinear least squares approach to obtain a fit of the
data (44).

The mathematics of PCH analysis is complicated (44,
46) and is not presented here. We recommend that
beginning users employ a commercially available package
(see Section 2.2.4). We further recommend that a control
series of monomer, dimer, and trimer species are examined
prior to making conclusions about the oligomerization of
the protein of interest (28, 34) (examples – Fig. 17.3c, d).

(5) Construct a series of yeast controls, expressing either 1x,
2x, or 3x linked cytosolic GFP. Using identical acquisition
settings, acquire FFS data for each.

(6) Fit data to a single component, using a histogram bin time
to generate the PCH that is less than ∼1/4 the τD of the
protein. Use of a histogram bin time that approaches the
diffusion time of the molecule will lead to underestimation
of molecular brightness (47).

(7) Using identical acquisition, the average molecular bright-
ness of the species of interest may be compared to the
monomeric, dimeric, and trimeric controls. If desired, the
PCH can be fit to multiple species to extract an oligomeric
model of the system (see Note 12).

3.7. Detection of
Hetero-oligomeric
Interactions Through
Two-Color PCH and
Number and
Brightness Analysis

Given the success of single-channel brightness analysis, it is inter-
esting to extend this to the analysis of dual-color intensity data.
The resulting 2D histogram (Fig. 17.3f) will contain information
about coincidence of single molecules in the two channels as well
as molecules that are confined to a single channel (10, 48, 49).
Once again, there are simplified, moment-based methods (N&B)
(5) as well as distribution fitting methods for this analysis. For this
protocol, we assume we are starting with a dual-color time trace
of photon events and arrival times. The same data as is used for
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FCCS can generally be used for two-color brightness analysis. We
present details of two-color moment analysis (5) and a protocol
for 2D PCH. The mathematics of 2D PCH is not presented here.

(1) For moment analysis, we define a dual-color brightness
based on the covariance of the two signals:

〈ε〉gr =
σ 2

gr

γ
√
〈I 〉g〈I 〉r

=
∑

i

√
fi, gfi, rεi, gεi, r . [13]

Here g and r denote the green and red channels. Other
colors can, of course, be used but we have chosen to use
green and red to denote GFP and mCherry. The γ function
is the same as in the single-color analysis and σ gr is the
covariance of the green and red channels.

In the absence of cross-talk and interaction, the dual-
color brightness is zero. Typically cross-talk occurs from
the green to the red channel, but not vice versa. We rec-
ommend similarly to FCCS, to start with a negative con-
trol of non-interacting green and red species, for example,
monomeric GFP and mCherry. With no particles interact-
ing, the dual-color brightness due simply to spectral cross-
talk is given by

〈ε〉gr, independent = 〈ε〉gβ
√
〈I 〉g
〈I 〉r , [14]

where β is the ratio of the green species intensity in the red
channel to the green species intensity in the green chan-
nel. This is the minimum dual-color brightness that can be
observed.

(2) Any interaction will present itself as an increase in
this parameter. First, independently find the molecular
brightness of the red and green species, as discussed in
Section 3.6. Then it is straightforward to calculate the
number of interacting species:

Nbound =
〈ε〉gr

√
〈I 〉g〈I 〉r
〈ε〉gεr

− β〈I 〉g
εr

[15]

where εr is the brightness of the red species in the red
channel and 〈ε〉g is the average brightness of the green
channel.

(3) The number of unbound green species is then given by

Nunbound,g =
〈I 〉g
〈ε〉g −Nbound [16]
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Finally, the number of unbound red species is given by

Nunbound,r =
〈ε〉r〈I 〉r − β2 〈ε〉2g Nunbound,g −

(
β〈ε〉g + εr

)2
Nbound

ε2
r

[17]

Fig. 17.3e shows an example of two-color N&B analysis
applied in live yeast.

In its simplest form, two-color N&B is very similar to
cross-correlation, in that it reports concentrations of each
species and the concentration of bound species. It is more
straightforward and more easily applied to images (5) rel-
ative to cross-correlation and less dependent on the shape
of the focal volume. In addition, if some restrictions are
added to the analysis, such as the brightness of the individ-
ual green and red species, two-color N&B will report the
stoichiometry of the bound complex.

(4) Similar to two-color moment analysis, a 2-dimensional his-
togram can be generated of coincident photon events in
each channel per bin time (see Section 3.6.6 for discussion
of bin sizes). An example is shown in Fig. 17.3f.

(5) Least squares fitting is used to find the brightness of each
species in each channel (Section 2.2.4). This analysis will
report on the stoichiometry of each individual species and
the bound complex.

(6) Similar to multi-species PCH, while 2D PCH is very pow-
erful, statistics can be limited in live yeast cell applications.
We highly recommend first examining positive and neg-
ative controls to demonstrate the ability to detect inter-
actions and find expected bleedthrough percentages for
non-interacting particles. When possible, fitting is markedly
improved if restraints can be imposed. For example, if one
knows from FCCS analysis of the same data that ∼ 50% of
the red particles are interacting and one knows from one-
color PCH or N&B analysis that the green probe is always
monomeric, these restrictions can be added to the fitting
procedure.

In summary, there are multiple methods to detect interac-
tions in live yeast cells. We find that acceptor photobleaching is a
reliable and relatively simple method for examining if close spa-
tial interactions are present. FCS reports on the concentration
and relative mobility of diffusing species, while PCH and single-
color N&B report on the stoichiometry of homotypic interac-
tions. FCCS, two-color N&B, and 2D PCH are extensions of
these techniques that can be used to examine heterotypic inter-
actions and stoichiometry of interacting complexes. The method
most appropriate for a given application depends on the nature of
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the interaction and the mobility of the species of interest. We are
confident that continued work toward applying these techniques
in yeast will lead to significant advances in our understanding of
protein–protein interactions and will enable testing of hypotheses
and models of signaling pathways proposed based on genetic and
biochemical results.

4. Notes

1. We find that FFS examination of cells with an OD over
0.8–1.0 results in increased autofluorescence and increased
propensity for GFP and mCherry to photobleach.

2. We find that liquid cultures made from cells maintained on
plates for a period of time longer than 10 days result in
increased autofluorescence and increased photobleaching
of GFP and mCherry.

3. Cells may be maintained on glass slides for 20–30 min. We
have found from imaging and FFS studies that after that
time frame, the growth rate of cells decreases and mobility
of proteins inside the yeast cytosol decreases. For studies
requiring longer acquisition times, use agarose pads (25).

4. Care must be taken to avoid pressing the glass surfaces
together too harshly. This can result in ruptured cells.
The presence of ruptured cells can normally be observed
through the eye-pieces of a microscope using a high mag-
nification objective. Attempts to use FFS on these cells will
be unsuccessful.

5. Red autofluorescent proteins are less photostable than
GFP. For two-color studies, including FRET and FCCS,
normally 488 nm excitation is used to locate cells for
corresponding measurements. Red AFPs also will absorb
488 nm light, albeit at low efficiency. Care must be taken
to acquire as few images as possible prior to FFS or FRET
acquisition to limit photobleaching.

6. We find that GFP has very little, if any, absorption of
561 nm light. Bleaching of GFP by the red laser should
not be an issue.

7. A major assumption of calculating FRET is the value of the
orientation factor κ2 (50). Most FRET calculations assume
random orientations of the dipoles of donor and acceptor
relative to one another over the time scale of the energy
transfer, and a corresponding average κ2 value of 2/3. For
large AFPs, orientational mobility will be low, causing large
uncertainty due to the 2/3 approximation for κ2.
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8. To limit photobleaching in singe point FCS and FCCS, we
recommend acquiring 3–5 measurements, each 3–6 s, per
cell. This allows for exclusion of data when the cell moves
in the middle of data acquisition, for example. For an exam-
ined protein or protein–protein interaction, data can be
averaged after acquisition to improve statistics.

9. For a sufficiently small confocal pinhole, the value of γ is
typically taken to be 0.3536. For two-photon excitation,
the value is ∼0.0760 (51). While membranes in principle
represent a 2D surface, and therefore should have a higher
gamma value than would be for 3D diffusion, recent work
has shown that the observed gamma value does not signif-
icantly change (Paul Wiseman, personal communication).

10. The value of Q corresponding to donor emission
bleedthrough into the acceptor channel can be approxi-
mated based on the respective emission profiles, combined
with the transmission profiles of the emission filters used.
It is highly dependent on the AFPs used and the filters
chosen. Using a Zeiss confocor 3, the GFP/mCherry pair,
and a LP580 emission filter for mCherry, we estimate Q to
be ∼5%.

11. The validity of brightness measurement is highly dependent
on the shape of the confocal volume. If the pinhole is set
to a value larger than 1.0 airy units or the molecules within
the excitation are saturated (typically by population of the
triplet state), the relative brightness will change anoma-
lously.

12. Equations [10] and [11] and PCH analysis can easily be
expanded to include higher order oligomers. However, in
our experience we are not able to acquire sufficient statis-
tics in live yeast cells to freely fit to more than two species.
Thus, while one-color N&B, two-color N&B, and PCH
are valuable for determining if an oligomer exists, in order
to analyze heterogeneous populations of oligomers, one
must make assumptions and fix the brightness of certain
populations prior to fitting. However, we find that it is pos-
sible to analyze heterogeneous oligomer populations with
2D-PCH (see Section 3.7).
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Chapter 18

Nutritional Control of Cell Growth via TOR Signaling
in Budding Yeast

Yuehua Wei and X.F. Steven Zheng

Abstract

Cell growth is highly regulated and its deregulation is related to many human diseases such as cancer.
Nutritional cues stimulate cell growth through modulation of TOR (target of rapamycin) signaling path-
way. At the center of this pathway is a large serine/threonine protein kinase TOR, which forms two
distinct functional complexes TORC1 and TORC2 in a cell. TORC1 senses the environmental nutrient
quality/quantity and transmits the growth signals to multiple effectors to regulate a broad spectrum
of biological processes including translation initiation, ribosome biogenesis, autophagy, nutrient uptake,
and metabolism. By using budding yeast as a model, recent studies began to elucidate the complexity of
the TOR signaling pathway.

Key words: TOR (target of rapamycin), signal transduction, budding yeast, cell growth, nutrient,
nutrition, ribosome biogenesis, autophagy, protein translation.

1. Introduction

Cell growth is defined by the increase in cell mass. Cells upregu-
late macromolecular synthesis to increase cell mass in response to
good nutritional conditions while down-regulate it when nutri-
ents are limiting (1, 2). The balance of cell growth is essen-
tial for all organisms to adapt to the surrounding environment.
Cell growth is also required for cell proliferation because cells
divide only when certain cell size is obtained. During develop-
ment, higher organisms elegantly control cell growth and prolifer-
ation for organ formation. Tumors can emerge when cell growth
goes uncontrolled (3). Despite the apparent significance, how-
ever, the mechanisms underlying growth control remained poorly
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understood until recently. How does a cell sense and integrate
nutritional cues from the surrounding environment to commit
cell growth? Specifically, what are the signaling pathways involved
in balancing the macromolecular synthesis and degradation in a
cell? In the past decade or so, the target of rapamycin (TOR)
pathway has been established to be the central regulator of cell
growth in all eukaryotic cells. Studies from budding yeast, the
simplest eukaryotic model, contribute significantly to the under-
standing of TOR function and nutrient signaling (4). The TOR
signaling cascade is comprised of a large serine/threonine protein
kinase called TOR and a broad spectrum of regulators and effec-
tors involving in protein translation, gene transcription, ribosome
biogenesis, protein degradation, and autophagy. The versatility
of the TOR pathway in regulation of this wide range of cellular
responses is in part not only due to its multi-level effectors, but
also, importantly, due to the versatile and dynamic regulation of
TOR subcellular localization (5).

2. TOR Kinase Is
the Central
Controller of Cell
Growth TOR proteins are large serine/threonine protein kinase belong-

ing to the kinase family known as phosphatidylinositol kinase-
related kinases (PIKK) (6). TOR proteins are highly conserved
from budding yeast (Tor1 and Tor2) to mammal (mTOR) (7).
Like other members of this kinase family, TOR protein contains
a C-terminal kinase domain resembling phosphatidylinositol (PI)
kinase, though no lipid substrate has been reported (Fig. 18.1a).
In the N-terminus, there are about 40 tandem repeats of 37–43
amino acids termed HEAT repeats (named after the four pro-
teins containing the similar sequence: huntingtin, elongation fac-
tor 3, the A subunit of PP2A, and Tor). The HEAT repeats
are thought to serve as a platform for multiple protein–protein
interactions. TOR protein contains a FKBP12-rapamycin binding
(FRB) domain in adjacent to its kinase domain, a point muta-
tion (S1972I) in which blocks the inhibition by rapamycin (8).
TOR forms two functionally distinct complexes (9). In yeast,
TOR complex 1 (TORC1) contains Kog1, Lst8, Tco89, and
either Tor1 or Tor2; TOR complex 2 (TORC2) contains Avo1,
Avo2, Avo3, Bit6, Lst8, and Tor2 (Fig. 18.1a). Interestingly,
only TORC1 is sensitive to rapamycin. Rapamycin first binds to its
intracellular receptor FKBP12 (FK506-binding protein 12 kDa),
then the FKBP12–rapamycin complex binds to FRB domain of
Tor1/2, therefore inhibiting TOR kinase activity (8). The rea-
son why FKBP12–rapamycin does not interact with TORC2 is
not clear. Two TOR complexes control distinct physiological
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Fig. 18.1. TOR is the central regulator of cell growth. (a) The structural organization of two TOR complexes. TOR proteins
are large Ser/Thr protein kinases belonging to PI3K-related kinase (PIKK). TOR contains about 40 HEAT repeats at its
N terminus and a kinase domain at its C terminus. HEAT repeats mediate TOR interaction with multiple proteins to
form distinct two complexes TORC1 and TORC2. Adjacent to the kinase domain is the FKBP12-rapamycin binding (FRB)
domain, which mediates rapamycin inhibition of TORC1. Flanking the FRB and kinase domains are FAT (FRAP/mTOR, ATM,
TRRAP) and FATC (FRAP/mTOR, ATM, TRRAP C-terminal) domains, which are common to PIKKs. (b) TORC1 regulates
cell growth by controlling the balance between global biosynthesis and turnover in a cell. TORC1 links environmental
nutrients to cell growth by promoting macromolecular biosynthesis such as protein translation and ribosome biogenesis
while antagonizing global turnover pathways such as autophagy. TORC1 also represses TCA and NCR transcription and
inhibits stress responses.

processes in response to nutrient cues (7). TORC1 regulates
growth-related functions including protein synthesis, nutrient
transport and utilization, ribosome biogenesis, autophagy, and
stress responses (Fig. 18.1b). TORC2 is relatively less stud-
ied and is thought to control actin polarization in a rapamycin-
insensitive manner.

3. How Does TOR
Regulate Cell
Growth?

Cell growth is a balance between macromolecular biosynthesis
and turnover. In response to the extracellular growth stimuli,
cells promote growth through global biosynthesis. In contrast,
when environmental nutrients become scarce, cells cease growth
and assume global turnover. TOR is the central controller of
this balance (Fig. 18.1b). TORC1 promotes the macromolec-
ular biosynthesis at least in part through translation initiation
and ribosome biogenesis. At the same time, TORC1 antagonizes
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macromolecular turnover such as autophagy, represses NCR
(nitrogen-catabolite repression) and TCA (tricarboxylic acid
cycle) transcription, and inhibits stress responses. When extracel-
lular nutrients are less available, TORC1 is inhibited. Meanwhile,
cells upregulate autophagy and uptake of nutrients and activate
NCR and TCA transcription to provide cells with intracellular
nutrients to adapt to poor nutrient condition. At the same time,
TORC1 activates stress responses to cope with the stresses caused
by starvation. Therefore, the balance between macromolecular
biosynthesis and turnover is finely tuned by TORC1.

3.1. Regulation of
Translation Initiation
by TORC1

Protein translation is highly regulated and inhibition of TORC1
results in marked decrease in translational initiation (10). In mam-
malian cells, mTORC1 robustly regulates this process through
two well-studied effectors: S6K1 and 4EBP1 (11). mTORC1
phosphorylates S6K1, which in turn phosphorylates ribosomal
protein S6, a subunit of the 40S ribosome, therefore promot-
ing protein translation. mTORC1 also phosphorylates 4EBP1,
which sequesters the translation initiation factor eIF4E, thereby
preventing the formation of the competent translational initia-
tion complex. In yeast, the AGC (protein kinase A, G, and C)
kinase Sch9 is believed to be the functional homolog of S6K1
(12). Sch9 is phosphorylated by TORC1 directly at multiple sites
and is required for phosphorylation of ribosomal protein Rps6,
the yeast homolog of mammalian S6. Importantly, Sch9 regu-
lates the translational initiation for protein synthesis in addition
to its regulation of ribosomal biogenesis at the transcriptional
level. The yeast protein Epa1 is probably homologous to 4EBP1,
since it also inhibits translational initiation through binding to
the highly conserved eIF4E. However, no studies have demon-
strated a direct link between Epa1p and TORC1 in yeast. Disrup-
tion of EPA1 gene results in partial resistance to rapamycin, sug-
gesting a conserved role of TORC1 in regulation of translational
initiation (13).

TORC1 also regulates several other translational initiation
factors, for example, eIF4G and eIF2. Degradation of eIF4G
is induced upon rapamycin treatment (10). TORC1 may some-
how protect such degradation by an unknown mechanism. But
whether such degradation is simply a result of translational inhi-
bition or a regulatory mechanism is not clear. GTP-loaded eIF2
is responsible for recruiting methionyl-tRNA to the first codon of
an mRNA. Phosphorylation of the alpha-subunit of eIF2 (eIF2a)
by Gcn2 disables such recruitment. Interestingly, Gcn2 is a phos-
phoprotein whose phosphorylation depends on TORC1. Upon
phosphorylation, Gcn2 kinase activity is inhibited, resulting in
eIF2 dephosphorylation and activation, leading to translational
initiation (14).
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3.2. Regulation of
Ribosome Biogenesis
by TORC1

One major target of TORC1 regulation is ribosome biogene-
sis (15, 16). Ribosome biogenesis is dedicated to synthesize the
translational machinery and is tightly coupled to cell growth.
In yeast, TORC1 regulates transcription of 5S, 5.8S, 18S, and
25S ribosomal RNAs (rRNAs) and 137 ribosomal protein (RP)
genes by all three major RNA polymerases (Pols) (15, 17–21),
which account for approximately 95% of total transcription in
a cell (22). Other than transcription of the ribosome compo-
nents, TORC also controls ribosome maturation by regulating
expression of and more than 200 Ribi (ribosome biogenesis) reg-
ulons involved in processing and modifying RPs, rRNAs, tRNAs,
assembling, and nuclear exporting of ribosomes as well as ribonu-
cleotide metabolism (23). The huge consumption of the cell’s
resources demands a tight regulation in response to nutrient and
energy conditions (20).

Ribosomal protein (RP) genes are transcribed by RNA poly-
merase II (Pol II). TORC1 promotes transcriptions of RP genes
through regulation of several transcription factors. The antag-
onist interaction of the fork head DNA-binding protein Fhl1
with its co-activator Ifh1 and co-repressor Crf1 appears to be
regulated by TORC1: TORC1 promotes Ifh1–Fhl1, whereas sup-
presses Crf1–Fhl1 complex formation (24). TORC1 likely reg-
ulates this interaction switch through inhibiting Yak1-depenent
phosphorylation and nuclear translocation of Crf1, though the
link between TORC1 and Yak1 is still elusive. Ribosome bio-
genesis is still regulated by TORC1 in absence of Fhl1, indicat-
ing other unknown mechanisms are involved. Sfp1 is a poten-
tial transcription factor specifically regulates RP gene and Ribi
gene transcription (23). TORC1 interacts with and directly phos-
phorylates Sfp1, which promotes its nuclear translocation and
binding to RP gene promoters (25), resulting in RP gene tran-
scriptional activation. The AGC-family kinase Sch9 is also phos-
phorylated by TORC1 at multiple sites and regulates RP and Ribi
gene transcription independent of Fhl1 and Sfp1 (12, 23). How
Sch9 relays TORC1 signals to RP gene and Ribi gene transcrip-
tion is not known. Remarkably, Sch9 is found at the promoter of
several osmo-responsive genes (26), hinting that Sch9 may reg-
ulate transcription of RP and Ribi genes at the chromatin level.
Other than transcriptional activators, chromatin remodeling fac-
tors such as RSC complex, the Rpd3 histone deacetylase, and
the Esa1 histone acetylase are also critical for RP gene transcrip-
tional regulation by TORC1 (27, 28). How TORC1 regulates
the recruitment of such chromatin remodeling factors to the RP
gene promoters are exciting areas to explore.

TORC1 regulates rRNA transcription by directly target-
ing to rDNA chromatin and activating the transcription factors
and/or chromatin remodeling factors (5) (Fig. 18.2). TORC1



312 Wei and Zheng

Fig. 18.2. TORC1 regulates diverse effectors in a cell. Nutrients regulate cell growth via TORC1 (dark rectangle). In
yeast, TORC1 senses nutrients through amino acid and glucose transporters through unknown mechanisms. TORC1
is localized in both cytoplasm and nucleus to regulate a broad range of biological processes including translational
initiation, ribosome biogenesis, autophagy, nutrient uptake, and metabolism. One common mechanism of transcriptional
regulation by TORC1 is the control of cytoplasm–nucleus shuttling of transcription factors such as Gln3 and Sfp1. Another
mechanism is the cytoplasm–nucleus shuttling of TORC1 itself and the binding to regulated-gene promoter (35S rDNA
and 5S rDNA), whereby regulating RNA polymerases (irregular shape) activity through phosphorylation of transcriptional
factors (such as Maf1) or modulating the chromatin remodeling factors (such as Rpd3).

dynamically shuttles between the nucleus and the cytoplasm. In
response to good nutrient conditions, TORC1 is localized in the
nucleus and binds to 35S rDNA promoter and 5S rDNA gene
to promote their transcription by Pol I and Pol III, respectively
(17, 18). Under conditions of nutrient starvation or rapamycin
treatment, TORC1 delocalizes from the rDNA chromatin and
exits from the nucleus, which results in rRNA transcription inhi-
bition. The concomitant binding of TORC1 to 35S rDNA pro-
moter and 5S rDNA gene argues for a role of TORC1 in coreg-
ulation of Pol I and Pol III for coordinated rRNA synthesis (17).
How does TORC1 regulate Pol I- and Pol III-dependent tran-
scription at the rDNA chromatin? Kinases associated with genes
tend to regulate transcription factors through phosphorylation.
Maf1 is a phosphoprotein, when dephosphorylated by rapamycin
treatment or nutrient starvation, enters the nucleolus and asso-
ciates with Pol III to repress 5S rDNA and tRNA genes tran-
scription. With good nutrients available, however, TORC1 tar-
gets to 5S rDNA gene and phosphorylates Maf1, preventing Maf1
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from accumulation in the nucleolus and association with Pol III-
transcribed genes (17). Rrn3 is an essential Pol I initiation fac-
tor, whose association with and activation of Pol I is regulated
by TORC1 (29). It is conceivable that Rrn3 is phosphorylated
by TORC1 at the 35S rDNA promoter. Supporting this hypoth-
esis, the mammalian Rrn3 counterpart TIF-IA is also phospho-
rylated in a TORC1-dependent manner (30). In addition to tar-
geting RNA polymerases for transcriptional regulation, TORC1
is also implicated in modulation of rDNA chromatin structure.
Nutrient starvation or rapamycin treatment results in nucleolus
contraction and rDNA condensation, occluding Pol I loading on
rDNA. Specifically, TORC1 inhibition causes rapid loading of
Rpd3-Sin3 histone deacetylase (HDAC) and condensin complex
to the rDNA chromatin, which may silence the rDNA transcrip-
tion (31). It is therefore interesting to investigate whether Rpd3-
Sin3 or condensin is targeted for phosphorylation by TORC1.

3.3. TORC1
Antagonizes
Macro-autophagy
in Growing Cells

In good nutrient condition, TORC1 promotes cell growth by
positively regulating several processes for biosynthesis. When
shifted to poor nutrient condition, cells rapidly cease macro-
molecular synthesis and assume global turnover to shrink their
transcriptional and translational machineries. One such global
turnover pathway is macro-autophagy (briefly autophagy), a pro-
cess of controlled self-digestion (32). In yeast, autophagy is
believed to generate internal supply of nutrients from degrad-
ing ribosomes, bulk of proteins, and excessive organelles, allow-
ing cells to adapt to and survive extended periods of starvation.
TORC1 negatively regulates induction of autophagy (32, 33).
Atg1 is a key kinase required for induction of autophagy when
complexed with Atg13. Upon TORC1 inhibition, ATG13 is
rapidly dephosphorylated, thereby increasing its interaction with
Atg1 kinase. The formation of the Atg1–Atg13 complex then
recruits a serial of additional autophagic proteins such as Atg11
and Atg17, resulting in the formation of a double-membrane
compartments called autophagosome (34). The autophagosome
carrying the engulfed cytosolic mass is finally fused into the
lysosome or vacuole for degradation, which generates carbon
and nitrogen sources necessary for rapid adaptation to the envi-
ronment (32). The mammalian Atg1 and Atg13 counterparts
have been shown to be directly phosphorylated by mTORC1
(35); however, whether this is true in yeast remains unknown.
TORC1 also controls autophagy via transcriptional induction of
autophagic genes. One example is the essential gene APG14.
Inhibition of TORC1 by rapamycin or nutrient limitation results
in about 20-fold transcriptional induction of APG14 via Gln3,
a transcriptional factor directly phosphorylated by TORC1 (36).
Thus TORC1 likely controls autophagy at multiple levels, but the
detailed mechanisms remain poorly understood.
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3.4. TORC1 Regulates
Nutrient Uptake and
Metabolism

Unlike multicellular eukaryotes, yeast cells are unicellular organ-
isms which need to respond directly to a variety of environment
cues. When and what kind of nutrients will be transported into the
cell are finely regulated processes. Accumulating evidences sug-
gest that TORC1 is the master regulator of nutrient uptake and
metabolism (Fig. 18.2). Nutrient availability, via TORC1, differ-
entially regulates the degradation of many nutrient transporters
(37, 38). With optimal nutrients available, many high-affinity,
substrate-selective permeases, such as histidine permease Hip1
and the tryptophan permease Tat2, are expressed and targeted
to the plasma membrane to pump in nutrients. At the same time,
TORC1 promotes the degradation of some broad-specificity per-
meases, such as the ammonia permease Mep2 and the general
amino acid permease Gap1, both of which are required to import
a broad spectrum of nutrients when nutrients become scarce.
Rapamycin or nutrient limitation causes the reverse phenomena:
degradation of the substrate-selective permeases whereas expres-
sion of broad-specificity permeases. Mechanistically, TORC1 pos-
itively regulates the phosphorylation of Npr1, which inversely
regulates many high-specificity and broad-specificity permeases
through the ubiquitin-mediated degradation pathway (39, 40).
However, the links between TORC1 and Npr1 and between
Npr1 and the permeases are yet to be elucidated.

TORC1 also regulates differential uptake and metabolism
of nutrients at the transcriptional level (15, 21). TORC1 inhi-
bition induces expression of several hundred genes involved in
nitrogen metabolism, glycolytic pathway, and TCA cycle. The
regulation of nitrogen-catabolite repression (NCR) genes is one
of the best studied among these processes (5). NCR genes
are involved in uptake and metabolism of non-preferred nitro-
gen sources such as urea and proline. NCR genes are normally
repressed and only induced when the environmental nitrogen
become scarce. TORC1 regulates the NCR gene transcription
through two GATA transcription factors: Gln3 and Gat1. During
growth in preferred nitrogen sources, phosphorylation of Gln3
by TORC1 renders Gln3 cytoplasmic retention by anchoring to
Ure2. Upon rapamycin treatment or amino acid starvation, how-
ever, Gln3 is targeted for dephosphorylation by PP2A or Sit4,
resulting in its translocation to the nucleus and induction of
NCR-sensitive genes (41, 42). TORC1 also prevents the nuclear
translocation of the GATA transcription factor Gat1 (43), but
the regulatory details are not well studied. The glycolytic path-
way and the TCA cycle produce metabolic intermediates such
as alpha-ketoglutarate, required for de novo synthesis of some
amino acids, such as glutamine and glutamate. Genes involved
in this pathway are induced in response to starvation, which is
believed to compensate for the lack of nitrogen source (44). With
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ample nitrogen source, however, TORC1 represses these genes by
antagonizing the nuclear translocalization of the heterodimeric
transcription factors Rtg1/Rtg3. Similar to Gln3, Rtg1/Rtg3
complex is sequestered in the cytoplasm when Rtg3 is hyper-
phosphorylated, while translocates into the nucleus upon dephos-
phorylation. Regulation of Rtg1/Rtg3 by TORC1 requires both
Msk1 and Rtg2: Msk1 inhibits Rtg1/Rtg3 nuclear translocation,
while Rtg2 inhibits Msk1 (44). Upon TORC1 inhibition, Rtg2
enhances the association with the Rtg1/Rtg3 inhibitor Msk1,
which releases Rtg1/Rtg3 into the nucleus to induce their tar-
get gene expression. Both Msk1 and Rtg3 are phosphorylated
in good nutrient condition and dephosphorylated in poor nutri-
ent condition. However, whether TORC1 is directly involved in
these events and what are the phosphatases involved remain unan-
swered questions.

3.5. TORC1
Negatively Regulates
Stress Signaling

Starvation is an environmental stress to all organisms. In yeast,
starvation or TORC1 inhibition induces stress-responsive ele-
ment (STRE)-dependent transcription, which allows yeast cells
to adapt to starvation stress (45, 46). Msn2 and Msn4 are two
partially redundant zinc finger transcription factors responsible
for the STRE-dependent transcription. TORC1 promotes Msn2
and Msn4 phosphorylation and cytoplasmic localization. Glucose
depletion or rapamycin treatment results in their rapid dephos-
phorylation and nuclear translocation and the subsequent target
gene transcription. This transcriptional induction requires Rim15,
a protein kinase involved in G0 entry and life span regulation
(47, 48). Rim15 cytoplasm–nucleus shuttling is similarly regu-
lated by TORC1 as that of Msn2/4, and it has been shown
to be phosphorylated directly by the TORC1 substrate Sch9
(49). Thus, TORC1-Sch9-Rim15 constitutes a pathway that reg-
ulates stress-induced transcription through Msn2/4. Different
from Gln3, the PP1 but not Tap42 and Sit4 are involved in the
dephosphorylation of Msn2/4 (47, 50). There is still debate over
whether the 14-3-3 proteins are involved in retaining Msn2/4 in
the cytoplasm, and the link between Rim15 and Msn2/4 is still
missing. Detailed mechanisms of TORC1 regulation of Msn2 and
Msn4 may be more complex than previously thought.

4. How Does
TOR Sense
Environmental
Nutrients? TOR senses the quality and quantity of environmental carbon

and nitrogen sources. The regulatory pathways upstream of TOR
have been vigorously explored in mammalian cells. Despite the
clear understanding of the pathway by which insulin is regulating
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mTOR, consensus on nutrient regulation of mTOR has not been
reached (51). Amino acid signals may go through hVps34, a class
III PI3K (Phosphoinositide 3-kinase) to affect mTOR activity.
The Rag GTPases (Rag A/B/C/D) are also proposed to exert
amino acid regulation of mTOR. Glucose is generally believed to
regulate mTOR through AMPK (AMP-activated protein kinase),
which further impinges on TSC1/2 complex. In yeast, however,
little is known about how nutritional conditions are sensed and
how the information is transmitted to TOR. Nutrient uptake
is the first step of TOR regulation. In both mammalian and
yeast cells, amino acid and glucose transporters are involved in
regulation of TOR (51). In mammalian cells, for example, the
L-glutamine transporter SLC1A5 is critical for mTOR activation
(52). In yeast, Mep2 is required for ammonium uptake and cell
growth regulation, and the amino acid permease Ssy1 and glucose
sensors Snf3 are involved in cell growth regulation (53). Pre-
sumably, the extracellular nutrient availability is reflected by the
intracellular nutrients transported by these nutrient transporters.
The intracellular nutrients are further sensed by unknown mech-
anisms in yeast cells and then integrated into TOR pathway to
regulate cell growth. This model is consistent with that of mam-
malian cells, where amino acid and glucose signals are sensed and
transmitted to mTOR through Rag GTPases (Rag A/B/C/D)
and AMPK, respectively (51). Moreover, the intracellular levels of
ATP, phosphatidic acid, and inorganic polyphosphate are among
the potential regulators of mTOR activity (4), further suggesting
that intracellular nutrients are key to TOR regulation. In yeast
cells, the vacuolar compartment is an intracellular nutrient source
that regulates TOR activity. The vacuolar membrane-associated
EGO (exit from rapamycin-induced growth arrest) protein com-
plex, which consists of Ego1, Ego3, Gtr1, and Gtr2, could trans-
mit critical nutrient signals to TORC1 (54). It turns out that the
small GTPases Gtr1 and Gtr2 are homologous to mammalian Rag
GTPases (Rag A/B/C/D), which is critical for amino acid regu-
lation of mTOR (51).

5. Conclusion

Growth regulation remains an exciting area to explore in the
near future. By taking advantage of budding yeast as an excellent
genetic and cellular model, researchers have been able to examine
the mechanisms underlying the mystery of growth control (4).
Through a broad range of regulators and effectors, TOR senses
and transmits the environmental growth stimuli to machiner-
ies that regulate multiple aspects of growth. Growth control is
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intimately coupled to ribosome biogenesis and TORC1 turns out
to coordinate all three major RNA polymerases for this mission
(5). In addition to a myriad of regulators and effectors, emerg-
ing data suggest an even greater complexity of TOR regulation,
with TORC1 kinase subjecting not only to enzymatic activity
control but also to multi-faceted subcellular localization control
(5, 18). Understanding the detailed signaling pathway should
hold promise for treatment of many human diseases in the future.
Despite tremendous progress in understanding of TOR path-
way and clinical application of rapamycin for various human dis-
ease conditions, challenges are also emerging as our knowledge
expands (3). For example, cancer drug resistance as a result of
rapamycin administration hinders the clinical use of this drug.
Further dissecting the regulatory network of TOR will absolutely
contribute to the outcome of cancer treatment.
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Chapter 19

Computational Yeast Systems Biology: A Case Study
for the MAP Kinase Cascade

Edda Klipp

Abstract

Cellular networks and processes can be mathematically described and analyzed in various ways. Here, the
case example of a MAP kinase (MAPK) cascade is used to detail steps in the formulation of a system
of ordinary differential equations governing the temporal behavior of a signal transduction pathway
after stimulation. Different analysis methods for the model are explained and demonstrated, such as
stoichiometric analysis, sensitivity analysis, or studying the effect of deletions and protein overexpression.
Finally, a perspective on standards concerning modeling in systems biology is given.

Key words: Computational yeast systems biology, mathematical models, signal transduction, high
osmolarity glycerol (HOG) pathway, model development and analysis.

1. Introduction

The yeast Saccharomyces cerevisiae has been intensively used as
model system to understand basic cellular processes. This also
holds true for computational approaches. The basis for success-
ful modeling of various processes relies on one hand on an active
scientific community with exchange and common activities, and
on the other hand on standardization efforts as well as on the
availability of many experimental data and databases. S. cerevisiae
is also easy to cultivate, harmless, and genetically well defined. It is
interesting from the modeling point of view since it is an eukary-
otic system with many conserved signaling pathways and essential
processes in common with mammalian cells. Areas of intensive
systems biology approaches comprise among others the follow-
ing fields: metabolism, signaling, cell cycle, and gene expression
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regulation. It turned out that mathematical modeling can be very
helpful for discovering and understanding biological processes
and organization principles, e.g., (i) it forces the investigator to
formulate hypotheses and insights in a clear-cut and formal way;
(ii) it may allow for the representation and evaluation of system
compounds that are experimentally not accessible; (iii) it allows
to explore many scenarios or parameter values in less time and
cheaper than in experiments; (iv) it may help to extract structural
dependencies or mathematical and physical relation that are hard
to find by biological intuition. Still, mathematical models are no
magic wand, able to produce more information than provided by
the qualitative and quantitative experimental data.

In general, modeling requires abstraction and focus on impor-
tant aspects. First of all, modeling requires the clear definition of
the objective, i.e., a question or problem to be solved. This prob-
lem then determines which type of modeling approach might be
suitable and which type of modeling result may satisfy the investi-
gator. For example, in cell cycle modeling driving questions may
be as follows: (i) which protein–protein interaction network can
generate cell cycle oscillations? (ii) what is the role of cyclins and
cyclin-dependent kinases? (iii) is the set of known proteins and
their interactions sufficient to explain observed cycling and the
effect of mutants? (iv) what may be the role of critical network
features such as negative feedback? (v) what makes cell cycle pro-
gression irreversible? In the analysis of signaling pathways typ-
ical questions are as follows: (i) which proteins contribute to
the pathway, and is the known wiring able to bring about the
observed behavior? (ii) which parts of the pathways are responsi-
ble for modulating the amplitude or the duration of the signal?
(iii) which network motifs such as negative or positive feedback
are involved? (iv) is there crosstalk among various pathways and
how is this realized?

2. Methods –
How to Decide
on the Modeling
Framework In general, every abstracted description of the system that can be

challenged by specific queries could be a suitable model approach
for applied biological questions. Here, we will give an overview
on some established frameworks that are used given specific types
of data and trying to solve specific types of questions.

Please note that the following lists do not (and cannot) aim
for completeness.

– Protein–Protein Interaction (PPI) Networks: The informa-
tion used to construct protein-protein interaction networks
comprises signals for physical interaction of individual
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proteins, e.g., form yeast two-hybrid screens, co-
immunoprecipitation, Förster resonance energy transfer
(FRET), tandem affinity purification (TAP), and similar
techniques commonly used. The easiest way to construct
the network is to successively join next neighbors. The
possible output comprises static aspects such as neighbor-
hood relations, shortest paths from one protein to another,
clusters, functional relations such as formation of large
functional complexes like the ribosome or being part of a
signaling pathway (1, 2). PPI can also be used as basis for
dynamic models of signaling pathways as detailed below. As
an example, Fig. 19.1 shows a protein–protein interaction
network relevant for the high osmolarity glycerol (HOG)
signaling pathway.

– Gene regulatory networks (GRN) connect genes via the tran-
scription factors that are encoded by one gene and that reg-
ulate the expression of the next gene. A prominent exam-
ple is the sea urchin development GRN, which is constantly
updated as soon as more information becomes available. The
dynamics of GRN can be modeled in various ways, for exam-
ple, with Boolean networks, with stochastic simulation, or
with ordinary differential equations.

– Boolean networks describe cell processes with graphs consist-
ing of nodes and edges connecting the nodes. Each node can
assume one out of two states, e.g., 1 and 0, representing in a
very simplified way an “on” or “off” state of genes. The states
are updated in discrete time steps according to Boolean func-
tions taking into account the value of the nodes connected
by one edge. For example, the AND function turns a gene
on, when both its neighbors are on at the previous time step.
An example for a Boolean network applied to yeast cell cycle
was presented in (3).

Fig. 19.1. Protein–protein interaction network involved in the high osmolarity glycerol
(HOG) pathway.
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– Petri nets also describe the states of individual nodes in a dis-
crete fashion and these states are updated along a discrete
time axis according to the rules assigned to the edges. Petri
nets are bipartite graphs, distinguishing between places (e.g.,
states of a gene or amount of a protein) and transitions (e.g.,
reactions converting one compound into another). Tokens
are assigned to the places and redistributed according to the
rules of each transition. The pheromone pathway of yeast
was modeled with a Petri net approach (4). More sophisti-
cated approaches tend to consider more different states and
update rules.

– Ordinary differential equations: A frequent approach (5) is
the description with ordinary differential equations (ODEs),
where the state space is continuous (concentrations or
activities) and the time is continuous. In the following
we will focus on the ODE model approach. Among oth-
ers, stoichiometric analysis and steady-state analysis will be
explained.

– Stoichiometric analysis uses as information just the stoichio-
metric properties, i.e., reactions and their substrates as well as
the molecular characteristics of substrates in each reaction. As
detailed below, methods comprise the calculation of steady-
state fluxes (null space of matrix N) and the calculation of
conservation relation (null space of transpose of matrix N).

– Flux balance analysis (FBA) uses information about the stoi-
chiometric properties of a network. In addition, an objective
function must be defined, e.g., the maximization of a certain
flux or minimization of a byproduct. FBA is mostly applied
to metabolic networks (6). FBA is based on the relations
revealed for fluxes in steady state. To elucidate operation
modes of the cell under different environmental conditions
or to suggest such modes for biotechnological processes,
it calculates from all possible steady-state fluxes that set of
fluxes that maximizes or minimizes a certain function of these
fluxes, e.g., by linear programming.

– Stochastic modeling. The dynamics on a continuous time scale
can be simulated in a stochastic manner, e.g., with one of
Gillespie’s methods (e.g., (7)) by assuming discrete state val-
ues, e.g., molecule numbers.

Choosing the most appropriate method to model a given bio-
logical system is often difficult because each method is adapted to
a particular type of data and can answer a limited and specific set
of questions. Depending on the available experimental informa-
tion, the purpose of modeling, the experience and preference of
the modeler, signaling pathways can be described with different
techniques.
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3. Modeling:
Mathematical
Techniques
and Tools

3.1. Purpose
of Modeling

The development of a model serves the abstract and condensed
representation of facts in order to allow for the analysis of their
relations and to gain understanding about their internal organi-
zation and their communication with the environment.

Although the number of data in biological research currently
explodes, such data are useless without sufficient interpretation.
A computational model can on the one hand serve the data inter-
pretation; on the other hand it can point to biological aspects
that are still not sufficiently experimentally resolved. Within the
field of systems biology, the view has been established that exper-
imental research and model development should go hand in
hand in an iterative manner including formulation of an initial
model, hypothesis generation, experimental testing of hypothe-
ses, model-based experimental design, model refinement upon
new data.

The iterative modeling and experimentation process is hard
to follow in publications, since they often only represent the final
results. Model improvement with time and with accumulating
experimental information is documented, e.g., for yeast cell cycle
((8) and others (9, 10)) and for signaling pathways (11–14).

3.2. Model
Development

A typical situation in biological research is that an experimental
observation inspires the formulation of a hypothesis (Fig. 19.2).
As a next step one defines the questions a model is supposed to
answer, i.e., the scope of the model. The scope determines which
components and processes the model will take into account or
omit and it defines the system’s boundaries. Omitting certain
processes from the models even though they might play a role
is based on the assumption that they have only a minor influence
on the event under study, that their values remain constant in
the experimental setup, or that they simply cannot be described
with the currently available means. For example, in the model-
ing of metabolic networks the effect of regulated gene expression
has been neglected for a long time, although researchers were

Fig. 19.2. Model development flow chart.
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certainly aware of production and degradation of enzymes. How-
ever, different time scales of protein turnover and metabolic reac-
tions frequently justify such simplifications. The initial model is
usually formulated as a word model, which itself is also subjected
to a process of refinement and sophistication in the course of
model development. A diagram for graphical representation of
the model structure is also helpful.

In a further step, the word model is translated into a math-
ematical model. This model must be verified, meaning to test
whether the model is in principle able to answer the initial ques-
tion independently of choice of specific parameter values, i.e., in
a qualitative way. Verification of the model structure is an impor-
tant step in the process of model development because it can save
much time and effort later on. When the model is not able to
fit observed data, this might be a general problem of the model
structure. Having checked this in advance we can avoid validating
a model in vain. Generally, it is also desirable to learn more about
general properties of the model, like, e.g., existence of steady
states and bifurcation points.

Model validation as a next step means assuring that the
model can also reproduce observations in a quantitative manner.
This is generally achieved by adjusting the model parameters
such that the components of the model match observed data.
Often, unique determination of parameter values from data is
impossible. Therefore, it is advisable to further support for the
model by testing whether it is also able to reproduce independent
data without changing the fitted parameters. Independent in this
sense means that the data were used neither to fit the parameters
nor to develop our model. This can be achieved by dividing avail-
able data into a training data set and test data set or by producing
completely new data. The test data generally describe the same
phenomena but under slightly different conditions. It is a prereq-
uisite for a sound model validation that the model is able to repro-
duce observed data under different conditions but with the same
parameters that were used to reproduce the training data set. This
is supposed to reflect the fact that our model accurately describes
the intrinsic structure of the studied system and, like nature, is
able to adequately adjust its reaction to a changing environment/
input without changing internal structure and interactions.

Every model is only an abstracted representation of the pro-
cesses under study. Hence, it is important to know the limits of
applicability of a model. They determine to what extent possi-
ble predictions and conclusion hold. Moreover, it is important
to know to which parameters the model output is sensitive, i.e.,
which parameter changes have a substantial impact on the sys-
tems behavior, and thus have to be determined most accurately.
This is studied by sensitivity analysis. Local sensitivity analysis con-
siders changing one parameter value at a time and looking at the
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resulting change of a specific output variable. A classical measure
of sensitivity is the relative sensitivity S that is defined as

S = �O
O
· p
�p

[1]

where �O/O is the relative change of some output O of interest
and �p/p is the relative parameter change, compared to the ini-
tial state of parameter, respectively. S is easy to interpret, as S = 1
means that a certain percentage change of a parameter yields the
same percentage change of the considered output. Classical sensi-
tivity analysis studies the reaction of one or more output variable
to the change of one parameter at a time. Generally, it cannot be
assumed that parameters have an independent influence on the
considered output. In most cases the sensitivity to one parameter
depends on the state of one or more other parameters, which can
be studied by global sensitivity analysis.

Sensitivity to parameters gives us important information
about the system. It shows where small measurements errors can
have drastic consequences for the system behavior and where
additional research or measurements might be adequate. It also
indicates interesting targets for drug developers as it makes sense
to manipulate a system where it is most sensitive. The other way
around, sensitivity analysis tells us something about the robust-
ness and resilience of the system.

After formulation, verification, and validation of the model,
it can be used to explore more systematically the regions of the
state space that are of particular interest, i.e., make predictions.
The model ideally should be able to predict future experiments.
Correct predictions of the experiments support the confidence
in the model and also in the original hypothesis. Moreover, the
model can be used to design future experiments. The results of
sensitivity analysis indicate where additional measurements give
us the most information about the system.

The case that the model – although carefully designed – does
not correctly predict the experiments is also very interesting. Now
it has to be checked whether the experiments still comply with the
original hypothesis. If so, the model must be modified, otherwise
the hypothesis must be modified. Both ways, we close the cycle.

4. Model
Development
Step by Step

We will describe here step by step how to develop a dynamic
model for a cellular network. As a running example, a very sim-
plified version of a Mitogen-Activated Protein Kinase (MAPK)
cascade is used.
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The following steps are considered:
• Define network structure.
• Analyze the network structure.
• Describe dynamics with a mathematical model, e.g., set of

ODEs.
• Estimate parameters.
• Test model against data (does the output describes data input

satisfactorily?).
• Test model against new experimental scenarios.
• Make predictions for hitherto untested (but in principle

testable) scenarios.

4.1. Definition of
Network Structure

For describing, for example, the dynamics of a MAP kinase (K)
cascade, we first collect information about the reactants and the
connecting reactions, such as phosphorylation of MAP kinase
kinase kinase (MAPKKK, also named S1 hereafter) occurs after
activation of a receptor via a number of proteins interactions (indi-
rectly) or by an upstream kinase (directly) to yield the phosphory-
lated form, MÀPKKKP (S2). The next steps are phosphorylation
of MAPKK (S3) by MAPKKK yielding MAPKKP (S4), and phos-
phorylation of MAPK (S5) by MAPKK resulting in MAPKP (S6).
We observe as well dephosphorylation of all forms of phosphory-
lated kinases by phosphatases. For simplicity we neglect all further
interactions of the proteins with cell processes. In addition, we
assume that the receptor (S0) directly induces phosphorylation of
MAPKKK.

The network for the MAPK dynamics looks

MAPKKK
Receptor−→MAPKKKP

MAPKKKP
Phosphatase −→MAPKKK

MAPKK
MAPKKKP −→MAPKKP

MAPKKP
Phosphatase −→MAPKK

MAPK
MAPKKP−→MAPKP

MAPKP
Phosphatase−→MAPK

[2]

We can make various assumptions about the dynamics of the
receptor. After an external stimulus, it may remain activated or
become degraded. In the later case, we can consider an additional
component of the network:

Receptor→ [3]

Determining the network topology defines the limits of the
systems under study and enables the integration of stoichiometric
information and experimental parameters.
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4.2. Stoichiometric
Analysis

The network presented in equation [2] can be characterized by
its stoichiometric matrix N. To this end, we consider all the cat-
alytic processes as independent reactions. Matrix N contains the
stoichiometric coefficients of all compounds S1 through S6 (rep-
resented by the rows) in all reactions v1 to v6 (represented by the
columns).

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[4]

This way, matrix N is purely based on the stoichiometry of
the network, i.e., on its wiring. The analysis of matrix N employs
linear algebra. The linear dependence of rows of the stoichio-
metric matrix points to moiety conservation in the system, i.e.,
it reveals which compounds or moieties are neither produced nor
degraded by the network in total, such as the sum of differently
modified forms of a protein. In mathematical terms, one has to
find a regular matrix G such that G ·N = 0. Then the expres-
sion G · S = const. states the conservation relations. The equa-
tion G ·N = 0 is solved by the matrix

G =
⎛
⎜⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎞
⎟⎠ [5]

or each row vector presenting linear combinations of the row vec-
tors forming G. Here, every column corresponds to a compound;
every row corresponds to a conservation relation. Inspection of
matrix G reveals that the sum of both forms of each kinase is con-
stant over time, even in non-steady state, such as

MAPKP (t)+MAPK (t) = const. [6]

The linear dependence of columns of N (N ·K = 0 with reg-
ular matrix K) reveals the dependence of fluxes in steady state,
i.e., steady-state fluxes are linear combinations of the columns of
matrix K. For example, in an unbranched pathway, all fluxes must
be the same in case of steady state. The kernel matrix of the stoi-
chiometric matrix N for the MAPK cascade is
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K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[7]

Again, each linear combination of the columns of K is also
a solution. Here, columns refer to different possible steady-state
flux combinations, rows refer to compound. Solution [7] can be
interpreted as follows: in steady state the rates of phosphorylation
and dephosphorylation of each kinase is the same, preventing the
accumulation of one or the other form. This holds only in steady
state, but will be violated in dynamic regimes.

4.3. Mathematical
Description of
Dynamic Processes

In the frame of modeling with ordinary differential equations, the
dynamics of the biochemical reaction network is expressed by the
balance equations

dS (t)
dt
= Nv

(
S (t), p

)
[8]

where S, v, and p denote the vectors of concentrations, reaction
rates, and parameters of the system, respectively, and t is the time.
N is the stoichiometric matrix introduced above.

The set of equations describing the dynamics of the MAPK
cascade reads

dMAPKKKP
dt

= −dMAPKKK
dt

= v1 − v2

dMAPKKP
dt

= −dMAPKK
dt

= v3 − v4

dMAPKP
dt

= −dMAPK
dt

= v5 − v6

[9]

Typical expressions for the reaction rates are (i) mass action
rate law

vi
(
Sj

) = ki · Sj , [10]

with ki being the rate constant or by (ii) Michaelis–Menten
kinetics

vi
(
Sj

) = VmaxSj

KM + Sj
[11]
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with Vmax and KM denoting the maximal velocity and the half-
saturation constant or by (iii) Hill kinetics

vi
(
Sj

) = VmaxSn
j

K n
0.5 + Sn

j
[12]

with n denoting the so-called Hill coefficient.
The mass action law implies a linear dependence of rate

on substrate concentration, while hyperbolic Michaelis–Menten
kinetics and sigmoid Hill kinetics show saturation. Note that
more elaborated kinetic mechanisms have been reported, espe-
cially for the case of multiple substrates and for reversible reac-
tions (15).

For the MAPK cascade, we will assume for simplicity that
all reaction follow mass action kinetics. In this special case, one
must take into account that each reaction is catalyzed either by
the upstream kinase or by a phosphatase, leading to the following
kinetics:

v1 = k1×MAPKKK× Receptor
v2 = k2×MAPKKKP× Phosphatase
v3 = k3×MAPKK×MAPKKKP
v4 = k4×MAPKKP× Phosphatase
v5 = k5×MAPK×MAPKKP
v6 = k6×MAPKP× Phosphatase

[13]

In the following, we will also assume that the receptor, once
activated, gets degraded with rate:

v0 = k0×Receptor [14]

Assigning kinetics to the individual reactions allows simulat-
ing the systems dynamics. To this end, one must determine the
parameter values from experimental data.

4.4. Parameter
Estimation

Parameter estimation is the attempt to determine the values of
the kinetic constants or other parameters such as KM values of
a specific model from experimental data. This is a crucial step
in model construction, at the same time it is a step which has to
face uncertainty on different levels: uncertainty about the network
structure of our model, uncertainty in the experimental data, and
uncertainty in the conditions under which the experimental data
have been measured. Essentially, we can employ both quantitative
and qualitative data to restrict the range of possible parameter
values. In most cases, it is not possible to determine parameter
values uniquely. Often, we find many sets of parameter values that
can equally well explain the data. To discriminate among those
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sets, one may employ additional investigations of the model under
various conditions, as outlined below. What in theory is done is
to maximize the likelihood of the model explaining the data

L
(
y, p

) = P
(
y|p)

[15]

given as the probability P to observe the data set y from the model
with parameter vector p. In practice, we intend to minimize the
sum of squared distances of experimental data yi,j and simulation
results xi given as

Z =
∑
i,j ,k

(
xi (tk)− yi,j (tk)

)2 [16]

where index i runs over all compounds, index j over all experi-
ments, and index k over all measurement time points.

A number of computational tools are currently available to
enable parameter estimation for users with different mathemati-
cal background. Among them is the frequently used tool Copasi
(16), which offers different methods for both simulation and
parameter estimation. For the data presented in Table 19.1, the
steepest descent method with iteration limit 500 yields the fol-
lowing (rounded) parameter values:

k0 = 1.2, k1 = 0.96, k2 = 1.18, k3 = 1, k4 = 1, k5 = 1, k6 = 1
[17]

The time course plot of the model with the estimated param-
eters provided by Copasi looks as shown in Fig. 19.3. For the
following types of analysis, we will assume that all parameter

Table 19.1
Fictive experimental time course data for the phosphorylated
MAPKs (arbitrary units)

Time MAPKKKP MAPKKP MAPKP

0 0 0 0

1 0.291 0.138 0.047
2 0.216 0.183 0.117

3 0.126 0.152 0.135
4 0.065 0.105 0.118

6 0.014 0.035 0.06
8 0.003 0.009 0.021

10 0 0.002 0.006
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Fig. 19.3. Copasi-provided time course representation of the MAPK model with parameters estimated from data given
in Table 19.1 (arbitrary units).

values are equal to 1, i.e., ki = 1, for i = 0, . . . , 6 (compare
Fig. 19.7a or Fig. 19.8a).

4.5. Analysis
of Models

The model can be analyzed in various ways, first to test whether
its behavior really reflects the aspects that we wanted to represent,
second to deduce predictions based on a presumably appropriate
description.

(1) Sensitivity analysis for steady states: The aim is to check
the dependence of the steady-state behavior on parame-
ter values. For small parameter perturbations, one can use
metabolic control analysis and calculate response coeffi-
cients, flux control coefficients, or concentration control
coefficient. The response coefficients have the form given
in equation [1], where O denotes a steady-state variable
and p a parameter value. For control coefficients, O repre-
sents either a steady flux or a steady-state concentration and
p stands for the rate of an individual reaction.

Metabolic control analysis (MCA) seeks to quantify the
impact of individual rates or parameters on the steady-state
values of variables by calculating the respective derivative
(17, 18). We can consider so-called flux and concentration
control coefficients, respectively:

C
Jj
vk =

vk

Jj
· ∂Jj

∂vk
[18]
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and

C
Sj
vk =

vk

Si
· ∂Si

∂vk
[19]

as well as response coefficients of fluxes and concentration
with respect to parameter values, respectively:

R
Jj
pk =

pk

Jj
· ∂Jj

∂pk
[20]

and

R
Sj
vk =

pk

Si
· ∂Si

∂pk
[21]

The MCA theorems (19) establish a relation between these
sensitivities, which are properties of the whole system, and
the local sensitivities of the individual rates vi with respect
to the compound concentrations Sj

ε
vk
Sj
= Si

vk
· ∂vk

∂Si
[22]

Fig. 19.4. (a) Structure of the MAPK cascade shown in [13]. (b) Flux control coefficients (lower panel) and concentra-
tion control coefficients (upper panel) as defined in equations [18] and [19] in color-code representation. Rates 1, 3,
and 5 have positive control over subsequent reactions and subsequent phosphorylated forms (Si), but negative control
over non-phosphorylated compounds (Si,0). Rates have no control over upstream reactions (yellow areas). Parameters:
ki = 1, i = 0, .., 6, S0(0) = S1(0) = S3(0) = S5(0) = 1, S2(0) = S4(0) = S6(0) = 0.
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and the network stoichiometry N. For further details, refer
to textbooks (20, 21). The flux and concentration control
coefficients for the MAPK in [13] are shown in Fig. 19.4.

To assess the effect of wiring in a MAPK we can compare
the structure presented in [13] and shown in Fig. 19.4
with the case that we consider the binding of the upstream
kinase to the downstream kinase explicitly (and not only as
catalyst of the phosphorylation reaction). The structure and
the effect on the control pattern are shown in Fig. 19.5.
Most prominently, in this case all reactions have control
over all rates and compound concentrations.

(2) Check the effect of large parameter changes. In case, check
whether the number or stability of steady states change
upon parameter variation. For example [9, 13, 14], there
is only one stable steady state,

Sss
2 =

k1S0

k2 + k1S0
, Sss

4 =
k1k3S0

k2k4 + k1 (k3 + k4) S0
,

Sss
6 =

k1k3S0

k2k4k6 + k1 (k3k5 + k3k6 + k4k6) S0
[23]

Fig. 19.5. (a) Structure of the MAPK cascade with explicit consideration of complex formation of upstream kinases with
downstream kinases. (b) Flux and concentration control coefficients (equations [18] and [19]) in color-code representa-
tion. Parameters: ki = 1, i = 0, .., 6, S0(0) = S1(0) = S3(0) = S5(0) = 1, S2(0) = S4(0) = S6(0) = 0.
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Fig. 19.6. Effect of parameter variation on the time courses of the MAP kinases. S2, S4, and S6 are presented in stacked
panels to prevent overlap. Parameter values influence time course concentrations depending on whether they affect
producing or degrading reactions and on the distance of the affected reaction to the considered compound. For example,
increasing k1 to 1,000 has only minor effect on the amplitude of S6 and induces some prolongation of its activation,
while increasing k5 has strong impact on the amplitude of S6 and a comparable effect on the duration of activation
(a.u., arbitrary units). Parameters: ki = 1, i = 0, .., 6 (except of varied values), S0(0) = S1(0) = S3(0) = S5(0) = 1,
S2(0) = S4(0) = S6(0) = 0.

i.e., if the receptor is inactive, then all phosphorylated
kinases vanish, if the receptor assumes a basal level,
then the phosphorylated kinases also assume a basal level
determined by the rate constants. The effect of parameter
variation is demonstrated in Fig. 19.6. We see that varying
the kinase strength has different impact on MAPK depend-
ing on the level of the kinase. As predicted by MCA, the
closer the variation to the MAPK the stronger the effect.

(3) Sensitivity analysis for time-dependent states: Check the
effect of parameter changes on the temporal behavior.
Especially interesting for signaling pathways is the analysis
of time-dependent response coefficients

R
Sj (t)
vk = pk

Si (t)
· ∂Si (t)

∂pk
[24]

which show the impact of a parameter value on the dynam-
ics of a compound, and not only on its steady-state value
(22). The effect of different parameter values and initial
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Fig. 19.7. Time-dependent response: (a) Time course of the MAPK cascade as shown
in Fig. 19.4 (b and c) time-dependent response coefficients for the lowest phos-
phorylated kinase (S6) for parameters (middle) and initial concentrations (right). The
kinase parameters show temporarily positive response, which declines toward the
end of simulation time; the phosphatase parameter shows negative response. All ini-
tial concentrations show positive response, but with some time shift from the lowest
to the uppermost compounds (a.u., arbitrary units). Parameters: ki = 1, i = 0, .., 6,
S0(0) = S1(0) = S3(0) = S5(0) = 1, S2(0) = S4(0) = S6(0) = 0.

concentrations on the time course of the phosphorylated
MAPK is shown in Fig. 19.7.

4.6. Making
Predictions

A model shall describe known facts in a precise and formalized
way. An important additional value of a model is that it can be
used to make new predictions. The way to challenge a model in
order to predict hitherto unexpected is in the hands and the imag-
ination of the modeler. But there are some ways that are nowadays
becoming standards.

(4) Deletion analysis. Check steady states or temporal behavior
for the effect of deleting an element, e.g., the deletion of a
gene.

(5) Overexpression analysis. Check steady states or time course
patterns for the effect of overexpression of specific genes.

Some examples for deletion and overexpression are shown in
Fig. 19.8.

4.7. More Advanced
Model Analysis
Measures

(6) Rewiring: Check steady states or time course behavior for
changes in wiring, e.g., representing the exchange of pro-
moters or transcription factor binding sites (TFBS).



340 Klipp

Fig. 19.8. Time course of the MAPK cascade for different scenarios. (a) “Wild type,” (b), (d), (e) overexpression of the
individual kinases S1, S3, and S5, respectively. (c) Deletion of kinase MAPKK (S4). (f) Deletion of the phosphatase reac-
tion 4. Parameters: ki = 1, i = 0, .., 6, S0(0) = S1(0) = S3(0) = S5(0) = 1, S2(0) = S4(0) = S6(0) = 0, (except
of varied values).

(7) Effector addition: Check steady states or time course
behavior for effect of added compounds (inhibitors,
activators).

(8) Effect of small molecule numbers: Use stochastic simula-
tions to study the effect of small molecule numbers, which
may occur in signaling or regulatory networks.

5. Discussion

For the example of a simplified MAPK cascade, we discussed
general steps in formulating, simulating, and analyzing a model.
Both model construction and model analysis concern the net-
work structure and the parameter values and kinetics of individual
reactions.

There are a number of reasons why it might be impractical
to follow the above recipe in a forward manner. Among them are
the most important ones that the network structure is not suffi-
ciently well known or that there is no sufficient data to estimate
all involved parameters. In the first, one might want to test differ-
ent versions of the model with the same complexity, in the second
case one might want to find an easier model that still covers main
features of the process, but can be explained by the data.
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There are a number of examples for models of different
complexity describing essentially the same process. In order to
study the question how cell cycle oscillations may be explained
based on known protein–protein interactions, Goldbeter and
coworkers presented in 1991 a model with five components, a
cyclin as well as a cyclin-dependent kinase and a protease, each
one in two different forms (23). Employing the principles of
delay and negative feedback, this small reaction system shows limit
cycle-type oscillations and is able to explain some observations,
such as the staggered activation of the cyclin, the kinase, and the
protease. Later models of cell cycle became much more compre-
hensive. For example, a more complex model comprises about 50
components and reactions and can now explain the behavior of
many mutants (8).

In the analysis of the response of yeast cells to osmostress,
a first model (Klipp et al. (24)) was very comprehensive. This
includes about 40 variables and explains the role of the glycerol
transporter as well as the different timing of regulation – short-
term regulation through reduction of glycerol export, long-term
regulation through gene expression regulation, and increased
glycerol production. New insights are the role of the aquaglyc-
eroporin Fps1 for glycerol regulation and short-term response,
the role of turgor pressure, and the effect of repeated stimula-
tion. Drawbacks of big models are many parameters that cannot
be determined from experimental data. Mettetal and colleagues
reduced the description of the same biological process as a con-
trol system and presented a model with only two variables (25).
Among the advantages of such a reduced model one of them is
the usability of the established generalized system response to
the design of the control system. Furthermore, it has only few
parameters, which can be reliably estimated from experimental
data. However, this approach is only applicable to small pertur-
bations and has some limitations for the prediction of phenotypes
for specific mutations, knockouts, or overexpression experiments.

An example for model testing different architectures of the
same network has been presented by Hao et al. (26). They ana-
lyzed three wiring versions of the Sho1 branch of the HOG path-
way asking which one could explain experimental data represent-
ing successive osmotic stresses. By a combined modeling and
experimental approach based on experimental data, they could
favor a feedback phosphorylation of Sho1 by Hog1.

5.1. Design
Principles and
Features

Mathematical models can do more than just explain data and pre-
dict new experiments. They can also elucidate so-called design
principles relating cellular function to its evolution. Among those
principles is feedback regulation, positive or negative, short rang-
ing or long ranging. For signaling pathways, one may ask for sig-
nal encoding: duration, strength, timing, amplification – what is
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relevant for the cell to respond? Does timing matter? These ques-
tions shall be left open for further analysis. Such analysis needs on
one hand, reliable quantitative data, together with models that
can be further refined by incorporation of new amounts of data
at different biological levels. To this end, both areas of systems
biology need to rely on standards.

5.2. Model Standards Models are created and simulated in order to understand bio-
logical observations. Their analysis supports the design of future
experiments. Standardization plays a crucial role in enabling the
exchange and interpretation of scientific research results, and in
particular in computational modeling (5). A number of computer
languages and formats have been designed by different communi-
ties to encode the structure of mathematical models, such as the
Systems Biology Markup Language (SBML) (27). To allow reuse
and exchange of models, standards for representation of a model
are formulated in MIRIAM (28). Further standards for the anno-
tation of compounds and biological process and for describing
experiments are under development. An example is the annota-
tion of compounds in models. For example, if we identify the
MAPK (S5) in [13] with the protein Hog1p, and the MAPKP
(S6) with phosphorylated Hog1p, then the assignments given in
Table 19.2 would relate these components and their parts to
entries of the databases SGD (http://www.yeastgenome.org) and
ChEBI (http://www.ebi.ac.uk/chebi), where each compound
has a unique identifier (see Table 19.2). Assigning such anno-
tation can be done manually or using computational tools such as
semanticSBML (http://www.semanticsbml.org/).

Table 19.2
Examples for compound assignments

Compound Qualifier ID From database

Hog1p is S000004103 SGD

Hog1pPP isVersionOf S000004103 SGD
hasPart 35780 ChEBI
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Chapter 20

Standards, Tools, and Databases for the Analysis
of Yeast ‘Omics Data

Axel Kowald and Christoph Wierling

Abstract

One of the major objectives of systems biology is the development of mathematical models for the quan-
titative description of complex biological systems, such as living cells. Biological data and software tools
for the design, analysis, and simulation of models are two basic ingredients for the new field of systems
biology. In this chapter we give an overview of databases and repositories that provide valuable informa-
tion for the integrative analysis and modeling of data generated by the different omics techniques. We
also provide a review of the most popular software tools currently used in computational systems biology
studies. Standards for the annotation of biological data and for the analysis and exchange of models are
fundamental for the success of systems biology and provide the glue that connects experimental data with
mathematical models. We also discuss some broad trends regarding where systems biology is heading to.

Key words: Systems biology, databases, standards, data integration, modeling, simulation, software
tools.

1. Introduction

Comprehensive high-throughput experiments and techniques are
allowing the generation of large quantities of data for differ-
ent components of a biological system (e.g., cell, tissue, and
organism). The data analyzed by the specific techniques pro-
vide information on different classes of cellular entities at dif-
ferent levels, such as genomics, transcriptomics, proteomics, and
metabolomics. These levels of information are usually subsumed
under the term ‘omics. From here, curated databases are needed
to store and manage the information, software tools in order to
analyze the data and develop models, and standards to ensure

J.I. Castrillo, S.G. Oliver (eds.), Yeast Systems Biology, Methods in Molecular Biology 759,
DOI 10.1007/978-1-61779-173-4_20, © Springer Science+Business Media, LLC 2011

345



346 Kowald and Wierling

data compatibility and facilitate the exchange of omics data and
computer models.

Computer models can show whether the mathematical
description, assumptions, and parameters of a specific model can
reproduce the observed behavior of the biological system cor-
rectly and help to increase the knowledge of its dynamic behavior.
Thus, a computer or in silico model can be used to predict the
outcome of different perturbations (e.g., change of an extrinsic
parameter, gene knockout, mutations, or inhibition). A mathe-
matical model of a cellular system is based on the known reac-
tion network of the particular system. To perform realistic simu-
lations additional information about the kinetics of the reactions is
needed. Later on, comprehensive experiments can be performed
in order to obtain reliable values for the kinetic parameters (i.e.,
parameter estimation). Eventually, the model can be used for the
generation of quantitative predictions which are subject to exper-
imental validation and subsequent model refinement.

A critical issue when working with omics data is data integra-
tion. Basically, from reliable curated databases, data integration
deals with the integration of heterogeneous data into databases
with the aim to query for specific information or to parse data
from these databases for data mining or mathematical model-
ing. Here, a (sometimes overlooked) prerequisite is that the
data have to be compatible (i.e., obtained from the same bio-
logical system under equivalent environmental conditions). Data
integration requires, technically, the definition of data exchange
standards and protocols and the implementation of parsers that
ensure the correct data exchange between databases and tools. A
large number of public databases for storage of experimental data
and pathways have been implemented, covering a broad spec-
trum of data resources. These include among others databases of
genomics, transcriptomics, proteomics and metabolomics data, as
well as pathway information from textbooks and primary sources.

In this chapter we give an overview of omics-related
databases, introduce standards that are frequently used in this
context, and discuss software tools that are commonly used in
systems biology for data integration and the development, simu-
lation, and analysis of mathematical models.

2. Databases
and Data
Repositories for
Systems Biology The use of databases in biological studies has not ceased to

increase since the advent of genomic sequence data. The National
Center for Biotechnology Information (NCBI) (http://www.
ncbi.nlm.nih.gov/) and the European Bioinformatics Institute

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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(EMBL-EBI) (http://www.ebi.ac.uk/) provide access to multi-
ple sequence databases such as the Genetics Sequence database
(GenBank), the Reference Sequence database (RefSeq), and Uni-
Gene (these ones at the NCBI). Among the most relevant are the
EMBL-EBI, the EMBL Nucleotide database, and the Ensembl
automatic genome annotation database (1). Besides this, the
NCBI and the EMBL-EBI provide access to databases specialized
on other biological information, such as protein sequences and
their annotation (e.g., Swiss-Prot, TrEMBL (2), UniProt (3)),
protein families and domains (e.g., InterPro (4, 5)), and protein
structures (e.g., Protein Data Bank (PDB) (6)). Many databases
usually cover data from different organisms or species. In contrast
to this, there are also organism-specific databases, such as the Sac-
charomyces Genome Database (SGD; http://www.yeastgenome.
org/), a comprehensive, periodically curated, resource for access
to Saccharomyces cerevisiae (budding yeast) functional genomics
data (7). Table 20.1 shows relevant omics- and systems biology-
related databases. A more comprehensive list of databases and

Table 20.1
Selected databases for systems biology

Data resource URL

Sequences
GenBank
EMBL Nucleotide Database
UniGene
Ensembl

http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/unigene
http://www.ensembl.org/index.html

Pathway and interaction databases
BioCyc
KEGG
Reactome
IntAct
DIP
MINT
MPact
ConsensusPathDB

http://www.biocyc.org
http://www.genome.jp/kegg
http://www.reactome.org
http://www.ebi.ac.uk/intact
http://dip.doe-mbi.ucla.edu
http://mint.bio.uniroma2.it/mint
http://mips.gsf.de/genre/proj/mpact
http://cpdb.molgen.mpg.de

Kinetics databases
BRENDA
SABIO-RK

http://www.brenda-enzymes.org
http://sabio.villa-bosch.de/SABIORK

Expression data resources
Gene Expression Omnibus (GEO)
ArrayExpress

http://www.ncbi.nlm.nih.gov/projects/geo
http://www.ebi.ac.uk/arrayexpress/index.html

Systems biology model repositories
BioModels
JWS

http://www.biomodels.org
http://jjj.biochem.sun.ac.za

http://www.ebi.ac.uk/
http://www.yeastgenome.org/
http://www.yeastgenome.org/
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ebi.ac.uk/embl
http://www.ncbi.nlm.nih.gov/unigene
http://www.ensembl.org/index.html
http://www.biocyc.org
http://www.genome.jp/kegg
http://www.reactome.org
http://www.ebi.ac.uk/intact
http://dip.doe-mbi.ucla.edu
http://mint.bio.uniroma2.it/mint
http://mips.gsf.de/genre/proj/mpact
http://cpdb.molgen.mpg.de
http://www.brenda-enzymes.org
http://sabio.villa-bosch.de/SABIORK
http://www.ncbi.nlm.nih.gov/projects/geo
http://www.ebi.ac.uk/arrayexpress/index.html
http://www.biomodels.org
http://jjj.biochem.sun.ac.za
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resources can be found in (8). Furthermore, the January issue
of Nucleic Acids Research (database issue) provides each year an
updated overview of relevant biological databases.

In addition to sequence data, gene expression data (e.g., RNA
expression data from microarrays or deep sequencing techniques)
constitute a valuable resource for the analysis of gene function and
expression patterns at the transcriptome level. Gene Expression
Omnibus (GEO) (9) at NCBI and ArrayExpress at EMBL-EBI
(10) are two central repositories which freely distribute and share
access to comprehensive gene expression data sets.

Another group of databases that provide a rich resource,
especially for the functional interpretation of experimental data
and the development of models for systems biology, are path-
way databases. Pathway databases comprise different aspects of
cellular processes, like metabolic reactions, signal transduction
pathways, or gene regulatory events. Pathguide (http://www.
pathguide.org/) provides a comprehensive list of many pathway-
related databases.

One of the first databases on metabolic reactions is Eco-
Cyc. EcoCyc integrates genomic and gene products information
into the metabolic and regulatory network of Escherichia coli
(11). Similarly, databases with cellular processes collected in other
organism-specific pathway databases have been implemented.
Thus, BioCyc (http://pathway.yeastgenome.org/biocyc/) is a
rich resource of S. cerevisiae-related metabolic pathways. Relevant
pathway databases covering pathway information from S. cere-
visiae and other organisms are The Kyoto Encyclopedia of genes
and genomes (KEGG) and the Reactome database (Table 20.1).

KEGG provides a broad spectrum of genomic data from mul-
tiple species and organisms (12). It provides information on path-
ways of different organisms, presented as reference pathway maps.
The reference maps cover metabolic pathways and signal trans-
duction pathways and constitute a valuable resource of the reac-
tion network of a specific organism (e.g., yeast). Another pathway
database focusing on human cellular and biochemical processes is
Reactome (13). Reactome is a curated database using a detailed
ontology. It provides a comprehensive description of molecular
and cellular processes, such as metabolic and signal transduc-
tion pathways. An overview of the different pathways covered
by Reactome is presented at the database homepage (http://
www.reactome.org). Although the focus of this database is mainly
on human biological processes, it also provides information on
organisms with orthologous genes and conserved pathways such
as yeast.

Besides curated data of individual reactions, interaction data
such as protein/protein interactions (PPIs) are also stored in
databases. For instance, the MPact database is a large collection
of curated experimental data of PPIs in yeast (14). Other PPI

http://www.pathguide.org/
http://www.pathguide.org/
http://pathway.yeastgenome.org/biocyc/
http://www.reactome.org
http://www.reactome.org
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databases that cover not only yeast but also other species are
IntAct (15), DIP (16), and MINT (17).

Interaction and pathway databases often target different net-
works (e.g., the metabolic network, the PPIs, or the gene reg-
ulatory network). In many cases a comprehensive analysis of all
these functional data becomes necessary. This is when an inte-
gration of interaction and pathway databases becomes relevant.
One approach to data integration is provided by the Consensus-
PathDB database (18). Currently, this database integrates interac-
tion data from 24 publicly accessible databases. It provides func-
tionalities for the graphical representation of the interaction data
and for the analysis of omics-based data (e.g., overrepresentation
analysis).

Other relevant resources for the setup of systems biology
models are repositories with information on reaction kinetics
of biochemical reactions. BRENDA is the largest freely avail-
able database providing biochemical and molecular information
on all classified enzymes for a large set of different organisms
(19). The database covers manually curated data from more than
79,000 primary literature references. The BRENDA web site
(http://www.brenda-enzymes.org/) supports the user by search-
ing detailed information on a particular enzyme and its cat-
alyzed reaction(s). In addition to details as substrates, products,
stoichiometries, and others, BRENDA also provides functional
details on reaction kinetics, such as kinetic parameters for differ-
ent conditions (e.g., pH and temperature). This kind of data is
needed for the development of quantitative mathematical mod-
els. Another database containing manually extracted kinetic data
is SABIO-RK (20, 21). SABIO-RK tries to meet the requirements
of the systems biology community that are needed for setting up
in silico models of biochemical reaction networks.

In addition to this, databases collecting mathematical models
of biological systems have been implemented. For example, Java
Web Simulation (JWS) provides a collection of different kinetic
models (22). Furthermore, the JWS web site also provides basic
functionalities for the simulation and analysis of models. Another
repository of mathematical models is BioModels (23). BioModels
database already provides a large set of models that can be down-
loaded in different formats.

3. Standards for
Systems Biology

The accumulated data in functional genomics studies is very het-
erogeneous and often documented and archived in very diverse
formats. This makes difficult the reutilization of such data and

http://www.brenda-enzymes.org/


350 Kowald and Wierling

the conversion can be error prone. To overcome these difficulties,
standards are necessary. Standard formats for generation and stor-
age of experimental data from high-throughput experiments have
been implemented, with the extensible markup language (XML)
becoming a flexible tool for the definition of standard formats
(http://www.w3.org/XML).

The development of a standard proceeds via four different
steps: (i) the informal design of a conceptual model, (ii) the for-
malization, (iii) the development of a data exchange format, and
(iv) the implementation of supporting tools (24). A concept for
the microarray domain is defined by the minimum information
about a microarray experiment (MIAME) (25). For the standard-
ized collection, integration, storage, and dissemination of pro-
teomics data guidelines are defined by the minimum information
about a proteomics experiment (MIAPE) (26). Similar to spec-
ifications for experimental data, concepts for the mathematical
description of biological systems are also defined by the minimum
information requested in the annotation of biochemical models
(MIRIAM) (27).

Different XML-based data formats have been implemented
for the exchange of data. As an example, microarray and gene
expression markup language (MAGE-ML) is designed for the
description of data from microarray experiments. Standards for
the description of pathway data and mathematical models are,
for instance, SBML (28, 29), CellML (30), BioPAX (31), and
PSI-MI (32). While the focus of PSI-MI and BioPAX is more
on the detailed description of PPIs and cellular reaction net-
works, respectively, SBML and CellML are basically designed
for the description of mathematical models. The systems biol-
ogy markup language (SBML) is already used by a large set
of software applications (see http://sbml.org/SBML_Software_
Guide/SBML_Software_Summary) and its benefits are discussed
below in the description of software tools. Furthermore, a stan-
dard for the graphical representation of biochemical reaction sys-
tems has been defined. It is called the systems biology graphical
notation (http://www.sbgn.org) and it defines nodes, edges, and
further graphical elements for the graphical representation of cel-
lular reaction networks. This standard is already used by some
software applications (e.g., CellDesigner, see below).

Besides standards for the storage and exchange of data
between different tools, standards for the communication
between software applications are also necessary. For this pur-
pose, application programmer interfaces (APIs) are used. An
API defines a set of methods along with their parameters that
are provided by a certain software tool. These methods can be
called by other applications. In recent years more and more
software applications make use of WebServices. A WebSer-
vice is a well-defined XML-based API that follows the W3C

http://www.w3.org/XML
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
http://www.sbgn.org
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recommendations (http://www.w3.org/2002/ws/). Several
databases and web-based applications already provide WebSer-
vices (e.g., KEGG, SABIO-RK, and BRENDA). A tool for the
integration of WebServices-based functionalities of different
applications into a workflow is Taverna (33).

4. Software Tools

Different high-throughput techniques generate different types
of data, such as sequence data, interaction data, concentrations,
or information on the intracellular localization of biomolecules.
Although the majority of systems biology models aim at a deeper
understanding of the dynamical behavior of the biological system,
a considerable number of programs have been developed to deal
with the different data types. A comprehensive review of all the
software tools would be beyond the scope of this chapter, and
we will highlight some of the most commonly used tools instead.
For a more in-depth analysis the reader is referred to (34, 35).
Figure 20.1 presents an overview of the most popular tools cur-
rently in use. The data are derived from a questionnaire (34) and
are explained in the following sections.

4.1. General-Purpose
Tools

Programming languages like C++, Java, or Python belong to the
general-purpose tools, together with software packages like Math-
ematica and MATLAB, which not only provide a complete pro-
gramming language but are also capable of symbolic manipulation
of equations and the visualization of the results.

Mathematica is produced by Wolfram Research (http://
www.wolfram.com) and currently exists as version 7 for all the
major operating systems. Mathematica consists of two compo-
nents, the kernel that runs in the background and the graphi-
cal user interface (GUI) that communicates with the kernel. The
GUI has the form of a so-called notebook that contains all the
input, output, and graphics. Apart from its numerical calculation
and graphics capabilities Mathematica allows to perform advanced
symbolic calculations. For many specialized topics Mathematica
packages are available that provide additional functionality. Math-
ematica can also communicate with Java, .NET, or C/C++ code.
This means that Mathematica can access external code written
in one of these languages and that the Mathematica kernel can
actually be called from other applications. Besides an excellent
help utility, there are also many sites on the Internet that pro-
vide additional help and resources. The site http://mathworld.
wolfram.com contains a large repository of contributions from
Mathematica users all over the world. Before implementing

http://www.w3.org/2002/ws/
http://www.wolfram.com
http://www.wolfram.com
http://mathworld.wolfram.com
http://mathworld.wolfram.com
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Fig. 20.1. Usage of software tools and databases for systems biology. Results of a
questionnaire among 125 researchers regarding their use of software tools. The upper
part shows general-purpose tools and the lower part specialized tools. Tools are sorted
according to the sum of the frequencies for “My favorite one” and “Frequent use.”
Reproduced from (34) with permission from Nature Publishing Group (NPG).

a new function or algorithm it is worthwhile to check this
site. If questions and problems arise during the use of Math-
ematica a useful source is the newsgroup news://comp.soft-
sys.math.mathematica.
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Another relevant tool, and major rival of Mathematica,
is MATLAB R2008b, produced by MathWorks (http://www.
mathworks.com). Both products are very similar in many aspects
and the choice rests with the user. MATLAB is available for
the same platforms as Mathematica has strong numerical and
graphical capabilities. It also has its own programming lan-
guage and programs are stored in so-called M-files. Tool-
boxes (special M-files) add additional functionality to the core
MATLAB distribution, and like Mathematica, MATLAB can
be called by external programs to perform high-level computa-
tions. A repository exists for user-contributed files (http://www.
mathworks.com/matlabcentral/fileexchange and http://www.
mathtools.net/MATLAB/toolboxes.html) as well as a news-
group (news://comp.soft-sys.matlab). Albeit those similarities
there are also differences. Table 20.2 gives a summary of the
main characteristics and differences of each tool.

4.2. Specialized Tools The general-purpose tools are powerful packages for the numer-
ical, symbolical, and visual analysis of arbitrary mathematical
problems. They have some limitations, however, since they
require considerable time and effort to get started. To overcome

Table 20.2
Main characteristics of computational software platforms for programming, model-
ing, and visualization of results in systems biology studies

Topic Mathematica MATLAB

Debugging Since version 6 basic debugging
capabilities are provided

Dedicated debugger allows to single
step through M-files using
breakpoints

Add-ons Many standard packages ship
with Mathematica and are
included in the price

Many important toolboxes have to
be bought separately

Deployment User needs Mathematica to run
the calculations specified in
notebooks

Separately available compiler allows
to produce stand-alone
applications

Symbolic computation Excellent built-in capabilities Possible with commercial toolbox
Storage All input, output, and graphics

are stored in a single
notebook.

Functions are stored in individual
M-files. A large project can have
hundreds of M-files

Graphics Graphics is embedded in
notebook

Graphic appears in a separate window

ODE model building Differential equations are
specified explicitly

Dynamical processes can be
graphically constructed using
Simulink, a companion product of
MATLAB

http://www.mathworks.com
http://www.mathworks.com
http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathtools.net/MATLAB/toolboxes.html
http://www.mathtools.net/MATLAB/toolboxes.html
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this, many specialized tools have been developed that are very
restricted in their application range, but much easier to use. Typ-
ical applications are the construction of biochemical reaction net-
works, the analysis of reaction networks (stability, flux analysis,
and metabolic control theory), parameter fitting, or the simula-
tion of stochastic reactions.

4.2.1. CellDesigner Figure 20.1 shows that CellDesigner (36) is the most popu-
lar specialized stand-alone tool for systems biology (libSBML is
not an application itself, but a programming library for han-
dling SBML files). It is a freely available, easy to use, applica-
tion (current version 4.0.1) for the creation and simulation of all
sorts of biochemical reaction networks. It is written in Java and
hence runs on most operating systems. The native model format
is SBML, with layout information being stored in “annotation”
tags. The GUI consists of different sub-windows that can be hid-
den or moved around (Fig. 20.2).

In CellDesigner a model is constructed by selecting icons
from a large number of predefined shapes for different types of
molecules such as proteins, ion channels, metabolites (a), and
dragging these onto the model pane (c). These icons can be mod-
ified to indicate post-translational modifications like phosphory-
lation or methylation. SBML models are built using species (i.e.,
biomolecules), compartments, and reactions. This structure can
be viewed in panel (b). Selecting a component in this panel high-
lights the corresponding element in the model pane (c) and in
panel (e), which shows further details of the selected component.
Although several automatic layout algorithms are available it is
usually better to manually arrange the components in the model
pane (c). This is also the place to add a commentary text or
arrows, which are stored in an additional picture layer (as shown
in panel d) and that can be switched on and off. Additional text
notes can be attached to each model component (panel f) and
are stored in the SBML file. This is very helpful, for example,
to store from which source (e.g., publication and database) the
kinetic data of a component (enzyme concentration and reaction
rates) have been obtained (see also the CellDesigner “Worked
Example”). As a final step, kinetic data and an explicit kinetic
law are required to turn the graphical model into a dynamical
model. CellDesigner allows to enter any mathematical expression
as a kinetic law. Since version 4 it has also a collection of prede-
fined kinetic laws (e.g., mass action and Michaelis–Menten types).
Once this information is entered, simulations can be performed to
obtain quantitative data on how the concentration of the model
species changes over time. The simulation can be performed using
the built-in solver or the Copasi solver (see next section). The
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Fig. 20.2. Screenshot of CellDesigner 4.0.1 (available from http://www.celldesigner.org) a popular tool for the creation
and simulation of dynamical models in systems biology. The graphical model is automatically converted into a set of
ordinary differential equations that can then be integrated over time. The content of the different sub-windows (a–f) is
explained in the text.

Copasi solver enables CellDesigner to perform stochastic simula-
tions in addition to deterministic ones.

Apart from the core functionality just described, CellDe-
signer has further features like a free plugin API, the possibility
to download models and species information from different
databases, and the option to connect to the systems biology
workbench (see CellDesigner “Other Tools”). Video tutorials
with an introduction to the basic capabilities of CellDesigner are
also available (http://www2.hu-berlin.de/biologie/theorybp/
video_tutorials.php).

http://www.celldesigner.org
http://www2.hu-berlin.de/biologie/theorybp/video_tutorials.php
http://www2.hu-berlin.de/biologie/theorybp/video_tutorials.php
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4.2.2. Copasi Another powerful tool for the investigation of dynamical mod-
els is Copasi (37). Copasi is the successor of Gepasi, which also
appears among the most commonly used tools in Fig. 20.1.
Like CellDesigner Copasi is a free software tool and is avail-
able for all major operating systems from http://www.copasi.org
(Fig. 20.3). In many ways the strengths and weaknesses of Copasi
and CellDesigner are complementary, so that it is often useful to
use both programs together. This is possible since both programs
can import and export models in SBML. However, while CellDe-
signer uses SBML as native model format, Copasi has also its own
XML-based model format to store settings and metadata, which
are difficult to accommodate in SBML format.

Fig. 20.3. Screenshot of Copasi 4B26 (available from http://www.copasi.org), a powerful tool for the analysis and sim-
ulation of dynamical models. Like most tools for system biology Copasi can read and write models in SBML format, but
additionally stores model also in a proprietary format. The content of the different sub-windows (a–c) is explained in the
text.

http://www.copasi.org
http://www.copasi.org
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While CellDesigner is particularly good at constructing
graphs and displaying biochemical models, Copasi is rather aus-
tere and simply provides a list of the reactions (Fig. 20.3,
panel b). The strengths of Copasi, however, lie in its analysis
tools, fitting and simulation capabilities which can be accessed via
panel a. Copasi not only allows browsing of the SBML model
structure (compartments, species, reactions) but it also allows
to display the underlying set of differential equations. As with
CellDesigner, it is possible to integrate the system over time
and create plots of concentration vs. time (Fig. 20.3, panel c).
Copasi is also capable of stochastic model simulations, an option
not included in CellDesigner. To enable CellDesigner to perform
stochastic simulations, using the Java language bindings (available
for the latest stable release 4B30), CellDesigner can use Copasi’s
time course solvers. To make it work (under Windows) download
the language bindings from http://www.copasi.org/tiki-index.
php?page_ref_id=108 and copy CopasiJava.dll into the CellDe-
signer root folder. After starting CellDesigner the “Simulation”
menu has now a second entry called “COPASI GUI.”

Copasi also excels at other complex analysis tools that are
not available in CellDesigner. For instance, it is possible to com-
pute how the steady-state concentrations of all variables change
depending on a specific parameter (sensitivity analysis) and per-
form simulations to estimate which parameter values would in
principle better reproduce the experimental results (to be con-
firmed by independent experiments). Furthermore, Copasi is
capable of metabolic control analysis (MCA), which involves
calculating elasticities as well as flux and concentration control
coefficients. Other types of analysis not covered in this chapter,
including an introduction to the basic capabilities of Copasi, are
available from http://www2.hu-berlin.de/biologie/theorybp/
video_tutorials.php. Finally, there is also a forum available to ask
questions regarding the use of Copasi (http://www.copasi.org/
tiki-view_forum.php?forumId=1).

Besides stand-alone tools, like CellDesigner and Copasi, web-
based applications for the development, simulation, and analysis
of cellular reaction networks are also available. Web-based tools
operate through the web browser and are easily accessible on dif-
ferent platforms (38). It is not necessary to install a local copy
of the software or subsequent upgrades although they may be
limited in speed. A relevant web-based tool is PyBioS (http://
pybios.molgen.mpg.de (39)). PyBioS provides functionalities for
the development, simulation, visualization, analysis, and storage
of large computer models. For model development, PyBioS has
interfaces to external pathway databases, such as KEGG, Reac-
tome, and ConsensusPathDB. It also can visualize plots of time

http://www.copasi.org/tiki-index.php?page_ref_id=108
http://www.copasi.org/tiki-index.php?page_ref_id=108
http://www2.hu-berlin.de/biologie/theorybp/video_tutorials.php
http://www2.hu-berlin.de/biologie/theorybp/video_tutorials.php
http://www.copasi.org/tiki-view_forum.php?forumId=1
http://www.copasi.org/tiki-view_forum.php?forumId=1
http://pybios.molgen.mpg.de
http://pybios.molgen.mpg.de
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course simulations within automatically generated graphs of the
reaction network that makes it easy to track fluxes.

4.3. New Tools
and Trends

The programs described above are only a small selection of tools
used in computational systems biology studies (Fig. 20.1). More
comprehensive lists can be found at http://sbml.org/SBML_
Software_Guide/SBML_Software_Summary and in (40). In this
dynamic field, new data, computing power, and experimental
techniques are promoting the appearance of new tools. Although
it is difficult to predict the future, main trends can be summarized
here.

4.3.1. Stochastic
Modeling

The main goal in systems biology is to increase our knowl-
edge of the dynamic behavior of biological systems. Determin-
istic approaches are the most commonly used but progressively
more software tools are being developed to account for stochas-
tic effects. Deterministic simulations using ordinary differential
equations (ODEs) assume that the number of molecules in the
system is so large that it can be treated as a continuous variable. A
second assumption is that the system is completely deterministic.
Random fluctuations are not considered. However although most
molecules in a cell exist in large numbers, some others are very
rare and the smaller the number of molecules, the more unrealis-
tic those assumptions become. For example, transcription factors
exist in low numbers in cells (e.g., approximately 10 molecules
of Lac repressor in 1 E. coli cell (41)). Proteins involved in signal
transduction pathways are also very rare, as are defective mito-
chondria, which are relevant for the aging process. Under those
circumstances it becomes important that 4 or 5 molecules might
be in a cell, but not 4.325 (as is possible with ODEs). Of special
importance can be the difference between 0 and 1 if this item is
a self-reproducing object. For example, if modeled with ODEs,
it is practically impossible to obtain zero defective mitochondria,
since a small amount (well below 1) will always appear in the ODE
model. Because of their self-reproducing property a population of
defective mitochondria could always re-grow from this artefact. If
modeled stochastically, however, all defective organelles will dis-
appear (zero concentration) once the last one is destroyed and
thus they cannot re-grow.

If the simulated system has more than one possible steady
state there can also be qualitative differences between a determin-
istic and a stochastic simulation. In an ODE model the system
will settle into one of the possible steady states and remain there.
However, if modeled stochastically the system can jump from one
steady state to the other if they are closely enough.

Several stochastic simulation algorithms have been developed
to calculate the change of the number of molecules during the
time course of a chemical reaction (42–44). Depending on the
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complexity of the system the calculations are very time consum-
ing and to obtain statistically meaningful results often many ran-
dom trajectories have to be computed. However, the progres-
sive increase in computing power is making stochastic simulators
more accessible. As described above, Copasi is capable of stochas-
tic time course simulations. It can also be run from the command
line (allowing batch processing) and can be instructed to calculate
many random trajectories.

The stochastic simulation tool Dizzy has been developed by
Stephen Ramsey from the Institute for Systems Biology in Seattle
(45) and is freely available from http://magnet.systemsbiology.
net/software/Dizzy. The software is written in Java and is avail-
able for all platforms with a Java virtual machine. Models can be
imported either in SBML format or in a proprietary scripting lan-
guage. Once loaded, the model can be simulated by a variety of
stochastic and deterministic algorithms. Dizzy can be controlled
using a graphical user interface, but it can also be started from the
command line, since GUI and the number processing machinery
are separated. For a complex model describing the accumulation
of defective mitochondria (46) we performed 1,000 repetitions
of the model simulation on a Linux cluster, using the command
line version of Dizzy. Although SBML is the de facto standard
for models in systems biology, the model definition language of
Dizzy has powerful features for handling arrays of variables and
defining large number of reactions that make it interesting for
specialized problems. Using these special language constructs we
were able to define 4,950 reactions with only 5 lines of code for
the above-mentioned mitochondrial model.

The Systems Biology Workbench (SBW) at http://www.sys-
bio.org (47) is a software infrastructure that enables different
tools to communicate with each other (see also next section).
A powerful SBW module that provides stochastic simulation and
analysis functions has been developed by the Sauro group and can
be downloaded from http://public.kgi.edu/~rrao.

The software packages discussed so far are only suitable for
spatially homogeneous models, which implies a constant and
immediate mixing of all participating species. For stochastic sim-
ulations of 3D systems, including compartments and reaction
diffusion systems MesoRD (48) is suitable. It is a free soft-
ware tool, written in C++ which implements the next subvol-
ume method to simulate the Markov process corresponding to
the reaction diffusion equation. It can be obtained from http://
mesord.sourceforge.net.

4.3.2. Integration and
Connectivity of Models
and Databases

Before the advent of SBML as model storage format it was very
difficult to test models developed using different software pack-
ages. Re-implementation was often the only option. By adhering
to the SBML format, models can now be easily exchanged, tested,

http://magnet.systemsbiology.net/software/Dizzy
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and expanded even if different tools are used. CellDesigner and
Copasi are a good example on how this exchangeability increases
the value of both tools. Thus, in many cases it is more conve-
nient to design and build a model using CellDesigner and then
to do sophisticated simulations and analyses in Copasi. SBML is
also having an enormous relevance in the area of dynamic model-
ing, and the development of SBML is not finished yet. Currently
efforts are underway to standardize the graphical representation
of biochemical networks using Systems Biology Graphical Nota-
tion (http://sbgn.org) and its integration into the SBML for-
mat will be a major step forward. Similarly, it will be important
to accommodate models of spatially heterogeneous systems into
SBML. This will make it possible to model other molecular enti-
ties and barriers, such as membranes, large protein complexes, or
the effects of high viscosity using partial differential equations or
stochastic simulations.

We have already discussed the importance of databases in sys-
tems biology. The connectivity of the modeling tools with these
databases will constitute a relevant topic in the near future. Cur-
rently scientists have to search the literature or the databases
manually in order to extract the necessary ‘omics and kinetic
data. Although the search for the latest ‘omics data in liter-
ature databases and scientific sources will remain necessary, it
would save time and reduce errors if the high amount of curated
data annotated in databases (e.g., kinetic data) could be accessed
directly from within the simulation tool. There is, for exam-
ple, PyBioS that provides functionalities for the direct import of
reactions from public pathway databases, such as KEGG, Reac-
tome, or ConsensusPathDB. Also CellDesigner shows how use-
ful such a connection can be. It allows to directly download
models from http://biomodels.net, which is a model reposi-
tory web site. Furthermore, after selecting a species or reac-
tion, it is possible to connect to different databases (e.g., SGD,
DBGET, iHOP, and PubMed) and look up information regard-
ing this item. Although this feature needs further improvement,
it clearly shows the trend. It would be, for instance, very useful
to have a direct connection to a well-curated database for kinetic
data, since a major problem in model building is to obtain reli-
able well-documented values for kinetic constants, reaction rates,
and species concentrations. Although initial steps in this direc-
tion exist (e.g., http://www.brenda-enzymes.info and http://
sabio.villa-bosch.de), more work is required, which will involve
standardizing the naming scheme for genes, RNAs, proteins, and
metabolites.

When developing a program that performs an analysis, a com-
mon difficulty is that there is an additional task involved with
programming parts external to the core function (for example, to
adapt the format to the core program). That means, although
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a program might be specialized in analyzing the topology of
a reaction network, it also has to provide means for the input
and output of the reaction details. An answer to this difficulty
could be the Systems Biology Workbench (SBW) (47, 49), which
is a software system that enables different tools to communi-
cate with each other (http://sbw.sourceforge.net/). Thus, SBW-
enabled tools can use services provided by other modules and
in turn advertise their own specialized services. At the center of
the system is the SBW broker that receives messages from one
module and relays them to other modules. The list of SBW-
enabled programs contains programs specialized in the graphical
creation of reaction networks (JDesigner and CellDesigner), sim-
ulation tools (Jarnac and TauLeapService), analysis and optimiza-
tion tools (Metatool, Bifurcation and Optimization), and utili-
ties like the inspector module, which provides information about
other modules.

5. Guidelines for
the Construction
of Models

The following guidelines are intended to provide a basic guide
for the construction of dynamic models for non-experts in the
field, using the CellDesigner tool. For more detailed information
on modeling and systems biology models, see specific chapters in
this volume.

1. Use CellDesigner to construct the model layout via drag and
drop.

2. Do not use one of the automatic layout wizards. It is usu-
ally better to arrange the species manually with “Grid Snap”
switched on.

3. In SBML, molecular species have a name that you choose
when constructing the model and an ID that is automat-
ically provided by CellDesigner (see Fig. 20.2, panel e).
When entering the kinetic law that ID has to be used. To
avoid confusion it is recommendable that name and ID are
identical. After the layout of the model is finished, click on
“Edit/Replace Species ID. . .” to make all IDs identical to
the corresponding names.

4. Use “Edit/Add Layer” to add an additional layer for com-
ments (text) and graphical elements (arrows, lines) that are
not part of the actual model, but provide additional infor-
mation for the user. If desired the elements in the layer
can be made invisible by right clicking the layer (Fig. 20.2,
panel d).

http://sbw.sourceforge.net/
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5. After the basic reaction scheme has been constructed, each
reaction needs a kinetic law (a mathematical expression
which properly describes the conversion of substrates into
products). Unless other information is available from the lit-
erature, it is possible to choose between a mass action (mass
balance) law or an irreversible Michaelis–Menten kinetics.
The advantage of the mass action law is that the model will
always reach a steady state and it will need less parame-
ters than the Michaelis–Menten kinetics. The disadvantage
is that it is less realistic since it does not cover all possibilities
(e.g., enzyme saturation effects).

6. Once a kinetic law is chosen, numerical values for the param-
eters (reaction rates, half-lives, and saturation constants) are
required. This is one of the most important parts of model
building (together with choosing a kinetic law). The best
approach would be to design and perform controlled exper-
iments to determine the kinetic parameters of the specific
system under the conditions tested. Alternatively, data are
already available for enzymes of many organisms using dif-
ferent experimental conditions (e.g., through http://www.
brenda-enzymes.info). If a specific value has been obtained
it is advisable to save information about the original source
(Fig. 20.2, panel f). This helps other colleagues to under-
stand the numerical basis used for the model.

7. For stochastic simulations the species (molecules) need to
have the correct units. After the species is placed on the
model pane, do a right click and select “Edit Species. . ..”
If one enters “item” as substance unit in the emerging dia-
log box, the number under “initial. . .” is now interpreted
as molecules and not as concentration. If the Copasi plu-
gin is loaded a stochastic simulation can now be performed
from within CellDesigner, otherwise the SBML file has to
be opened with Copasi.

6. Concluding
Remarks

The increasing amounts of data being generated by well-designed
high-throughput experiments and techniques will allow the devel-
opment of dynamic models and simulations with a high degree
of complexity. However, to make efficient use of these possi-
bilities, the data have to be structured and formatted in a way
that they can be easily accessible for modeling. Not only have
the data to be curated and deposited in a database but the data
will need to be presented in a machine-readable form. When

http://www.brenda-enzymes.info
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programs like CellDesigner can automatically retrieve the rele-
vant data it will eventually much easier to construct and compare
large quantitative models. This also requires that there is a unique
and standardized naming scheme for genes, enzymes and reac-
tions. From a modelers point of view kinetic constants like reac-
tion rates and Michaelis Menten constants are essential for a real-
istic simulation of a biochemical model, but unfortunately there
are currently no high throughput methods for the measurement
of enzyme kinetics. The available data are often old, measured
with different techniques under different conditions in different
organisms and hidden in the scientific literature.

At the modeling level relevant progress has been made
with the development of the systems biology markup language
(SBML). This standard is a major step forward since it breaks
down the barriers between the different software tools and
enables the free exchange of models. By exchanging models it is
then possible to use different tools for different tasks (e.g., layout,
analysis, or simulation of the model).

An important issue to take into account at the early stages
of the construction of the biological model is, what is the objec-
tive of the model? Will it be used just to try to reproduce the
already reported data? Will it be a dynamic model able to predict
the output of new experiments, help in the design of new tests,
confirm or discard hypotheses before the need to be tested in
the laboratory? Biochemical systems are inherently dynamic, with
concentration and location of metabolites and enzymes constantly
changing depending on the environmental conditions. Will the
model be able to increase our knowledge of the dynamic behav-
ior of the system?

Quantitative dynamical models calculate how the system
changes over time and can simulate system behavior. A well-
formulated quantitative model can be used, for example, to study
and answer questions that are experimentally inaccessible or too
expensive or simulate changes in concentrations and see what con-
sequences can be expected. It is also possible to look at time peri-
ods that are too short or too long to be resolved experimentally.
For humans it is notoriously difficult to make predictions about
the behavior of nonlinear dynamical systems. Models are therefore
a way to test hypotheses by making hidden assumptions explicit
and simulating the often opposing effects of the system under
investigation. The insights gained from such simulations are then
valuable hints for the design of new experiments which will con-
tinue to increase our knowledge of the biological system, one of
the main goals of systems biology.
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Chapter 21

A Computational Method to Search for DNA Structural
Motifs in Functional Genomic Elements

Stephen C.J. Parker, Aaron Harlap, and Thomas D. Tullius

Abstract

The rapidly increasing availability of DNA sequence data from modern high-throughput experimental
techniques has created the need for computational algorithms to aid in motif discovery in genomic DNA.
Such algorithms are typically used to find a statistical representation of the nucleotide sequence of the
target site of a DNA-binding protein within a collection of DNA sequences that are thought to contain
segments to which the protein is bound. A major assumption of these algorithms is that the protein
recognizes the primary order of nucleotides in the sequence. However, proteins can also recognize the
three-dimensional shape and structure of DNA. To account for this, we developed a computational
method to predict the local structural profiles of any set of DNA sequences and then to search within
these profiles for common DNA structural motifs. Here we describe the details of this method and use
it to find a DNA structural motif in the Saccharomyces cerevisiae yeast genome that is associated with
binding of the transcription factor RLM1, a component of the protein kinase C-mediated MAP kinase
pathway.

Key words: Motif discovery, hydroxyl radical, DNA structure, Gibbs sampling, transcription factor,
RLM1.

1. Introduction

Recent technological advances have led to the ability to exper-
imentally determine where proteins bind to DNA throughout
most of the yeast genome (1). These methods are based on
immunoprecipitating proteins bound to chromatin, followed by
hybridizing the recovered DNA fragments to a microarray (ChIP-
chip), or by directly sequencing the bound DNA fragments using
next-generation sequencing methods (ChIP-seq). One limitation
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of these methods is the low resolution at which the protein-
binding site can be determined. DNA-binding proteins typically
recognize 10–20 bp of DNA (2), while a typical ChIP-chip cat-
alog (1) used microarray probes with an average size of 480 bp.
To find the actual binding site of the protein, computational algo-
rithms are used to search for smaller motifs that are statistically
enriched within the relatively large immunoprecipitated DNA
fragments.

Conventional approaches to discovering sequence motifs are
implicitly based on the assumption that proteins interact directly
with the DNA bases, a phenomenon referred to as direct read-
out. However, protein–DNA interactions are actually much more
complex. Besides making direct hydrogen bonds with the DNA
bases, a protein also can make contacts with the deoxyribose
sugars and the phosphate backbone of DNA, thereby sensing
the local variation in the shape of the DNA duplex (3). This
alternate mode of recognition is called indirect readout (4–6).
We suggest that the direct readout perspective that is central to
most computational motif discovery algorithms may lead to a
biased view when searching for biologically functional motifs in
genomic DNA.

In earlier work, we introduced the use of the hydroxyl radi-
cal (·OH) as a chemical probe of the shape of DNA in solution
(7, 8). We showed that the quantitative extent of hydroxyl rad-
ical cleavage at each nucleotide of duplex DNA is proportional
to the solvent accessible surface area of the deoxyribose residue
that is part of that nucleotide (9). Therefore, the hydroxyl radi-
cal cleavage pattern represents the shape of the surface of a DNA
molecule, at single-nucleotide resolution (10).

Using a database of experimentally determined hydroxyl rad-
ical cleavage patterns for a variety of DNA sequences, we devel-
oped an algorithm to accurately predict the cleavage pattern for
any DNA sequence (11). We have shown previously that these
cleavage patterns can be used to detect DNA structural motifs
in biologically functional regions of the human genome (12).
We call these motifs common OH radical cleavage signatures
(CORCS) and use a computer program called CORCS Screen-
ing Utility version 2 (CORCSScrU2) to discover them. CORC-
SScrU2 uses Gibbs sampling, a statistical method that allows for
the rapid exploration of large search spaces (13), to find common
structural motifs in sets of DNA sequences.

Here, we illustrate the application of this method by using
it to find DNA structural motifs associated with the binding of
the yeast transcription factor RLM1, a component of the protein
kinase C-mediated MAP kinase pathway, using ChIP-chip data
from a recent study (1). No sequence-based motifs were found for
this protein in the cited study or in a subsequent study that rean-
alyzed the original ChIP-chip data using newer computational



Finding DNA Structural Motifs in Genomes 369

motif discovery algorithms (14). In contrast, the CORCSScrU2
program discovered statistically significant DNA structural motifs,
demonstrating the utility of this approach.

2. Materials

2.1. Computing
Environment

1. Our computational method requires a UNIX-like operating
system. Mac OSX and most Linux distributions will work.
Windows distributions may also work, but have not been
tested by us.

2. The computer must have the Perl programming language
installed. To verify this, open a terminal window and type
the command:

perl -v

This command will report which version of Perl is installed,
if any.

3. The CORCSScrU2 program depends on the Bio::SeqIO
module from the Bioperl Toolkit (15) (see Note 1).

4. Download the CORCSScrU2 set of programs from here
http://dna.bu.edu/corcsscru2/CORCSScrU2_programs.
tar.gz

5. Uncompress the downloaded file by issuing the following
command in the terminal:

tar -zxvf CORCSScrU2_programs.tar.gz

6. Open the newly created CORCSScrU2_programs directory,
where you will find a host of scripts that will facilitate the use
of the method.

7. In a terminal window, navigate to the above directory and
enter the following command:

perl CORCSScrU2.pl

8. If you have correctly installed Bioperl, this command will
result in a help message from the CORCSScrU2.pl Perl
script.

9. Your computing environment is now ready to use.

2.2. DNA Sequence
Data

To search for DNA structural motifs, the first step is to collect a
set of DNA sequences. As an example of the application of the

http://dna.bu.edu/corcsscru2/CORCSScrU2_programs.tar.gz
http://dna.bu.edu/corcsscru2/CORCSScrU2_programs.tar.gz
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method, we used sequences found to bind to RLM1 from ChIP-
chip experiments performed by Harbison et al. (1).

We decided to use binding data for the RLM1 protein
because, as described above, no motifs were discovered when
sequence-based computational methods were employed. In addi-
tion, a recent study that used protein-binding microarrays to ana-
lyze the DNA-binding specificities of a large number of yeast tran-
scription factors was unable to obtain reliable specificity data for
RLM1 (16).

The co-crystal structure of an RLM1 homolog bound to
DNA indicates that the protein makes many contacts with the
DNA backbone (17), suggesting that the local shape of the DNA-
binding site may be important for recognition irrespective of
the underlying sequence. Recent work showed that by taking
the structure of the protein–DNA complex into account, a low-
information RLM1 sequence motif could be statistically discov-
ered (18). However, such a method requires prior knowledge
of the structural details of the protein–DNA complex, which
may not always be available. By contrast, our method uses only
DNA structural patterns, which can be accurately predicted for
any DNA sequence (11) without regard for the structure of the
protein–DNA complex.

Many other types of DNA sequence data can be analyzed
with our method. For example, we were successful in detect-
ing DNA structural motifs in DNaseI hypersensitive sites in the
human genome (12). We also note that some genes with similar
expression profiles have been shown to contain common DNA
sequence motifs (19). We suggest that regulation of other genes
may depend on the presence of a common structural motif in
genomic DNA, which could be found by using our method to
search for structural motifs in promoter regions of genes with
similar expression patterns.

The DNA sequences used in our method must be fasta for-
matted – that is, each sequence should have a header line start-
ing with “>” followed by subsequent lines that contain the DNA
sequence.

1. Download or create a fasta file that contains the set of DNA
sequences of interest.

2. Save this file in the directory created in Section 2.1.
3. To allow the user to test the method, we have provided

the fasta file used for our example analysis of RLM1. In
the CORCSScrU2_programs directory, find the file named
RLM1_YPD.fa. This file contains 57 DNA sequences, with
an average length of 899 bp, that represent regions in the
yeast genome that were identified by ChIP-chip experiments
to be bound by RLM1 (1).
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3. Methods

3.1. Running
CORCSScrU2

1. Open a terminal window and navigate to the CORCSS-
crU2_programs directory that was created in Section 2.1.

2. The fasta file described in Section 2.2 that contains the
RLM1-bound DNA sequences (RLM1_YPD.fa) should also
be in this directory.

3. Execute the command:

Perl CORCSScrU2.pl -w 8 -f RLM1_YPD.fa >

RLM1_YPD.fa.real.1.out

4. This command will run the CORCSScrU2 program on the
supplied fasta file and search for a common 8 bp DNA struc-
tural motif. The length of the motif is specified by the -w
option (in this case, -w 8). The results of the run will be
stored in the file RLM1_YPD.fa.real.1.out. We note that the
above command runs CORCSScrU2 with default options.
Sometimes these options are not optimal. See Note 2 for
further details. Each output file contains the nucleotide
sequence alignment and the hydroxyl radical cleavage pat-
tern alignment that were found by Gibbs sampling in that
run of CORCSScrU2. The position of each motif within
each individual sequence is indicated. The final score for
the alignment (Score) and the average percent information
(API) for the motif are listed at the end of the output file.

5. Total compute time for one run of CORCSScrU2 on the
example RLM1 data set should be tens of minutes. The
time will vary depending on the number and length of the
sequences being analyzed (see Note 3), and on the computer
on which the program is run.

6. Other motif lengths can be searched for, by changing the -w
option.

7. Run CORCSScrU2 100 times as described in Step 3 above,
each time changing the output file to a different name (see
Note 4).

8. Repeat Step 7, only this time using the -r option, and alter
the output file name(s) accordingly. This option randomizes
the input sequences, as a control.

3.2. Analyzing
CORCSScrU2 Results

1. Since Gibbs sampling is a stochastic process, the exact same
motif may not be discovered twice in different CORCSSS-
crU2 runs using the same data set. However, if a strong
motif is present, the distribution of all the CORCSScrU2
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Fig. 21.1. Box plots comparing the distributions of CORCSScrU2 scores for real protein-
binding sequences and random DNA sequences. Each distribution represents 100
CORCSScrU2 runs using either real RLM1-binding site data or randomized data. The
statistical difference between the two distributions was calculated using a Kolmogorov–
Smirnov test (see text).

scores for the real compared to the randomized DNA
sequences should be shifted toward higher values.

2. Gather the scores for the 100 CORCSScrU2 runs on real
sequences and compare them to the 100 runs on random
sequences. The score for each CORCSScrU2 run is on the
next to last line of the output file (Score).

3. We plot the results of this comparison in Fig. 21.1, for
RLM1. Note that the distribution of scores for the real
sequences is significantly shifted to higher scores compared
to the distribution of scores for the random sequences (the
control) (p < 10–12; Kolmogorov–Smirnov test; http://
www.physics.csbsju.edu/stats/KS-test.html).

4. To visualize a DNA structural motif, we recommend creat-
ing a heatmap, as depicted in Fig. 21.2a.

5. To do this, first use the included accessory script to convert
the output from CORCSScrU2 to a matrix representation,
by running the following command on one of the CORC-
SScrU2 output files. It is best to do this on an output file
with a high CORCSScrU2 score (see Note 5):

perl transform_CORCSScrU2_output_to_matrix.pl -f

RLM1_YPD.fa.real.37.out >

RLM1_YPD.fa.real.37.out.mtx

http://www.physics.csbsju.edu/stats/KS-test.html
http://www.physics.csbsju.edu/stats/KS-test.html


Finding DNA Structural Motifs in Genomes 373

Fig. 21.2. Heatmap and sequence logo of a structural motif. (a) Heatmap representation
of the highest scoring structural motif, where the x-axis is the position in the motif
and the y-axis represents the hydroxyl radical cleavage intensity bin (0 = lowest; 3 =
highest). The level of shading indicates the fraction of patterns with a given cleavage
bin at each position in the motif. (b) Sequence logo for the motif depicted in (a). Note
that this sequence logo shows that different DNA sequences can result in the structural
pattern shown in a.

6. This command will convert the output from CORCSScrU2
into a format amenable to creating a heatmap using the
matrix2png utility (20) (see Note 6).

7. The resulting heatmap image can be viewed using any
graphics program that is compatible with the png file
format.

8. To compare the heatmap that represents the DNA struc-
tural motif to the underlying nucleotide sequence, we rec-
ommend creating a sequence logo, which is a representa-
tion of the amount of nucleotide sequence information that
a motif contains at each position (21, 22).

9. To do this, use the included accessory script to convert the
output from CORCSScrU2 into a fasta file:

perl transform_CORCSScrU2_output_to_fasta.pl -f

RLM1_YPD.fa.real.37.out >

RLM1_YPD.fa.real.37.out.fa
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10. The resulting fasta file can then be converted into a web-
logo using an online utility (see Note 7). We show in
Fig. 21.2b the sequence logo that is produced by CORC-
SScru2 for the RLM1 structural motif that is depicted in
Fig. 21.2a.

11. We recommend repeating Steps 5–10 for the top 5–10% of
the highest scoring motifs from all the CORCSScrU2 runs.
Common structural motifs are likely to be found among
the highest scoring results. One should be careful to dismiss
motifs resulting from poly A/T tracts, which is a common
occurrence for yeast (see Note 8).

12. The structural motif that is presented in Fig. 21.2 was
found to occur frequently in the top scoring CORCSS-
crU2 runs using RLM1 DNA-binding data. To compare
the amount of information embodied in the DNA struc-
tural motif to the information embodied in the nucleotide
sequence motif, we measured the amount of informa-
tion for each type of data at each position in the motif
(Fig. 21.3). The information content at each position
represents how well defined is the motif. Motifs with a
low degree of degeneracy have high information content.
Information content calculations were performed as previ-
ously described (12). The results presented in Fig. 21.3
show that there is more DNA structural information than
nucleotide sequence information at each position in the
RLM1 motif. Previous studies found either no nucleotide-
based motifs for RLM1-bound regions (1, 14) or, after
incorporating protein structure properties, a motif with

Fig. 21.3. Motif information content. The amount of information, in bits, was calculated
for the motif depicted in Fig. 21.2. Note that every nucleotide position has more informa-
tion in the hydroxyl radical cleavage pattern than in the underlying nucleotide sequence.
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low information content (18). Our results suggest that the
local DNA structure may be important for RLM1-binding
specificity.

3.3. Scanning a
Structural Motif
Across a DNA
Sequence

1. Once a structural motif has been discovered, that motif can
be scanned across a set of DNA sequences to determine
where else it occurs in the genome. For example, the struc-
tural motif could be scanned across the entire yeast genome,
which is available for download (in fasta format) from

Fig. 21.4. (a) The number of instances of the RLM1 motif that is found in the yeast
genome at different score thresholds. (b) High scoring RLM1 structural motifs clus-
ter near transcription start sites (TSS). Negative numbers indicate the distance in base
pairs upstream relative to the nearest TSS, while positive numbers indicate the distance
downstream of the TSS.
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the UCSC Genome Browser (http://genome.ucsc.edu/)
(23, 24).

2. We provide a script, CORCSScrU2_matrix_scanner.pl, that
will scan a CORCSScrU2-discovered structural motif across
a set of input DNA sequences and report the positional hits
based on a score threshold.

3. We use a log-likelihood ratio to determine high-scoring
instances of the motif. This ratio is computed by comparing
the structural profile of each window in the input sequence
to the provided structural motif versus random expectation
and calculating the log2 ratio of these probabilities.

4. Run the CORCSScrU2_matrix_scanner.pl script as follows
(see Note 9):

perl CORCSScrU2_matrix_scanner.pl -m

RLM1_YPD.fa.real.37.out.mtx -f yeast_genome.fa

5. This script outputs the location of matches to the structural
motif that exceeds the specified score threshold.

6. Figure 21.4a demonstrates that as the score threshold is
increased, fewer motifs are discovered in the yeast genome.

7. In Fig. 21.4b we compare the positions of the highest scor-
ing matches to the positions of all yeast transcription start
sites. This analysis reveals that the RLM1 structural motif
occurs most often nearby transcription start sites, suggesting
that it may be involved in transcriptional regulation.

4. Notes

1. If Bioperl is not installed on your system, general informa-
tion can be found at http://www.bioperl.org. Installation
instructions can be found at http://www.bioperl.org/wiki/
Installing_BioPerl.

2. The -i option (iterations) is set to a default value of
15,000. We recommend setting this parameter to at least the
number of input sequences multiplied by 100. So, for 25
input sequences, use -i 2,500. The -v option (convergence
criterion) is set to a default value of 1,500. This option spec-
ifies the number of iterations past the -i threshold in which
the score does not increase, in order to consider a motif to
be fully converged. We recommend setting this option to at
least the number of input sequences multiplied by 10. Other

http://genome.ucsc.edu/
http://www.bioperl.org
http://www.bioperl.org/wiki/Installing_BioPerl
http://www.bioperl.org/wiki/Installing_BioPerl
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CORCSScrU2 options can easily be explored by rerunning
the program with different parameters.

3. For the example set of RLM1-bound sequences, we ran
CORCSScrU2 with the -i option set to 30,000, which took
about 1 h to run on one node in our computer cluster. The
cluster we used is an IBM eServer xSeries with 1 GHz Intel
Pentium III processors. More modern processors should
operate much faster.

4. CORCSScrU2 can be run fewer than the suggested 100
times, but this will result in decreased ability to detect a
statistical difference between real and random motifs. We
suggest changing the output file names by incrementing a
counter encoded in the file name itself. We also suggest
batching CORCSScrU2 runs on a computer cluster, so that
many runs can be performed simultaneously. Consult your
system administrator to find out how to run batches of jobs
on your system.

5. Here we assume that the output file with the name
“RLM1_YPD.fa.real.37.out” has the highest score (next to
last line of output) for that set of CORCSScrU2 runs. This
will likely be different for another set of CORCSScrU2 runs.

6. The matrix2png utility (20) can either be installed locally
on your computer, or used online at the following URL:
http://chibi.ubc.ca/matrix2png/bin/matrix2png.cgi. We
include the matrix file RLM1_YPD.fa.real.37.out.mtx, so
that the user can test the procedure to create a heatmap
using the matrix2png utility.

7. The weblogo utility (22) can be used online to cre-
ate sequence logos. For further instructions, see http://
weblogo.berkeley.edu/logo.cgi. We include the fasta file
RLM1_YPD.fa.real.37.out.fa, so that the user can test the
procedure to create a sequence logo using the weblogo
utility.

8. Poly A/T tracts are known to be enriched in many yeast
promoter regions and are thought to be involved in the reg-
ulation of nucleosome phasing (25). Since poly A/T tracts
will have common DNA structural properties, these regions
may crop up from time to time in CORCSScrU2 results for
yeast sequences. The occurrence of this phenomenon will
depend on the input sequences used.

9. The fasta file yeast_genome.fa can be downloaded from the
UCSC Genome Browser at the following URL: http://
genome.ucsc.edu/. The default score threshold for the
script CORCSScrU2_matrix_scanner.pl is set to 12, but can
be changed by using the -s option. For example, to change
the score threshold to 14, add “-s 14” to the command line.

http://chibi.ubc.ca/matrix2png/bin/matrix2png.cgi
http://weblogo.berkeley.edu/logo.cgi
http://weblogo.berkeley.edu/logo.cgi
http://genome.ucsc.edu/
http://genome.ucsc.edu/
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Chapter 22

High-Throughput Analyses and Curation of Protein
Interactions in Yeast

Shoshana J. Wodak, Jim Vlasblom, and Shuye Pu

Abstract

The yeast Saccharomyces cerevisiae is the model organism in which protein interactions have been most
extensively analyzed. The vast majority of these interactions have been characterized by a variety of sophis-
ticated high-throughput techniques probing different aspects of protein association. This chapter sum-
marizes the major techniques, highlights their complementary nature, discusses the data they produce,
and highlights some of the biases from which they suffer. A main focus is the key role played by compu-
tational methods for processing, analyzing, and validating the large body of noisy data produced by the
experimental procedures. It also describes how computational methods are used to extend the coverage
and reliability of protein interaction data by integrating information from heterogeneous sources and
reviews the current status of literature-curated data on yeast protein interactions stored in specialized
databases.

Key words: Protein–protein interaction (PPI) networks, protein complexes, yeast interactome.

1. Introduction

Most of the recent technological advances in large-scale identifi-
cation of protein interactions have been championed in the yeast
Saccharomyces cerevisiae. Thanks to these advances we now have
increasingly accurate, although not yet comprehensive, system-
level views of the interaction proteome – or interactome – of
this model organism. Depending on the type of technique used
for probing interactions different views are obtained, prompting
further investigations into the origins of these differences and
the principles that govern protein interaction affinity and speci-
ficity in the living cell. The fact that yeast is one of the most

J.I. Castrillo, S.G. Oliver (eds.), Yeast Systems Biology, Methods in Molecular Biology 759,
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extensively studied model organisms has been particularly helpful.
In addition to its fully sequenced and well-annotated genome and
proteome, various genome-scale studies produced invaluable data
on gene expression (1–3), transcriptional regulation (4–6), cellu-
lar localization of proteins (7, 8), phenotypic interactions (9–11),
protein half-life (12), and protein abundance (13). In addition,
a large number of hypothesis-driven small-scale studies have pro-
vided invaluable information on the function and regulation of
specific proteins and key cellular processes. All these data and
accumulated knowledge have been most instrumental as support-
ing evidence for identified protein interactions and for interpret-
ing the interaction landscape in terms of cellular processes and
pathways.

This chapter summarizes the major experimental techniques
that have been used for large-scale identification of protein–
protein interactions (PPI) and protein complexes in yeast. It high-
lights their complementary nature and discusses the data they pro-
duce and some of the biases from which these data may suffer.
An important focus of this chapter is on the key role played by
computational methods for processing, analyzing, and validating
data on tens of thousands of proteins and their interaction part-
ners produced by the different high-throughput techniques. It
furthermore describes how computational methods can be used
to extend our knowledge of the interactome by integrating data
from heterogeneous sources and discusses the current status of
literature-curated data on yeast protein interactions stored in spe-
cialized databases.

2. Methods
for Analysis of
Protein
Interactions

2.1. High-Throughput
Techniques for
Characterizing
Protein Interactions

Several techniques have been instrumental in enabling large-scale
characterization of protein interactions in yeast. These techniques
fall into two major categories: methods such as tandem affinity
purification combined with mass spectrometry (TAP/MS), which
detect multi-protein complexes, and techniques that systemati-
cally identify binary interactions. Methods of the latter category
include the yeast two-hybrid (Y2H) (14) and split-ubiquitin (15)
screens and various protein complementation assays (PCA) (16).

2.1.1. Tandem Affinity
Purification and Mass
Spectrometry (TAP/MS)

TAP/MS is perhaps one of the most powerful methods for detect-
ing protein complexes. It involves tagging a given protein with a
C-terminal TAP tag and expressing it at physiological concentra-
tion under the control of its endogenous promoter. The tagged
protein (bait) and its associated interacting partners (preys)
are subsequently co-purified using a two-step affinity capture
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procedure (17), and the identity of purified proteins is resolved
using mass spectrometry. This procedure identifies mainly stably
associated subunits but sometimes also more weakly interacting
proteins. Data from multiple baits and multiple purifications of
the same bait are processed computationally to produce a network
of binary associations between proteins, from which information
on protein complexes is derived (18–20). Only a fraction of these
binary associations actually correspond to physical interactions
between the polypeptides, whereas the remainder represent indi-
rect interactions mediated by other proteins or by nucleic acids
(RNA or DNA), which are not eliminated by the current high-
throughput TAP protocols. Non-native spurious interactions may
also occur due to the presence of contaminants, which consist
of polypeptides that tend to either bind to the column matri-
ces used for affinity purification or form non-specific interactions
with many different proteins. The fact that cells are lysed prior
to purification also brings in contact proteins that would not
normally interact in vivo. Lastly, the TAP/MS protocols applied
so far provide only a component list for each complex, but no
information on stoichiometry. Table 22.1 summarizes the var-
ious descriptions of the yeast interactome generated using the
TAP/MS procedures. The most comprehensive of these were
generated in 2006 by two independent studies (18, 19). Compu-
tational procedures were subsequently used to combine the raw
data produced by both studies and derive significantly larger and
more accurate sets of binary associations and complexes (18, 19,
21, 22).

2.1.2. Yeast Two-Hybrid
(Y2H) Screens

In contrast to TAP/MS, the yeast two-hybrid (Y2H) and other
binary screens detect only binary interaction partners. Although
it is generally assumed that these partners are engaged in direct
physical interactions, associations mediated by other protein com-
ponents cannot be ruled out. In Y2H screens (23–26) the inter-
action partners are fused with a DNA-binding domain and a
transcription-activating domain, respectively, and expressed in
yeast. The interaction between the proteins of interest, when it
takes place, reconstitutes a transcription factor that activates the
expression of reporter genes. Earlier large-scale Y2H studies (23–
25) were marred by a high rate of false-positive interactions,
often due to bait-mediated auto-activation, and their coverage
was rather limited, leading to a very small overlap between the
interactions detected in different studies (24). More recent ver-
sions of the technique are better at detecting false-positive inter-
actions (26) but there remain other outstanding issues. In partic-
ular, interactions identified by Y2H are all formed in the nucleus,
which is the natural environment of nuclear proteins, but not of
proteins usually found in other cellular compartments, although
these proteins are also commonly assayed using this technique.
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Table 22.1
Yeast high-throughput PPI data sets

Authors Year Methods # Proteins # Interactions # Complexes

Krogan et al. (19) 2006 TAP-MS 2708 7123 547

Gavin et al. (18) 2006 TAP-MS 1430 6532 491
Collins et al. (21) 2007 TAP-MS/PE 1622 9074 400a

Yu et al. (26) 2008 Y2H (union) 1278 (2108) 1809 (2930) NA
Uetz et al. (25) 2000 Y2H (screen) 1004 (817) 957 (692) NA

Ito et al. (24) 2001 Y2H (core) 3278 (797) 4549 (841) NA
Tarassov et al. (27) 2008 PCA 1124 2770 NA

Miller et al. (28) 2005 Split ubiquitin 536 1985 NA

For Uetz et al. (25) and Ito et al. (24), the figures in parentheses indicate number of proteins and interactions in the
high-quality portions of the data sets. For Yu et al. (26), the same figures indicate the union of their data with the
high-quality portions of Uetz et al. (25) and Ito et al. (24).
aThe set of 400 complexes was generated by Pu et al. (22) from a PPI network with 12,035 interactions among
1,921 proteins, obtained by thresholding the data set of Collins et al. (21) with a slightly lower cut-off of the protein
enrichment (PE) score, associated with each link, than in Ref. (21).
TAP/MS tandem affinity purification/mass spectrometry; Y2H yeast two-hybrid screens, PCA protein complementa-
tion assays, Split ubiquitin split-ubiquitin membrane yeast two-hybrid system.

Screening interactions in a context that differs from that in which
they occur in the cell may affect both their affinity and specificity,
with the latter depending crucially on competing cellular compo-
nents (including other proteins) present as the interaction takes
place. It is not too surprising therefore that the interactions iden-
tified by the Y2H technique tend to display little overlap with
the pairwise associations produced by the TAP/MS studies, as
recently highlighted (26) and illustrated in Fig. 22.1. It has been
argued that in comparison to TAP/MS PPIs, those identified
by Y2H are enriched in transient and condition-specific interac-
tions between complexes and pathways (26). The various inter-
action data sets produced by the Y2H screens are summarized in
Table 22.1. Noteworthy is the high confidence binary interac-
tion data set recently derived by combining the reliable portions
of two earlier proteome-wide Y2H screens (24, 25) with addi-
tional screens (26).

2.1.3. Protein
Complementation
Assays (PCA)

Protein complementation assays (PCA) are analogous to Y2H,
except that they probe interactions that occur in the cytoplasm.
In PCA, the bait and prey proteins are, respectively, fused with
fragments of a reporter protein. When the fragments are brought
into proximity by the interacting proteins, they associate and fold
into the native structure of the reporter, thereby reconstituting
its activity, which is either essential to cell growth or can be
monitored spectroscopically (16). A recent proteome-wide PCA
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Fig. 22.1. Overlap between protein interaction data sets derived from high-throughput studies and literature curation
for the yeast Saccharomyces cerevisiae. The following Venn diagrams illustrating the overlap of protein interactions and
proteins are shown: (a) Overlap between the high confidence portion the protein interaction data from Yu et al. (26),
derived using yeast two-hybrid screens (Y2H), the protein interactions from Tarassov et al. (27) identified using protein
complementation assays (PCA), and the consolidated high confidence protein interaction data set from Pu et al. (22)
obtained using the TAP/MS technique (see legend of Table 22.1 for details). Interactions derived from the latter technique
represent links between co-purified proteins, whereas those derived from the former two techniques represent binary
interactions. (b) Overlap between the proteins involved in the interactions of the same data sets as in (a). (c) Overlap of
literature-curated data on protein interactions consolidated from nine different databases using the iRefIndex procedure
(73) and made accessible by the iRefWeb interface (our unpublished results, see text), with protein interaction data from
Yu et al. (26) and Pu et al. (22), derived using Y2H screens and the TAP/MS technique, respectively. The literature-curated
interactions include both binary interactions and co-complex links. (d) Overlap between the proteins involved in the same
interaction data sets as in (c).

analysis in yeast used the essential enzyme dihydrofolate reductase
as the reporter and identified 2,770 interactions among 1,124
proteins (27). About 80% of these interactions are novel. Only
10% of PCA interactions fall within complexes defined by Pu
et al. (22). While 15% of PCA PPIs involve proteins in function-
ally related complexes, 36% and 38% are protein pairs where one
protein or both are not in the complex data set, respectively (27).
The origin of these discrepancies is presently unclear, although it
should be noted that the PCA study as designed can detect pro-
tein pairs within a distance of ∼80 Å from one another, which
implies that such pairs may not necessarily be in physical contact.
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2.1.4. Split-Ubiquitin
Screens

A screening technique related to both Y2H and PCA is the split-
ubiquitin yeast two-hybrid assay also denoted as ‘membrane yeast
two-hybrid’ (MYTH) (15). This technique does not require the
interacting proteins to localize to the nucleus and has proven to
be particularly suitable for the identification of binary interactions
involving integral membrane proteins, which are poorly covered
by the other techniques. In this assay the bait and prey proteins
are fused to the N- and C-terminal moieties of ubiquitin, respec-
tively. The C-terminal moiety is also fused to a transcription fac-
tor. Upon the association of the bait and prey proteins, the recon-
stituted ubiquitin molecule is the target of a ubiquitin-specific
protease, which cleaves off the transcription factor allowing it to
activate a reporter gene (15). Using this technique 1,985 puta-
tive interactions, involving over 536 integral membrane proteins
in yeast, have been identified (28) (see Table 22.1). Processing
these data further using machine learning techniques (see (29)
and Section 2.6) indicated that a majority of these putative inter-
actions are of low or medium confidence (1,085 interactions in
the first case and 677 in the second), leaving only 131 high con-
fidence interactions in the entire data set.

The overlap between the most recent comprehensive PPI
data sets of S. cerevisiae, derived using the TAP/MS, Y2H, and
the PCA techniques, respectively, is illustrated in Fig. 22.1. This
overlap is relatively limited, underscoring the fact that these tech-
niques probe distinct and complementary features of the yeast
interactome.

2.2. Role of
Computational
Procedures in
Deriving Interactome
Descriptions

Of the various high-throughput techniques described above,
TAP/MS is the most computationally intensive, an aspect not
generally appreciated. The sets of protein components identified
by this technique in thousands of purification runs are not the
final product, but the raw material that must be processed further
in order to derive reliable information on protein complexes that
form in the cell.

This data processing task is a key operation that involves two
main steps, as recently reviewed (20). First, the lists of compo-
nents derived from different purifications are converted into a
network of binary protein–protein links, with each link quan-
tified by a score reflecting the confidence with which the link
has been detected in the experiments. This network of weighted
binary links is thresholded to exclude low scoring links (see
Section 4.1). Second, the resulting high confidence (HC) net-
work is partitioned into densely connected regions (30), yielding
the final complexes – each described by a list of components. This
two-step protocol involves complex computational procedures,
and the use of different computational methods can have a pro-
found effect on the resulting interactome descriptions. This was
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illustrated by a detailed analysis of the raw data and the informa-
tion on complexes derived from these data in the two most recent
comprehensive yeast TAP/MS studies (18, 19). It was shown
(22) that although there was substantial overlap between the sets
of tagged proteins produced by both studies and between their
co-purified partners, the final sets of complexes differ significantly
(Fig. 22.2a). In particular, the complexes of the Heidelberg study

Fig. 22.2. Convergent descriptions of the yeast interactome derived from indepen-
dent high-throughput TAP/MS studies, thanks to uniform computational procedures. Pie
charts (bottom) illustrating the overlap between the components of complexes derived
from different reprocessed versions of the raw data from the two recent TAP/MS stud-
ies by Gavin et al. (18) and Krogan et al. (19). (a) Overlap between the components of
the complexes as published in the two original studies. In this case both the methods
for computing the protein networks and for deriving complexes from these networks
differ. (b) Overlap between the components of the complexes obtained by applying the
Markov clustering algorithm (MCL) (see text) to the protein interaction network derived
by Gavin et al. (18). In this case the procedures for computing the networks differ, but
the method for computing complexes from the two networks is the same. (c) Over-
lap between the components of complexes obtained by using the same procedure to
derive the PPI network from the raw data of each study and applying the MCL proce-
dure to derive complexes from the computed networks. In this case, both PPI networks
were computed using the protein enrichment (PE) score of Collins et al. (21), applied
as described in Pu et al. (22). Each set of derived complexes was subdivided into four
categories according to the fraction f of overlapping components: f > 90%; f between
50 and 90%; f between 5 and 50%; and f < 5% (represented by wedges of decreasing
gray scale) in complexes of the data set derived from the study of Krogan et al. (19)
and the maximum matching complex from the study of Gavin et al. (18). Computing
the reciprocal match yields essentially the same results (22). The number of complexes
computed from the two TAP/MS data sets in each of the three scenarios are indicated in
parentheses below the corresponding pie charts.
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(18) shared a large fraction of their subunits with one another,
whereas those of the Toronto group (19) displayed no over-
lap. It was established that these differences were mainly due to
the use of different clustering procedures to partition the net-
work of binary links constructed from the raw data, into multi-
protein complexes (22). Clustering is an optimization problem
commonly solved using heuristic algorithms. There is a wealth of
algorithms to choose from, but their ability to recover meaningful
clusters very much depends on the problem at hand (30).

One such algorithm, the Markov clustering procedure
(MCL), was recently shown to be particularly effective in parti-
tioning noisy protein interaction networks (30, 31). Applying this
algorithm followed by a post-processing step to the two published
TAP/MS networks, respectively (22) (see Section 4.2), yielded a
much more similar set of complexes than those published in the
original studies (Fig. 22.2b). Furthermore, complexes from both
studies displayed a modest degree of overlap with one another
(1.2 proteins on average) (22). An even better correspondence
between the two sets of complexes was achieved when exactly
the same computational procedures were used to reprocess the
raw data sets, compute the networks, and derive the complexes
from them as illustrated in Fig. 22.2c. The resulting new sets of
complexes also displayed a similar and improved level of consis-
tency with available biological knowledge, including information
on yeast complexes stored in databases, indicating that they are
of comparable accuracy (22). Applying exactly the same compu-
tational procedures to the raw data produced by the two indepen-
dent TAP/MS studies thus yields essentially convergent descrip-
tions of the yeast interactome.

2.3. Error Rates of
Interactions and
Complexes

2.3.1. Error Rates
of Interactions

A key question to ask when considering interactome descrip-
tions produced by high-throughput techniques is to what extent
these descriptions reflect biological reality. A way of addressing
this question is to estimate their error rate. Unfortunately, there
presently are no standard measures for estimating the error rate
of the identified binary links and complexes, and the development
of such measures is an active area of research (26). Since comple-
mentary laboratory experiments can be carried only on selected
subsets of the data, preference is given to quantitative criteria that
measure consistency with prior knowledge.

A particularly important role is played by comparisons against
a set of highly reliable, or ‘Gold Standard,’ literature-curated
interactions stored in databases. Using such Gold Standards,
error rates for the interaction data can be estimated. These error
rates are often defined as the fraction of binary links deemed
to be spurious (false positives) or alternatively as the ratio of
true-positive/false-positive (TP/FP) interactions. But these esti-
mates may vary widely, depending on how the Gold Standard
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Fig. 22.3. Error rate estimates for major protein interaction data sets derived from various high-throughput studies and
literature curation in yeast: the role of the Gold Standard (GS) data set. The panels display vertical bars representing the
estimated error rates (vertical axis) defined as the ratio true-positive (TP)/false-positive (FP) protein interactions computed
on the basis of different Gold Standard (GS) data sets. Error rates were estimated for nine different PPI data sets listed on
the horizontal axis: Batada (91), Krogan (19), Tarassov (27), Yu (26), Ito/Uetz (23–25), Gavin (18, 19), Pu (22), Collins (21),
and MIPS small scale (34). Only the high confidence portions of the different PPI data sets were evaluated, whenever
available. For the various GS data sets, the TP examples consisted of protein pairs where both members of the pair are
part of known multi-protein complexes. Two sets of known complexes were considered: the older set from MIPS (34) and
the newer CYC2008 set (35). The TN (true negative) examples were protein pairs drawn randomly from all the proteins
in the positive set minus any pairs that were in that set. In all the calculations the number of TN examples was 10 times
larger than that of the TP examples. For each of the evaluated PPI data set, 10 different random draws were carried out
to select the TN examples and the results were averaged. When a draw yielded a pair whose members do not overlap
with proteins in the evaluated data set, the draw was repeated. The average error rate (thick bars) and standard error
(thin bars) are indicated for each data set. (a) Error rates (average TP/TN ratios) for the different PPI data sets estimated
using a Gold Standard derived from the MIPS complexes, as described above. (b) Error rates for the different PPI data
sets estimated using a Gold Standard derived from the MIPS complexes, as in (a) but adding the condition that the drawn
TN examples not be co-localized to the same cellular compartment. Co-localization data were obtained from (7). (c) Error
rates estimated using a Gold Standard derived from the MIPS complexes, as in (a), but omitting ribosomal proteins from
the analysis. (d) Error rates computed as in (c), but using the CYC2008 complexes to define the Gold Standard data set.

itself is defined (Fig. 22.3 and (22, 26)). While the TP inter-
actions are defined directly from the Gold Standard as the reli-
able set of known interactions, a particularly contentious point
is the definition of ‘true-negative’ (TN) interactions, or interac-
tions that do not, or are unlikely to occur. Of the various ways
in which such true negatives are defined, the random selection
of protein pairs that are never reported to interact or to belong
to the same reported complex is deemed the least biased (32).
Although there is no guarantee that such randomly selected pairs
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are not ‘contaminated’ by true, yet undiscovered interactions, the
amount of contamination is likely to be small (32), provided that
the pairs are selected from a large enough pool of proteins. These
methods also need to compensate for the fact that the set of true-
negative interactions defined in this manner tends to be signifi-
cantly larger than the set of proteins known to interact.

Thus, comparing error rates for different data sets is meaning-
less unless these rates are estimated using the same Gold Standard
and calculation method, and even in the most favorable case, only
the relative magnitudes may be informative as discussed in (22)
and illustrated in Fig. 22.3.

This figure also illustrates the biases introduced by particular
definitions of the Gold Standard. For example, requiring that the
TN examples not be co-localized to the same sub-cellular com-
partment (Fig. 22.3b) significantly boosts the TP/FP ratios of all
the analyzed data sets, relative to those computed in the absence
of this requirement (Fig. 22.3a). More importantly still, apply-
ing this requirement strikingly improves the quality of the PCA
data set (27), relative to the PPIs obtained using other methods
(see Section 4.3). Likewise, including (Fig. 22.3a) or excluding
(Fig. 22.3c) ribosomal proteins from the Gold Standard alters
significantly the relative magnitudes of the estimated TP/FP for
several of the PPI data sets, and so does the choice of the spe-
cific Gold Standard itself (Fig. 22.3c, d). Thus, some of the high
error rates estimated for the yeast interaction networks derived
from the latest TAP-MS studies (33) should be critically reviewed
in this light.

Another problem is that Gold Standard data sets for yeast
(usually derived from complexes of the MIPS catalogue (34))
have been outdated until the recent report of an updated list of
408 complexes (CYC2008) (35).

It has also been argued that there is no unique organism-
specific Gold Standard. Indeed, a recent systematic validation
(26) of binary protein interactions in S. cerevisiae using yeast
two-hybrid screens, protein complementation assays (36), and the
mammalian protein–protein interaction trap technique (37) pro-
vides compelling evidence that interactions of this type tend to
differ from those identified using purification methods, as sug-
gested by the poor overlap between the interactions identified
using the different methods (Fig. 22.1). Lower error rates of
a given type of method can therefore be derived by compari-
son to Gold Standards that are appropriate for the same type of
methods (26).

2.3.2. Validation of
Protein Complexes

Protein complexes identified from various PPI networks are
also commonly validated against known complexes annotated in
databases taken as the Gold Standard. Typically the components
of the newly identified complexes are systematically compared
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to those of the annotated set using various measures quantify-
ing the overlap. Several different measures have been proposed,
with some being more stringent (19, 30) than others (38). Other
independent reliability measures are often used in addition. These
involve evaluating consistency with available information on cel-
lular localization (7), the functional annotations of individual pro-
tein components stored in databases (using the GO hierarchy
(39)), and often also on the expression profiles of the correspond-
ing genes (40), as illustrated in Fig. 22.4. Reliability criteria based
on inferred domain–domain interactions (41) or on annotated
interactions between paralogous proteins (40) have also been pro-
posed. But these criteria involve assumptions and approximations
and their usefulness is further limited by the quality and partic-
ular biases in the available information (e.g., subsets of proteins
and interactions covered).

2.4. Estimating
Protein–Protein
Interaction (PPI)
Coverage

The main goal of high-throughput methods is to provide interac-
tome descriptions that are as unbiased and comprehensive as pos-
sible. But this goal may be an elusive one, considering that most
current methods are not very good at capturing transient inter-
actions and those involving very low abundant proteins. Even for
the more stable and abundant complexes in yeast, achieving com-
prehensive coverage remains a challenge. A case in point is the
still limited coverage of membrane proteins (18, 19). Further-
more, there are ample reasons to believe that changes in cellular
conditions may significantly influence the composition of some

Fig. 22.4. Validation of yeast protein complexes derived from high-throughput studies and literature curation. (a) Similar-
ity of the functional annotations and extent of sub-cellular co-localization for proteins within complexes. The similarity in
functional annotations is estimated from the gene ontology (GO) annotations using the semantic similarity (SS) measure
(92) (vertical axis, right-hand side of the panel). The extent to which components within complexes have been assigned
to the same sub-cellular compartment is evaluated using the PPV (positive predictive value) score (vertical axis, left-
hand side of the panel), defined as the fraction of protein pairs within complexes that are assigned to the same cellular
compartment. Sub-cellular localization data for Saccharomyces cerevisiae are those of (7, 8). The validated data sets
of yeast protein complexes are the published complexes of Gavin et al. (18, 19), the complexes derived by applying
the MCL procedure to the published PPI network of Gavin et al. (as described in (22) and in Fig. 22.2b), the published
complexes of Krogan et al. (19), those derived by Pu et al. (22) from the consolidated data sets of the two most recent
Tap/MS studies, and the MIPS complexes (34). (b) Distributions (ordinate) of the pairwise Pearson correlation coefficient
(abscissa) of the mRNA expression profiles of S. cerevisiae proteins of different categories (see legend). The complexes
are from the MIPS catalog. The mRNA expression data are those from (1).
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complexes. However, few if any of the high-throughput tech-
niques have so far explored any significant range of conditions
encountered by living cells.

Estimating the current level of coverage of the yeast interac-
tome is therefore extremely difficult without at least a good guess
of what the size of the complete interaction set might be. The
way interactions are defined (binary interactions or co-complex
links) will also influence the projections. Recent estimates, which
suggest that 50% of all possible interactions in yeast have been
identified (by all types of experimental methods combined) (33),
are overly optimistic. One problem with these estimates is that
they ignore the fact that the set of known interactions is not a
random sample of the entire network (42, 43). More conserva-
tive estimates based on a careful statistical analysis suggest that
only about 15–20% of ‘all’ binary interactions in yeast have so
far been mapped (44). Similar figures were reported on the basis,
among other things, of the observed rates at which known inter-
actions remain undetected by yeast two-hybrid methods (26).
The same report projects the total number of binary interactions
in S. cerevisiae to be between 18,000 and 30,000. In compar-
ison the number of binary interactions in human was recently
estimated at ∼600,000, with a current coverage of less than
1% (45).

2.5. Increasing PPI
Coverage and
Accuracy Through
Data Integration

While estimating the current rate of PPI coverage remains an
issue, approaches to maximizing it by combining evidence for
interactions from different sources, and using this information
to build consolidated interactome descriptions, have been very
useful.

Such data integration can be achieved using a variety of
machine learning (ML) algorithms (29). Many of these algo-
rithms optimize an objective function derived from various lines
of evidence, by maximizing the ability to discriminate between
the true-positive and true-negative interactions in a Gold Stan-
dard data set of exactly the same type and which suffers from
the same caveats, as those used for error rate estimations (see
Section 4.4).

One of the more successful approaches, loosely based on a
naïve Bayes classifier, was used to derive a consolidated protein
interaction network for S. cerevisiae from the raw data sets of
the two recent TAP/MS studies (21). This consolidated net-
work comprises 1,622 proteins and 9,074 protein associations,
significantly more than each of the two studies taken individu-
ally (Table 22.1). The estimated average error rate of the high
confidence (HC) portion of this network is also lower than for
several recently derived high confidence networks and similar to
that of a data set of binary interactions identified by small-scale
experiments and annotated by the Munich Information Center
for Protein Sequences (MIPS) (34). Very similar high-accuracy
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consolidated yeast protein interaction networks were derived
using related computational approaches (46, 47).

A very useful feature of ML algorithms is that they are
flexible enough to accommodate many different types of evi-
dence for PPIs even when those are individually not very reli-
able. It is hence common to consider data on co-localization,
co-expression, co-regulation, and GO annotations, in addition to
data from different high-throughput experiments (TAP/MS and
Y2H) and literature curation (48). However, since supporting evi-
dence tends to be available for the same set of interactions (sta-
ble associations or those involving abundant proteins), the gains
in coverage, particularly in terms of the number of new proteins
involved, often remain modest.

The inference of protein–protein interactions can be further
strengthened by considering properties computed from an under-
lying PPI or genetic interaction network. Examples include the
Pearson correlation between the interaction profiles of two pro-
teins (38) and metrics of shared connectivity (49) in the PPI net-
work. More complex graph analysis approaches, which consider
both the local and global topologies of the underlying networks
to rank the likelihood that two proteins interact, were shown to
yield further improvements (47, 50). Combining evidence from
heterogeneous sources, with inferences based on network proper-
ties, has recently produced a set of 19,258 protein–protein asso-
ciations for S. cerevisiae, whose estimated false-positive rate is
∼10% (47).

2.6. Mapping Protein
Complexes into
Pathways

2.6.1. Epistatic
Interactions

Genetic interactions represent phenotype alterations produced by
the deletion or mutation of one gene in the background of a
mutation (or deletion) of another gene (51). These interactions
are considered to be aggravating when the fitness of the dou-
ble mutant (usually measured as its growth rate) is worse than
expected, where the expectation is usually defined as the com-
bined effects of the double deletion. Alleviating interactions are
those where the double mutant is fitter than expected. Earlier
technologies such as synthetic genetic array (SGA) and diploid-
based synthetic lethality analysis by microarray (dSLAM) relied
solely on synthetic lethality (52, 53). A recent variant of SGA, the
epistatic miniarray profile (E-MAP) (9), and an improved SGA
method (54) comprehensively measure both aggravating and alle-
viating interactions on a continuous scale. Data from these studies
provide a complementary view to the PPI network and are partic-
ularly useful for organizing functional modules (such as protein
complexes) into pathways.

2.6.2. Deriving Clues on
Protein Interactions,
Complexes, and Gene
Function from Epistatic
Interactions

It has been shown that alleviating interactions frequently occur
between the subunits of a complex, whereas aggravating interac-
tions tend to occur between proteins belonging to functionally
parallel pathways (9). Proteins belonging to the same complex
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or the same pathway tend to exhibit highly correlated genetic
interaction profiles (9, 55, 56). Furthermore, it is not uncommon
to find that the genetic interaction profile of a gene shows either
alleviating or aggravating interactions with genes involved in
diverse cellular processes, a strong indication that multi-functional
genes are prevalent in the cell. Until recently, however, compu-
tational methods were incapable of teasing out information on
the multi-functional roles of genes from the epistatic miniarray
profile (E-MAP) data. These data were commonly analyzed using
hierarchical clustering and related methods, which partition genes
into disjoint groups. Such methods were instrumental in mapping
genes into pathways (55, 56), dividing large protein complexes
into functional sub-modules and identifying epistasis groups that
are otherwise not involved in physical interactions (9). Elab-
orating on an earlier study (57), E-MAP data were recently
combined with protein–protein interaction data to improve iden-
tification of protein complexes and to delineate functional rela-
tionships among them (58, 59).

2.6.3. Local Coherence
of Epistatic Profiles
Reveals Functional
Modules and Pleiotropic
Gene Function

To investigate the pleiotropic function of genes from these data
sets involves a different approach, which makes use of a biclus-
tering algorithm (60). This algorithm termed local coherence
detection (LCD) (61) exploits the fact that a group of multi-
functional genes may display a tight coherence over a fraction
of their E-MAP interaction profiles if they operate in a common
process under specific conditions, but behave distinctly otherwise.
Unlike hierarchical clustering methods, which rely on correlating
global interaction profiles, LCD is capable of utilizing both global
and local profile similarities (see Section 4.5).

The application of LCD to several E-MAP data sets (61) for
the yeast S. cerevisiae grouped the corresponding genes into many
known functional modules and protein complexes reported previ-
ously. In addition it uncovered a number of recently documented
and novel multi-functional relationships between genes and gene
groups. For example, LCD was able to recapitulate previously
reported multiple links between the Lge1/Bre1 ubiquitination
complex and complexes involved in various cellular processes,
including transcription, chromatid cohesion, and DNA damage
repair (61).

By exploiting partial profile similarity, LCD was also able to
group together multiple complexes or genes into a single cluster,
indicating that these complexes or genes might operate in com-
pensatory processes activated in response to deletion of a com-
mon subset of genes. In a number of cases, complexes performing
quite diverse roles are found in a cluster, suggesting new roles for
known complexes. For instance, the Compass complex, whish is
involved in transcription initiation, co-clusters with gene involved
in sister chromatid cohesion (Ctf4/Ctf8/Ctf18) and DNA repair
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Fig. 22.5. Functional modules involved in yeast chromosome biology featuring coherent epistatic interaction profiles.
The network of functional modules identified by the local coherence detection (LCD) procedure (61) from the epistatic
miniarray profile (E-MAP) data of (9) is depicted. Nodes represent complexes or known epistasis groups identified as
modules displaying a coherent epistatic interaction profile. The node size is proportional to the number of genes and
the edge thickness is proportional to the number of time the linked nodes are identified in the same module by the LCD
algorithm (61). Individual genes can be part of several modules.

(see Fig. 22.5) suggesting a novel role of this complex in the later
two processes, which is currently being verified experimentally.

2.7. Literature-
Curated Data on
Yeast Protein
Interactions

Hypothesis-driven small-scale studies involving specific systems or
focusing on specific cellular processes are another valuable source
of information on protein interactions and complexes in yeast and
other model organisms. This information is typically reported in
the scientific literature, usually in text form. With the growing
interest in protein interactions, efforts have been undertaken by
various groups worldwide to curate this information and make it
available in databases specialized in protein–protein interactions
(62, 63) or focusing on specific model organisms. Software tools
to interactively ‘mine’ the scientific literature for protein interac-
tions in an automatic fashion have also been developed (64, 65).

It has been assumed until recently that literature-curated
(LC) protein interactions data are of higher accuracy than those
produced by high-throughput studies, because they are derived
from carefully crafted focused investigations. But recent analy-
ses of the LC PPI data are suggesting that this is no longer the
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case, due in part not only to improvements in high-throughput
methods but also to inherent difficulties in extracting and archiv-
ing relevant information from published text (66, 67). Efforts to
address some of these difficulties by adopting standards for repre-
senting information on PPIs in databases are underway (68), but
the actual implementation of these standards is far from uniform.

Not withstanding these problems, the currently available data
representation standards are making it possible to consolidate
PPI data from different databases (62, 64, 69–73) and thereby
derive more comprehensive views of various interactomes than
afforded by any database individually. In one such effort, data
were consolidated from nine major databases that focus primar-
ily on the curation of physical protein–protein interactions: BIND
(74), BioGRID (62), Corum (75), DIP (63), IntAct (76), HPRD
(77), MINT (78), MPACT (79), and MPPI (80). The consolida-
tion was performed using the Interaction Reference Index (iRe-
fIndex) procedures (73), and the resulting non-redundant PPI
data set can be viewed and analyzed using the web-based query
interface iRefWeb (http://wodaklab.org/irefweb). The consoli-
dation methodology stands out from similar efforts by its rigor-
ous, publicly documented procedure for resolving redundancies.
In particular, it examines amino acid sequences to establish the
identity of interacting proteins and groups of different isoforms
of the same protein. This allows the iRefIndex to reliably com-
bine records from different databases that use different types of
protein identifiers to support the same PPI or complex.

The latest release of the iRefWeb/iRefIndex resource lists a
total of 72,410 non-redundant PPI interactions, made by 6,188
proteins for the yeast S. cerevisiae. These interactions are col-
lectively supported by 6,656 publications cited by the different
databases. These numbers of PPIs and corresponding proteins
clearly do not reflect biological reality. Indeed, they indicate that
the PPIs have been identified for as many or more proteins than
the yeast genome codes for, and that the total number of curated
yeast interactions is about—five to six times larger than those
identified by all high-throughput studies combined (our unpub-
lished results). These excessive numbers are mainly due to the
fact that some databases include unprocessed low confidence data
made available by authors of various high-throughput studies.

Ideally, to obtain a more realistic description of the con-
solidated yeast interactome, data integration procedures of the
type described above would need to be applied. Their applica-
tion in turn requires at the very least some type of ranking of
the literature-curated PPIs in terms of their reliability. Such rank-
ing is systematically provided by the confidence scores associ-
ated with protein links derived from TAP/MS studies or machine
learning-based data consolidation procedures (21). With a few

http://wodaklab.org/irefweb
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exceptions (such as MINT) (78), it is however not generally avail-
able from the source PPI databases.

It has been pointed out that PPI identified by several dif-
ferent publications or experiments are more likely to be biologi-
cally relevant. Requiring that PPI be supported by several publica-
tions has been a common approach for scoring PPI data in public
databases, as it is easy to interpret and the bias toward well-studied
interactions is immediately evident. As examples, IRefIndex stores
several attributes that indicate how many publications support a
given interaction (73), and BioGRID hosts sets of interactions
supported by multiple publications – or by certain select publica-
tions that the annotators deem reliable (62).

When requiring any of the consolidated S. cerevisiae PPI to
be supported by at least two publications, and filtering out PPI
data deemed unreliable stored by some of the source databases
(e.g., raw data sets from certain high-throughput studies) the
number of consolidated interactions and proteins in the iRe-
fWeb/iRefIndex system is reduced significantly to 16,755 and
3,440, respectively, which is much more realistic and better
reflects our current knowledge of the yeast interactome. Inter-
estingly, 85–92% of the interactions in this filtered data set are
reported by high-throughput studies (corresponding to publi-
cations reporting at least 10 and 20 interactions, respectively).
However, it should be realized that PPI data filtered in this man-
ner may still include low confidence interactions, as pruning those
would require more sophisticated analyses.

3. Conclusions

Despite many outstanding issues, high-throughput methods have
achieved real progress in providing increasingly accurate descrip-
tions of the S. cerevisiae interactome. Obtaining such accurate
descriptions involves the use of increasingly sophisticated com-
putational procedures and methods for integrating the results of
the high-throughput experiments with the vast body of heteroge-
neous data and knowledge accumulated on yeast over the years.
Although the system-level views afforded by the current interac-
tome descriptions yield useful insight into aspects of molecular
and cellular function and may provide clues on evolutionary pro-
cesses, they have very serious limitations. The network model of
protein links is far too abstract, as it ignores key attributes of the
underlying phenomena, such as the stoichiometry of the inter-
acting components, or the temporal and spatial constraints that
govern their formation. Furthermore, our current view of the
interactome is clearly biased toward interactions that are stable
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enough to be detected and those that can presently be probed by
the methods at hand.

The major challenge now facing the field is to translate this
abstract description into more detailed models describing real
physical interactions at the near atomic or atomic scale. Such
models can help reveal the physical contacts that can actually be
made between proteins and suggest how these contacts might
have evolved (81). They can furthermore provide atomic descrip-
tions of the interacting interfaces that are useful for various mech-
anistic investigations as well as for drug design (82).

With the development of new methods for deriving quanti-
tative information on complex stoichiometry in TAP/MS studies
(83) and for gaining information on the internal organization of
complexes (84), accurate models may in the future be built with
the help of the increasing body of data on known protein struc-
tures (PDB) and computational procedures to optimally dock
the components to each other. These so-called docking proce-
dures are becoming increasingly powerful and accessible to non-
specialists (85) as recently reviewed (86, 87).

4. Notes

4.1. Defining the High
Confidence Portion of
a PPI Network

Gold standard data sets such as those described in Section 2.3
are routinely used in defining the high confidence portion of
the PPI networks derived from the TAP/MS data. This usually
involves the following steps. First, the raw mass spectrometry data
from different purifications of the same complex and different
complexes are combined into a single confidence score for each
detected PPI. Examples are the socio-affinity (18) or the purifica-
tion enrichment (PE) (21) scores. Next an ROC (receiver opera-
tor curve) (29) or equivalent is plotted. This curve indicates how
the rate of FP (false-positive) interactions varies with the confi-
dence score level at which the network is thresholded. In some
approaches, the confidence scores themselves are derived using
machine learning procedures of the type discussed in Section 2.6.
In this case the ML algorithm (see Section 4.4) is ‘trained’ on
a portion of the PPI data set, to maximize their ability of dis-
criminating between true-positive (TP) and true-negative (TN)
interactions, as defined by a Gold Standard data set. The trained
model is then applied to the full data set to produce the con-
fidence scores that are used to plot a receiver operator curve
(ROC). In both scenarios, the ROC is used to settle on an accept-
able FP rate, which defines the confidence score threshold above
which interactions should be considered for further analysis.
Typically the high confidence (HC) portion of PPI data sets
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derived from TAP/MS experiments represents only a small frac-
tion of the full data set (<5%). The HC portion of the network
is less densely connected and therefore more readily processed by
clustering algorithms such as Markov clustering (MCL).

4.2. Post-processing
Step to Define
Protein Complexes
with Shared
Membership

The Markov clustering algorithm (MCL) partitions the PPI net-
work into non-overlapping clusters. When these clusters are taken
to represent multi-protein complexes as in (19), complex mem-
bership is exclusive: a given protein can be part of one complex
only. However, analysis of the PPI network and available infor-
mation on known complexes clearly indicates that such exclu-
sive membership poorly reflects biological reality. To correct for
that, Pu et al. (22) mapped the complexes/clusters computed
by MCL back into the PPI network and subjected them to a
post-processing step, in which components of a given complex
observed to also form dense interaction patterns with proteins
in other complexes were assigned to multiple complexes simulta-
neously. Applying this post-processing step to complexes derived
from the PPI network described in (22) yielded a total of 78
(19.5%) complexes, sharing at least 1 component with at least
1 other complex, with the remaining majority (322) containing
only uniquely assigned components. The overlapping complexes
were found to share on average 2.5 genes with 0.48 other com-
plexes. A similar level of overlap occurs in the hand-curated com-
plexes in the MIPS and SGD archives, where overlapping com-
plexes share 2.3 genes with 0.86 complexes on average. But the
fraction of complexes displaying these overlaps is lower than in
the curated complexes, reflecting some inherent limitations of the
PPI network approach as discussed in (22).

4.3. Specific Biases
in Evaluating PPI
Error Rates

The way in which the ‘true-negative’ TN interactions are defined
in the Gold Standard data set can introduce important biases
in evaluating the error rate in PPI data sets (see discussion in
Section 2.3). Requiring that the TN interactions in the Gold
Standard not be localized to the same sub-cellular compartment
significantly improves the quality (measured as the TP/FP ratio)
of several of the data sets, while markedly enhancing the differ-
ences between them (Fig. 22.3b vs. Fig 22.3a). In particular
this ratio is increased nearly 10-fold for the PCA data set in (27),
relative to the same ratio computed when the TN interactions
are simply randomly selected (Fig. 22.3a). We believe that this is
due to the fact that by design, the PCA method detects exclu-
sively co-localized partners, whereas TAP/MS or Y2H screens
may detect interactions between proteins localized to different
cellular compartments, for example, due to non-specific binding
during purification (TAP/MS) or to expressing the two proteins
in the nucleus (Y2H). Thus, the constrained definition of TN may
not be appropriate for evaluating the real error rate of methods
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Fig. 22.6. Graphical illustration of the principles underlying support vector machine
(SVM) procedures. (a) An idealized two-dimensional representation of the space of input
examples. These examples belong to two categories: diamonds and circles, respec-
tively. Examples of the two categories are clearly separated by a curved boundary,
except for one example from each category, which is misclassified. (b) An idealized
two-dimensional representation of the vectors representing the examples from (a) in the
feature space, after the mapping performed by the SVM. Also shown is the separating
line (hyperplane) identified by the SVM, which optimally segregates the vectors from the
two categories, save for those corresponding to the misclassified examples in (a). The
hyperplane translates into the curved boundary in the space of input examples shown
in (a). Any points that fall within the margin or that are misclassified are accompanied
by a penalty term commonly defined as the error cost C multiplied by the distance d
of the point to the margin corresponding to their correct class. (c) An idealized two-
dimensional representation illustrating two solutions produced by the SVM procedure. A
sub-optimal solution showing a hyperplane with narrow margins bounded by only one
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such as PCA – where one expects a relatively high fraction of the
total number of FP interactions to be concentrated among co-
localized proteins.

4.4. Support Vector
Machine (SVM) as
One of the Most
Versatile Machine
Learning Procedures
for PPI Prediction

In PPI prediction, the goal of supervised classifiers like the sup-
port vector machine (SVM) is to distinguish between true and
spurious PPIs on the basis of various lines of biological evidence.
This involves optimizing an objective function that depends on
the considered evidence (see below), by training on known true-
positive (TP) and true-negative (TN) examples of PPIs. These
examples are typically derived from a Gold Standard data set (see
Section 2.3). To perform this optimization (training) the SVM
transforms the lines of evidence for each input training example
into a vector in a space of potentially very high dimension (fea-
ture space) and finds a hyperplane that optimally separates the TP
examples from the TN examples within this space (Fig. 22.6a,
b). It has been applied to a wide array of problems in biology
including PPI prediction (28, 47, 50), as recently reviewed (88,
89), and has been shown to be robust to noise (32) in this con-
text. Importantly, the SVM does not explicitly transform each
example into the feature space. Instead, it uses a so-called ker-
nel function that maps two input examples to the dot product of
their corresponding vector representations in feature space. Since
the SVM objective function is formulated as a linear combina-
tion of dot products, it is not necessary to explicitly compute the
vector representation of each input example. Not only does this
prevent the intractable problem of materializing a vector in high
or infinite dimensions, it also allows to employ evidence with no
obvious vectorial representation – such as protein sequence simi-
larity or PPI network connectivity. These kernels have an intuitive
interpretation as a measure of similarity between two examples.
Depending on the kernel used, finding a decision hyperplane in
the feature space can correspond to arbitrarily complex non-linear
decision surfaces in the space of the input examples (input space)
(Fig. 22.6a).

A large number of kernel mapping functions can be used, but
the choice of the appropriate kernels can greatly benefit from prior
knowledge about a particular problem. The radial basis function
(RBF) kernels often give acceptable performance for many appli-
cations including PPI prediction and may also be useful if little

�

Fig. 22.6. (continued) vector from each category and the optimal solution showing a
hyperplane with wider margins bounded by three vectors from each category. The vec-
tors bounding the margins are called support vectors, denoted as S in the figure. More
generally, support vectors are all vectors that crucially influence the solution found by
the SVM procedure. In the case depicted in (b) they will also include the misclassified
vectors.
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is known about a problem. Recently, these more generic ker-
nels have been combined with the so-called diffusion kernels that
measure the connectivity of proteins in an underlying physical or
genetic interaction networks to improve the prediction of PPIs
(47, 50) or genetic interactions (50). Heterogeneous lines of evi-
dences can be combined (see Section 2.6) with an appropriate
kernel or by combining kernels. Although SVMs are generally
resistant to noise, eliminating redundant or highly correlated evi-
dence can improve performance (90). To achieve perfect accuracy
on the training examples, the hyperplane produced following the
kernel function mapping should completely separate the feature
vectors into two non-overlapping groups. Depending on the ker-
nel, such a result may not be possible or it may be overly com-
plex and not generalize well to data not included in training. To
combat this overfitting problem, the SVM maximizes the distance
(margin) between the decision surface and the closest positive and
negative examples (Fig. 22.6c) – called support vectors. A large
margin in feature space corresponds to a smoother decision sur-
face in input space, and hence the SVM can permit some misclas-
sification errors in order to increase the width of this margin (see
Fig. 22.6b). The cost parameter, C, controls the relative trade-
off between error rate and model complexity. High values of C
increase the misclassification cost, leading to a model that will do
comparatively well on classifying the training data, but that may
suffer from over-fitting.

Lastly, many kernels also have additional parameters. Finding
the optimal values for these and the C parameter often involves
some type of search algorithm guided by the success rate in clas-
sifying examples not used in the training phase (cross validation).

For a more rigorous introduction to the SVM in the context
of computational biology, see (88). Links to SVM software are
available on the web site http://www.kernel-machines.org.

4.5. The Local
Coherence Detection
(LCD) Algorithm

The local coherence detection algorithm is a biclustering proce-
dure that groups genes based on their genetic (epistatic) interac-
tion profiles (see (61) and http://wodaklab.org/biclustering/).
The main difference between LCD and hierarchical clustering is
that it considers the similarity of both the profiles as a whole and
portions of it, whereas hierarchical clustering considers only the
similarity of global profiles. LCD is also unique in handling all
numeric data types, encompassing positive, negative, and miss-
ing values, and thus is able to take full advantage of the rich
information afforded by the continuous-scale, real-valued, high-
density E-MAP data such as that of (9). Exploiting the similari-
ties between portions of the epistatic profiles involves using strin-
gent fitness scores derived on the basis of solid statistical criteria.
Those are established using minimally randomized background
models, where only edge weights of the genetic interaction (GI)
network are swapped while the edge weight distribution, node

http://www.kernel-machines.org
http://wodaklab.org/biclustering
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degree distribution, node labels, and network topology were pre-
served (61). These models afford the detection of gene groups
with coherent GI patterns with a negligible rate of false positives.
Such gene groups are defined as functional modules.
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Chapter 23

Noise in Biological Systems: Pros, Cons, and Mechanisms
of Control

Yitzhak Pilpel

Abstract

Genetic regulatory circuits are often regarded as precise machines that accurately determine the level
of expression of each protein. Most experimental technologies used to measure gene expression levels
are incapable of testing and challenging this notion, as they often measure levels averaged over entire
populations of cells. Yet, when expression levels are measured at the single cell level of even genetically
identical cells, substantial cell-to-cell variation (or “noise”) may be observed. Sometimes different genes
in a given genome may display different levels of noise; even the same gene, expressed under different
environmental conditions, may display greater cell-to-cell variability in specific conditions and more tight
control in other situations. While at first glance noise may seem to be an undesired property of biological
networks, it might be beneficial in some cases. For instance, noise will increase functional heterogeneity in
a population of microorganisms facing variable, often unpredictable, environmental changes, increasing
the probability that some cells may survive the stress. In that respect, we can speculate that the popu-
lation is implementing a risk distribution strategy, long before genetic heterogeneity could be acquired.
Organisms may have evolved to regulate not only the averaged gene expression levels but also the extent
of allowed deviations from such an average, setting it at the desired level for every gene under each spe-
cific condition. Here we review the evolving understanding of noise, its molecular underpinnings, and its
effect on phenotype and fitness – when it can be detrimental, beneficial, or neutral and which regulatory
tools eukaryotic cells may use to optimally control it.

Key words: Noise in gene expression, noise control mechanisms, regulatory networks, network
biology.

1. Relevance
of Noise in
Biological
Systems Since the earliest discoveries of the basic mechanisms that con-

trol gene expression, biologists have been intensively engaged in
measuring mRNA and protein levels. Such studies, driven by a
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broad range of technologies, have established links between the
programs that regulate gene expression and the corresponding
molecular phenotype – the level of expression of each individual
gene and its response to external signals and, ultimately, to the
phenotype of the organism. The advent of genomics revolution-
ized the study of gene expression: technologies such as DNA and
protein microarrays, and most recently, RNA sequencing enables
the measurement of gene expression for every gene, providing
rich information about transcription (1), mRNA degradation (2),
translation (3), RNA editing (4), and more. Examination of con-
trol regions of genes will enable researchers to decipher the regu-
latory programs that underlie the observed behavior.

However, common to all such technologies is the fact that
measurements represent averaged RNA and protein levels over
large populations of cells. For instance, a typical microarray exper-
iment requires more than 100,000 cells. Such measurements thus
provide very reliable estimates of the average level of expression of
a given gene over an entire population of what are typically genet-
ically identical cells. If all cells in a population expressed a given
gene at the same or even very similar levels, then the average alone
would, indeed, capture the reality well. However, if different cells
in the population expressed a given gene at different levels, then
information about cell-to-cell variation would be lost. If cells take
control of the extent to which they allow or restrict such diver-
sity, deciphering the mechanisms that exert such control would
require alternative models and technologies.

From a theoretical perspective, what is the potential for cell-
to-cell variation in gene expression levels, among genetically iden-
tical cells? Stochasticity and randomness govern the microscopic
world inside cells, the world of molecular recognition that is
driven by interactions between molecules in a crowded environ-
ment. The effects of such random events may be particularly dra-
matic when it comes to molecules that are represented in just a
few copies per cell, as is the case with many regulators of gene
expression. For instance, if a particular regulator is present, on
average, in two copies per cell, we should not be surprised to find
cells that have four copies and others with one or even zero copies
of this molecule. It is also easy to imagine that the targets of such
a regulator would also display corresponding, and perhaps even
greater, fluctuations as a result. Cell-to-cell variation at the level
of gene expression may constitute a real possibility.

What would be the interest of studying this possible variation?
We might think that if the population averages out such fluctu-
ations then they will have no functional consequence. Here we
will argue for the converse. Consider, for instance, a population
of genetically identical Escherichia coli cells that are attacked by
an antibiotic drug. While the majority of the population may die,
a portion may survive the attack. Note that we do not consider
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here the case of resistant cells that are genetically different from
the majority of the population; rather, only those persisters (5)
that are genetically identical to the rest of the cells. Further inves-
tigation revealed a stochastic split of the population into two sub-
populations, one that is sensitive to the drug and another that is
not, and a purely random event that allows cells to switch from
one fate to the other (5). Another example, for instance, sporu-
lation in yeast, a potential defensive response to stress, manifests
itself in only a portion of genetically identical cells in a popu-
lation. It turns out that a single protein stochastically expressed
at varying levels in different cells determines the different cellu-
lar fates (6). To take examples from multi-cellular organisms, a
combined theoretical–experimental approach involving immune
T-cells found that stochastic variation in the expression of key sig-
naling proteins generates substantial cell-to-cell variability in the
antigen responsiveness needed among cells in a clonal population
(7). Another example relates to populations of cells in tumors.
After chemotherapy treatment the majority of the cells may die,
but a smaller sub-population may survive. Recently, an individual
protein was found that, due to stochastic effects, may be tem-
porarily present at varying levels in particular cancer cells (8). As
a consequence, some of the cells are rendered resistant to a drug,
whereas others are unable to survive the same therapy. In all these
systems, a seemingly random event at the molecular level – often
the choice of expression level for key genes in particular cells –
gave rise to dramatically different phenotypes at the cellular and
organism levels. Without measuring the levels of relevant proteins
at the population level and the average over all the cells in the
population, the underpinnings of the sophisticated environmen-
tal response can be altogether missed.

The paradigm that emerges is that certain critical biological
phenomena, such as drug persistence, stress response, immune
response, and cancer cell proliferation, are rooted in stochastic
molecular events, which ultimately lead to phenotypic variation
among genetically identical cells. Yet these cases might repre-
sent the exception rather than the rule. The perception that cells
tightly control the expression of their genes, to such an extent
that cell-to-cell variation would be limited, may indeed be cor-
rect in the case of many genes that must be expressed at precisely
fixed levels. The dozens of proteins that make up large macro-
molecular complexes such as the ribosome, for example, should
conceivably be kept under tight control, not least to eliminate
wasteful production. It is thus conceivable that cells may have
evolved mechanisms to determine the extent to which they can
safely permit variations in the expression of some genes in their
genomes and restrict variation in others.

Stochastic variation in gene expression levels among genet-
ically identical cells grown under the same conditions is often
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dubbed “noise” (9–12). Quantification of noise in gene expres-
sion often requires measurements of mRNA or protein levels in
single cells. In recent years, experimental techniques to measure
gene expression in single cells at high throughput and with great
accuracy have matured (9–13, 18), along with theoretical mod-
els to rationalize the results (14, 15). The aims of those studying
noise in gene expression are thus to measure noise in various bio-
logical setups, to decipher the regulatory means by which cells
control noise, and to study the biological consequences of such
non-genetic variation. Another substantial bonus from the study
of noise comes from the fact that the statistical properties of noise
can reveal basic principles of the molecular processes that govern
gene expression. For instance, by analysis of noise spectra it was
possible to deduce that gene expression occurs in bursts, whose
two key parameters are the burst size and frequency (15). This
information is essential to understanding noise behavior but its
implications extend to the basics of gene expression mechanisms.

2. Noise in Gene
Expression

Consider the expression level of protein X in a unicellular organ-
ism such as yeast in the following thought experiment: Let us
measure its expression in two genetically identical cells. Since
the two cells are genetically identical, we might expect that the
expression level of our protein would be identical in both. Sup-
pose that we have measured the actual copy number of protein X
in each cell and found it to be twice as high in one of the cells,
compared to the other. Our first suspicion might be that a mea-
surement error occurred or, to put it more quantitatively, that the
measurement error is larger than the true variation between our
two cells. Let us then assume that the difference is reproducible,
even after many repetitions; moreover, it is not seen with respect
to another protein, Y, which on average shares the same expres-
sion level as X.

So, why the level of expression of protein X appears to dif-
fer so significantly between the two cells? First, even if our two
cells are identical at the DNA level, errors do occur at the level
of transcription and translation: on average, 1 in every 10,000
transcribed nucleotides, and 1 in every 1,000 translated amino
acids, is expected to be wrong (16, 17). Such errors may affect
the expression level of a protein, e.g., by affecting the stability
of the mRNA and the protein or by affecting protein X’s reg-
ulators. A dramatic phenotypic consequence of such errors was
recently demonstrated in a study in which transcription error rate
was increased by a positive feedback (17).
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Let us assume that in the two cells, all copies of X were tran-
scribed and translated without a single error. What other reason
may be responsible for the different levels of expression of pro-
tein X? The cells might have been subjected to different “micro-
environments” (for instance, one might have been closer to the
edge of a colony or they might have been at different stages of
the cell cycle). Let us further assume that the two cells had been
exposed to the same micro-environment, they were synchronized
relative to the cell cycle, and they were also equal in size and mass.
Remarkably, the two cells might still express protein X in varying
amounts, because they could differ at the microscopic level (for
instance, the existence of two copies of a transcription factor con-
trolling the expression of the X gene in one cell, while three in
the other). Let us assume that the regulators are found at the
same level in all cells too. Moreover, the two cells are identical
not only with respect to DNA, mRNA, and protein sequence but
also with respect to the concentration, location, and molecular
dynamics of every molecule within them, including every tran-
scription factor and ligands. From this perfectly identical starting
point, let each of the cells live out its natural lifespan. After a short
while, would our cells show identical or different levels of protein
X? Even under these “identical” conditions, basic physical chem-
istry shows that differences might still be possible. All processes
involving the propagation of genetic information, including the
unwinding of the DNA for transcription, transcription itself, pro-
cessing of RNA, degradation of transcripts, translation, protein
modification, and protein degradation, are based on interactions
between molecules and inevitably include a stochastic component
(i.e., while in one cell the transcription factor may initiate, e.g.,
two transcription events at a given time interval, in the other it
may occur only once. The binding constant between that factor
and the promoter of the gene encoding X may be the same in the
two cells, but this is merely a macroscopic constant that relates to
a ratio of probabilities). Of particular interest is the fact that small
stochastic differences may be amplified or canceled out due to
further random events (for instance, in one cell each transcript is
translated 10 times before it is degraded, resulting in 20 copies of
protein per cell and only 10 in the other). An example in which
the initial difference between the two cells may be diminished
may be that RNA degradation, often mediated by the binding of
an RNA binding protein, may occur faster in the first cell with
higher transcript levels.

In summary, there are many mechanisms by which two genet-
ically identical cells may express a specific protein (protein X) at
different levels. Can we measure the effect of stochasticity if all
other factors such as genotype and cell size are kept constant or
due to environmental changes (for instance, by applying environ-
mental stress)? If so, what patterns would be expected for the
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levels of protein X and other proteins (for example, protein Y,
expressed on average at the same level as protein X across all cells
but with different functions and involved in a different regulatory
network, or protein Z, expressed at higher levels)? More impor-
tantly, can noise play a part in central biological processes and
be responsible for cell fates and specific phenotypes that could
be investigated? For example, do cells set different noise levels for
each gene, according to both its function and environmental con-
ditions? Can cells and organisms control the extent of variation
and stochasticity so as to minimize it when harmful or amplify it
and benefit from it when possible?

3. Measuring
Noise in Living
Cells

A landmark work that transformed the study of cellular stochas-
ticity into a quantitative biophysical science was that of Elowitz
et al. (18). While finding two cells with the same concentration,
location, and dynamics of all molecules is still impossible, they
found a clever practical solution. By using two fluorescent pro-
teins (cyan and yellow) under the control of two identical pro-
moters, placed in two similar locations in the E. coli genome,
they generated a cellular environment that was practically iden-
tical for the two genes – thus, not two identical cells with the
same gene as in our thought experiment (see previous section),
but rather the same cell that serves the expression of two distin-
guishable genes. Since the two proteins fluoresce in separate col-
ors, comparing the intensity from the two channels in the same
cell was sufficient to identify differences that must be attributed,
for the most part, to stochastic events that happened inside that
cell. Elowitz and coworkers then used fluorescent-activated cell
sorting (FACS) to measure fluorescence in the two channels that
correspond to the two genes in individual cells. The difference in
expression between a pair of two such proteins expressed in the
same cells was termed the “intrinsic noise” of the system – only
stochastic processes within each cell could give rise to differences
in the expression level of these two probes in each cell. With the
same experimental method, focusing on one wavelength at a time,
the researchers could then compare the different cells and exam-
ine the variations among them at the level of protein expression.
This variation was called the “extrinsic noise,” as it captured exter-
nal sources of variation, such as varying concentrations of a rel-
evant transcription factor and number of ribosomes in each cell.
It was then possible to estimate not only each noise source but
its relative contribution to the final level of variation. The authors
concluded that extrinsic noise was a major factor, but that intrinsic
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noise had a significant contribution too to the overall cell-to-cell
variation. Applying a similar system to Saccharomyces cerevisiae,
Raser and O’Shea were able to measure the relative contribution
of intrinsic and extrinsic sources of noise in this model eukaryote
and found that the intrinsic noise is gene-specific and may con-
stitute an evolvable trait that can be optimized to balance fidelity
and diversity in eukaryotic gene expression (19).

4. Expanding the
Scope: Measuring
Noise for Many
Genes and
Conditions

The studies described thus far have focused on exogenous genes
and measured noise levels under a limited set of environmen-
tal conditions. Yet to penetrate deeper into the biological sig-
nificance of noise, three additional steps were necessary: first,
to measure noise of endogenous genes, insofar as was possible,
with minimal interruption of their native controls; second, to
scale up measurements so as to probe as many genes as possible;
and third, it was essential that the noise of a given native gene
would be measured under varying growth conditions. Bar-Even
et al. (20) and Newman et al. (21) accomplished these aims in
a complementary fashion. For this purpose, they used a library
of S. cerevisiae strains, each expressing one of the endogenous
genes of this species (22) fused to a green florescent protein
(GFP). Examining the fluorescence of cells from each such strain
by FACS, it was possible to measure the cell-to-cell variations
in expression of each gene in the genome. Here, since a single
type of fluorescent protein (GFP) was used, intrinsic and extrinsic
noise were no longer separated and the integrated contribution
from the two sources of variation was measured as a single num-
ber [yet when a sample of the genes was also measured in two
colors, a predominant contribution from the intrinsic noise was
actually found (20)]. In all, Bar-Even and colleagues studied 43
genes; yet they examined noise under a diversity of conditions.
These authors selected their sample genes so as to represent sev-
eral genetic modules that were originally defined, based on clas-
sical microarray experiments: these included stress-related genes,
genes encoding structural constituents of the proteasome, genes
involved in ergosterol metabolism, and genes responsible for the
processing of ribosomal RNA (rRNA). They then exposed the
cells to 11 different conditions, the majority of which were stress-
ful, yet a few actually involved recovery from stress conditions.
Finally, they measured, for each gene, the distribution of expres-
sion values under each condition at the single cell level. New-
man and colleagues did not explore as many conditions; instead,
they measured the expression of a most significant portion of the
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entire yeast genome (21). The two papers focused on two param-
eters that characterized each gene: the mean of the distribution
and the “noise coefficient” – namely, the variance divided by the
square of the mean. Plotting the noise coefficient vs the mean
expression, the two groups found the same intriguing, “scaling”
relationship: the noise declined as the reciprocal of the mean of
the distribution. That is, not only were highly expressed genes less
noisy (as might be expected, given the mean of the distribution,
with the value obtained from a standard microarray experiment) it
was possible to rather accurately predict the amount of noise for
most genes under most conditions. Theoretical analysis in both
works suggested that such scaling might result from variations
in mRNA copy numbers, caused by the stochasticity of “birth
and death” of mRNA molecules or from fluctuations in promoter
activity (20, 21).

If noise can be inferred from the mean, could we avoid mea-
suring noise in future experiments and settle for the more conven-
tional measurements? The fact is that, although most genes under
most conditions obeyed the scaling law, interesting deviations
were found. The “noise residual” was thus defined as the differ-
ence between the amount of noise that a gene actually displayed
and the amount of noise that could be predicted for the gene,
given its mean expression and the general scaling between noise
and mean that holds true for most genes in most conditions (Fig.
23.1). For instance, stress-related genes were consistently above
the scale (i.e., for these genes, noise was typically higher than the
expected value, given their own mean and the general scaling).

What could be the rationale behind this enhanced noise in
stress genes? One intriguing possibility is that cells implement
a “risk distribution strategy” with these genes – that different
cells in the isogenic population provide stochastically different
“responses” (i.e., expression levels of these genes). According to
this hypothesis, the cells that happened to express these genes at
the optimal level would be more likely to survive. In fluctuating
environments such approach might, under some circumstances,
constitute the most feasible strategy (23). Note, however, that
since the cells are genetically identical, such changes would not be
inherited (see below on the “memory” of such fluctuations and
on the combination of genetic and non-genetic diversity). The
fact that in the experiments where stress was alleviated (20), the
stress genes typically showed reduced noise (Fig. 23.1) supports
that control of the noise in these genes may constitute a cellu-
lar response to changes in environmental conditions from non-
stressful to stressful conditions and vice versa.

Examination of the response of other genes revealed an
opposite trend: negative noise residuals (Fig. 23.1). Take, for
instance, the genes encoding constituents of the proteasome, a
multi-subunit cellular complex. Under stress conditions, these
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Fig. 23.1. Variations in levels of noise of specific yeast genes under different conditions.
Levels of noise residuals of 43 S. cerevisiae genes in 11 different environmental condi-
tions. Here, each horizontal line corresponds to a gene. Each condition is represented
as a set of consecutive columns with each column corresponding to a time point. The
noise was measured at six time points following the environmental change (20), and
noise propagation can be traced for each gene at each condition. The color code depicts
the “noise residual” of each gene in each condition, namely the difference between the
actual noise level of a gene and the noise level expected for that gene given its mean
expression level and the general scaling between noise and mean expression (20). The
43 genes were sampled from the entire yeast genome and they represent four mod-
ules: stress genes, ergosterol metabolism, constituents of the proteasome, and genes
involved in the processing of ribosomal RNA (rRNA). The environmental conditions rep-
resent different perturbations and stress relaxing conditions (1st through the 7th, and
the 11th sets of columns, and 8th–10th column, respectively) (20). The stress genes
show higher noise levels throughout the conditions, especially under stress, while genes
involved in ergosterol metabolism and proteasome and rRNA biosynthesis show noise
being kept at controlled, low levels, particularly under stress conditions.

genes featured very tight distribution, with negative noise residu-
als. The example of genes encoding structural constituents of the
proteasome shows that in some cases high levels of noise may be
actually undesirable or should be kept under tight, controlled lev-
els, for instance, when a fine coordination and stoichiometry of
synthesis of specific subunits of a multi-subunit complex is neces-
sary. In other genes in which the extent of noise implied by the
mean is neither helpful nor detrimental, cells may not attempt to
control the levels, and noise may be set by simple probabilistic
rules (21).

5. How Cells
Control Noise and
Set a Desired
Level for Each
Gene

The aforementioned studies (18–21) show that cells appear to be
able to set the noise levels and their enhanced or reduced extent
compared to mean expression values. Genes that belong to the
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same functional category or structural complex often show similar
changes in noise under a specific condition. Moreover, a given
gene may show different levels of noise amplification or reduction
under different conditions. This requires to be finely regulated. In
recent years, new studies are revealing a rich array of strategies to
regulate noise levels in cells. The means to control cellular noise
can be related to the kinetic parameters of the processes governing
gene expression and the topology of the regulatory networks and
can sometimes be inferred from the genomic features inside and
in the proximity to genes.

5.1. A Model for the
Propagation of Noise

As an alternative to the works by Elowitz and colleagues (18)
and Raser and O’Shea (19) which measured intrinsic and extrin-
sic noise, Paulsson took a different approach and developed a
mathematical model that described the propagation of noise in
a cellular pathway (14). Consider two molecules, A and B, such
that A is either a regulator of B or that A and B are, respectively,
the mRNA and protein encoded by a particular gene. In either
of these cases, noisy fluctuations in A might be further propa-
gated into B. Focusing on the downstream component B, Pauls-
son suggested an alternative to the dichotomy between intrinsic
and extrinsic noise, realizing that the noise in B would arise from
a combination of two components: the noise generated by B itself
and the noise that B “inherits” from A. While Paulsson’s model
was predominantly theoretical, a similar conclusion was reached
by Pedraza and van Oudenaarden (24) who experimentally mea-
sured expression correlations between genes in single cells. These
authors also found that noise in the expression of a gene was
determined by its intrinsic fluctuations, noise transmitted from
upstream genes, and global noise affecting all genes.

Understanding the contribution of noise in A to noise in B is
of particular interest, since such knowledge enables the descrip-
tion of noise propagation along genetic chains. According to
Paulsson’s model, one relevant parameter that governs such prop-
agation is the response dynamics of A and B. Intuitively, if A is a
very rapidly changing molecule, then B will “inherit” the fluctu-
ation only if B, too, is rapidly fluctuating. If, on the other hand,
B has a very slow rate of turnover, it will not trace the fluctu-
ations in A over time and will thus not inherit the noise (i.e.,
B will be said to have “time-averaged” fluctuations in A). What
governs the response times of specific molecules? Some response
times may be largely governed by the degradation kinetics. Con-
sider an mRNA and a protein encoded by a given gene as the “A”
and “B” molecule in the above formalism. If the protein had was
rapidly fluctuating (e.g., due to a relatively high degradation rate)
then noise at the mRNA level would be effectively propagated
to the protein. In recent years, techniques to measure the stabil-
ity of both mRNA (2, 25) and protein (26) at the genome level
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have begun to mature, and comprehensive studies to test the pos-
sibility that noise propagation can be deduced from elementary
parameters and other additional factors affecting the accuracy at
which fluctuations might be propagated (14) are becoming more
feasible.

5.2. The Relative
Efficiency of
Transcription vs
Translation

The extent (efficiency) of transcription and translation of a given
gene and the relative contribution (ratio) between them deserve
special attention. As a case example, assume that a given protein is
needed at an average of 200 copies per cell. Imagine two extreme
(probably not very “realistic”) strategies to obtain that desired
level of protein expression: The first one is when the transcrip-
tion of the corresponding mRNA takes place at a very low extent:
so, for instance, only two mRNA molecules are present, on aver-
age, per cell, requiring each one to be translated, on average, 100
times. The other extreme is that transcription is extensive, result-
ing in 200 copies of the corresponding mRNA. To get the 200
proteins, in principle, it will be enough that each mRNA will be
directed to the protein biosynthesis machinery only once (less if
polyribosomes are acting).

The first case, with a very low transcription rate and the need
for extensive translation, is economical in terms of RNA synthe-
sis, but what will happen to the noise at the protein level? While
the mRNA is present, on average, at two copies per cell, fluctu-
ations with one, three, or four copies are likely. Translation has
the potential to further amplify such fluctuation, yielding high
predicted noise. Also, the need to reuse the same mRNAs for
translation may lead to a slow global response, with low rates of
protein biosynthesis (in some cases higher than the mRNA and
protein turnover, in which case the degraded molecules will need
to be re-synthesized). Target protein levels may be difficult to
achieve in some cases, with high predicted noise.

On the other hand, a higher, efficient transcription (which
will provide a “pool” of ready-to-use mRNAs) coupled with
limited translation (which may be controlled by different mech-
anisms: polyadenylation, subcellular localization, and polyribo-
some levels) will result in few fluctuations and a relatively
noise-free protein population. This strategy may also ensure fast
responses in shorter times and, once target levels are obtained, the
possibility of activation of mechanisms of control (e.g., feedback
regulation or others, see below). Efficient, extensive transcription
coupled with balanced translation can provide quick and fine con-
trol of protein levels.

From here, a simple prediction might be that cases of exten-
sive transcription coupled with limited translation would exhibit
low noise and high level of control of expression. The possibil-
ity that low levels (less efficient) of transcription coupled with
extensive translation may constitute in some cases a means to
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enhance noise levels should not be discarded. There are several
lines of support for the argument that the extent of translation
(translation levels) is directly linked to noise levels. Ozbudak and
coworkers independently modified the transcription and transla-
tion of a reporter gene and found that an increase in translation
mainly increased noise level (11). Black et al. also provided a con-
vincing demonstration of the idea (12), where they changed the
nucleotide coding sequence of a gene without affecting amino
acid sequence and shifted it toward higher or lower transla-
tion efficiency codons. They found that noise indeed increases
with translation extent (efficiency), provided that the gene was
not fully induced at the transcription level. Interestingly, these
results could also be predicted from a theoretical model that
these authors provided that deals with the propagation of noise
from the mRNA to the protein level (12). In accordance with
this, Fraser et al. (27) have also found a related trend in yeast:
essential genes and genes involved in cellular complexes tend to
minimize their predicted noise level by employing a strategy that
maximized the ratio of transcription to translation. Furthermore,
an inspection of the noise residuals of the 43 S. cerevisiae genes
measured by Bar-Even et al., against their sequence-based calcu-
lation of translation efficiency (the tRNA adaptation index) (28),
shows a correlation between them (Fig. 23.2). Genes with high

Fig. 23.2. Correlations of noise residuals and tRNA adaptation index. Noise residuals
correlate with the tRNA adaptation index of yeast genes, particularly with genes involved
in response to stress. Here, the same set of genes as in Fig. 23.1 is analyzed, with colors
depicting association to the four modules in Fig. 23.1. The noise residual of each gene
is calculated as the mean of its values across all time points in all six conditions. The
tRNA adaptation index (tAI) of each gene was calculated as in (28). The tAI captures the
extent to which the codons in a gene are biased toward the more abundant tRNAs in the
genome (high translated genes).
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predicted translation efficiency (highly translated) indeed show
some tendency toward higher noise residuals, whereas genes with
low predicted efficiency of translation corresponded to the least
noisy genes. Of particular interest are the proteasomal genes that
under stress conditions display little noise, in fact even lower than
expected from their means. These genes, under stressful condi-
tions, are typically induced at the mRNA level (29). The results
suggest that a means to obtain tight, noise-filtered distribution
for proteasomal genes under stress is to employ the strategy of
high transcription rate with limited, coupled translation. Similar
conclusions have been reached by a mathematical treatment of a
related system (30).

At the molecular level, the TATA box in gene promoters was
found to be another key factor with which cells may tune noise
levels. The TATA sequence is not present in every gene’s pro-
moter, but genes that do contain it typically show high levels
of noise (19, 20, 31, 32). The prevailing explanation is that the
TATA sequence amplifies fluctuations through facilitation of tran-
scription re-initiation (33, 34).

5.3. Local Network
Connectivity,
Redundancy, and the
Effect on Noise

An additional regulatory attribute that affects the noise level and
pattern displayed by genes is their connectivity within the regula-
tory network. Consider two genes that are identical with respect
to many of the aforementioned properties, such as the efficiency
of their translation and transcription, but are nonetheless embed-
ded in two different regulatory network motifs. In one case, the
gene exerts negative feedback regulation on itself (either directly
or through a mediator) and in the other, the gene exerts a posi-
tive feedback on its own level of expression. In which case would
the gene manifest a higher amount of noise? Intuitively, the neg-
ative regulatory scheme would tend to counteract, or “correct,”
noisy fluctuations – when the amount of the autoregulated gene
stochastically increases the negative regulation will counteract the
fluctuation by increasing the extent of inhibition, while a fluctua-
tion in the other direction would result in lower inhibition (10).
In the positive feedback case, fluctuations in either direction are
expected to intensify themselves, resulting in higher noise levels.
Theoretical work, however, has recently elegantly refined these
notions, predicting that while negative feedback eliminates noise,
it comes at a price: reduced sensitivity to changes in environmen-
tal signals (35). When comparing circuits with the same level of
sensitivity to environmental changes, it was found that a positive
feedback design actually buffers noise better than negative feed-
back. It was further suggested that the improved capacity of a
positive feedback circuit to buffer noise at a given level of envi-
ronmental sensitivity comes from its time-averaging capacity (35).

Most recently, researchers faced an intriguing question per-
taining to the architecture of regulatory networks: often two
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or more alternative circuit designs can produce the same
outcome – in particular a negative regulatory effect on a gene
can be obtained either by repressing the inducer of the gene
or by inducing its repressor. Why is it that in reality one of the
designs, and not the other, appears to operate in a particular
system (36)? The authors focused on the genetic network that
governs competence – the ability of microbes to uptake DNA
from the environment, typically upon stress – in Bacillus subtilis.
Like any regulated system it needs to control not only induc-
tion but also its shutoff. It turns out that the shutoff of the
competence network in these bacteria is obtained by repressing
the system’s inducer, not by inducing a potential repressor. The
authors synthesized a seemingly equivalent variation on the cir-
cuit in which shutoff happens through induction of a repressor.
While the averaged properties of the native and synthetic designs
were designed to be similar, the native circuit showed enhanced
diversity between single cells, while the synthetic design was pre-
cise and relatively noise free. Why did evolution prefer the nosier
version? The fact is that the accuracy of the synthetic design came
at a price – bacteria that artificially expressed it were fit (i.e., could
take up DNA from the environment) only at a narrow range of
environmental parameters, compared to the cells that expressed
the native system. The higher noise obtained in the native system
thus appears to be adaptive as it allows higher population diversity
in variable situations (36). Presumably, the negative regulation of
the inducer in the native circuit is responsible for a lower expres-
sion level, possible high relative noise level, in this regulator. It
was concluded that noise actually facilitates the response of the
network to a variable environment. The more precise synthetic
design, in which the repressor is induced, is more similar to cir-
cuits such as at the heart of the circadian clock, where accuracy
and control are the main issue.

Apart from the connectivity in regulatory networks, the chal-
lenge of noise control may have constituted a driving force
explaining the unexpected conservation of redundancy in bio-
logical systems. It was recently suggested that partially redun-
dant duplicate genes may have been selected for preservation in
genomes, so as to filter noise in regulatory networks (37, 38).
Why are redundant genes often preserved, especially in pivotal
nodes of regulatory networks, if only one member of the gene
pair would suffice? Although redundant genes can often back each
other up if mutations occur in one of them, it is entirely possible
that the partially redundant genes will cover for each other when,
due to stochasticity, one of them showed a temporary fluctuation
that either increased or decreased its level, a far more likely event.

In many cases of redundancy in regulatory proteins, it was
found that the regulators also negatively regulate one another
(37, 38). Such a design could serve to reduce the effect of
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fluctuations: when the expression level of one of the two regu-
lators goes up, it would further inhibit its partner, and when it
is decreased, it would exert less of an inhibitory effect. Model-
ing results (37) show that the sum, or the product, of the con-
centrations of the two regulators may be kept relatively constant
in such a regime; furthermore, if a joint target of the two reg-
ulators is only affected by the sum, or product, of the concen-
trations of its two upstream regulators, it may experience a low
amount of noise. In other words, the negative regulatory cross-
talk that is often observed between semi-redundant gene dupli-
cates (see (37) for a review) may serve to transform noise fluctua-
tions in each of them into a relatively constant sum (or product)
of the two, thus minimizing further propagation of the noise.
This design may also explain why, in the extreme case of a con-
stant reduction of a gene’s expression level, e.g., due to a deletion
mutation in the gene, the semi-redundant duplicate may respond
by increased expression, in compensation (38). Such a capacity
might, in some cases, constitute a byproduct of a selectable tun-
able capacity to respond to random, temporal fluctuations in its
counterpart’s expression level (38).

5.4. A Potential Role
of Non-coding RNAs

Non-coding RNAs are transcripts that are not translated into pro-
teins. During the last decade, it has become apparent that in
essentially every organism, a considerable portion of the tran-
scribed RNAs are not translated. Many of these newly discovered
non-coding RNAs function as regulators, that is, they may regu-
late gene expression at multiple levels. Two relevant examples of
regulatory RNAs are microRNAs and antisense RNAs. Such tran-
scripts are known to interact with their targets by means of base
pair complementarity, mainly affecting the levels of stability of the
RNA target (e.g., an mRNA), and the efficiency of its translation.

It is conceivable that a non-coding RNA would affect not
only the average expression level of its target but also the noise
that the target would display. A non-coding regulatory RNA
present in excess, relative to its target, may actually serve to buffer
noisy fluctuations in the target. Assume, for instance, that the reg-
ulatory RNA is present in a high average copy number, say 20
copies, in each cell in a population of isogenic cells. Now con-
sider an mRNA target of this regulator that is gradually induced
from very close to 0 copies to 50 copies per cell. The noise coeffi-
cient of that target would be high at the beginning of the induc-
tion process, due to its presence in low copy number. However,
if the regulatory RNA efficiently sequesters the target when the
latter is at a lower copy number, random fluctuations in the tar-
get would be dumped. Yet, as the target’s concentration contin-
ues to rise, at some point it may exceed the level of the regula-
tory RNA, and from that point on, the buffer would be unable
to effectively sequester the excess mRNAs. This would lead to a
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Fig. 23.3. A conceptual model of fluctuations and control of noise in RNA expression.
The expression of a regulatory RNA (e.g., a microRNA or an antisense RNA) is depicted
by the gray area, while the expression of the regulated transcript (e.g., an mRNA) is
depicted with a black line. A regulatory RNA may filter noisy fluctuations in the levels of
another regulated transcript (e.g., an mRNA). Levels of a regulatory RNA higher than the
levels of the target RNA may effectively buffer noisy fluctuations (due to specific binding,
sequestering, or targeting to degradation). Yet, when the levels of the regulatory RNA
are lower than the target levels the difference cannot be buffered by the regulatory RNA,
which will lead to fluctuations in mRNA expression.

step-like function in the concentration of the free mRNA target in
the cell: it would remain close to zero, so long as its total level is
below that of the regulator, but would abruptly increase, once it
exceeded that level (Fig. 23.3). Notably, microRNAs are known
to affect their targets both at the level of mRNA stability, where
they destine targets to degradation, and by inhibiting their trans-
lation (c.f. (39)). It is still not clear how the choice between these
two separate fates is determined for a pair of regulators and a tar-
get or why, in some cases, one fate is desired over the other. Yet
the realization that the ratio of translation to transcription affects
noise suggests an effect on the noise level of the target, due to a
choice between the two regulatory mechanisms. A potential appli-
cation arising out of such considerations lies in the emerging field
of synthetic biology, in which one of the challenges is to design
and build small circuits with desired properties. The synthetic use
of non-coding regulatory RNAs (40) may enable researchers to
“tune” the desired level of noise (either high or low) of the vari-
ous components in the system.

6. Genetic vs
Non-genetic
Variation

It has long been known that stressful conditions increase the rate
of mutations among microorganisms (41). This is rationalized as
an adaptive trait of such species – leading to an increase in genetic
diversity, the origin of new biological innovations, and, ultimately,
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survival of selected cells. Yet, depending on the selective
advantage, the rate of mutations, and the effective population
size, it may take tens of generations, typically many more, for spe-
cific mutations to reach a substantial portion of the population.
This is a long time, compared for instance to a killing effect of
the stressful condition. Thus, a faster means to increase diversity
in the population may be needed.

An increase in noise levels, predominantly observed in stress-
related genes under stressful conditions (20), may be envisaged
as a complementary mechanism for the rapid generation of diver-
sity. Unlike genetic diversity, which develops slowly, non-genetic
diversity, or noise, is obtained instantaneously in a population
(20). Furthermore, unlike mutations that are often, though not
always (42), assumed to be generated at random sites, noise
enhancement appears to be specifically directed toward genes that
are expressed in response to changes in specific environmental
parameters (43). The possibility exists that the labor involved in
generating population diversity might split between non-genetic
and genetic mechanisms, with the former occurring before the
latter can take over. One interesting example, obtained in yeast,
showed the feasibility of fitness advantage of enhanced noise
under stressful conditions. In this experiment a mutation leading
to increase in cell-to-cell variability in gene expression was found
to be beneficial after an acute change in environmental condi-
tions (31). In future, it would be relevant to see if spontaneous
increased noise can evolve and be selected for in the lab when
microorganisms adapt to stressful conditions.

If noise introduces diversity in a population, why is the need
for genetic-based diversity, in the form of enhanced mutation?
Noise has one obvious limitation: cells have a very short mem-
ory for noisy fluctuations; hence a stochastic increase or decrease
in expression level of a gene may not be faithfully inherited to
daughter cells. Since a cell that expresses a given gene at a high
level is genetically identical to the rest of the cells, its descendents
are expected to return to an averaged expression level in the com-
ing generations. How long does it take the progeny to “forget”
this legacy? A study in a mammalian system (44) suggested that
for many genes it is one generation time.

In summary, one potential model would suggest that follow-
ing an environmental change, stochasticity in gene expression may
begin to diversify the population with respect to particular genes.
Such diversity may provide the substrate for the selection of cells
during the initial phase of coping with the stress. In parallel, as
mutations begin to appear at a slower pace, they may allow sus-
tained diversity, from which the fittest cells will become fixated
in the population. Together, the two mechanisms may provide
diversity and a substrate for selection at both short and long
timescales.
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Chapter 24

Genome-Scale Integrative Data Analysis and Modeling
of Dynamic Processes in Yeast

Jean-Marc Schwartz and Claire Gaugain

Abstract

Building a dynamic model of a complete biological cell is one of the great challenges of the 21st cen-
tury. While this objective could appear unrealistic until recently, considerable improvements in high-
throughput data collection techniques, computational performance, data integration, and modeling
approaches now allow us to consider it within reach in the near future. In this chapter, we review recent
developments that pave the way toward the construction of genome-scale dynamic models. We first
describe methodologies for the integration of heterogeneous “omics” datasets, which enable the inter-
pretation of cellular activity at the genome scale and in fluctuating conditions, providing the necessary
input to models. We subsequently discuss principles of such models and describe a series of approaches
that open perspectives toward the construction of genome-scale dynamic models.

Key words: Systems biology, data integration, dynamic model, modeling.

1. Introduction

To decipher the processes and mechanisms taking place in bio-
logical cells throughout a variety of conditions or disorders
requires large-scale analyses at all cellular levels. This has become
increasingly possible with the development of high-throughput
“omics” technologies that provide rapidly expanding datasets
at the (epi)genome, transcriptome, proteome, metabolome, and
fluxome (study of internal fluxes) levels. Despite this wealth of
data, large dynamic models of biological systems remain diffi-
cult to construct, and successful examples are still scarce. Many
biological, mathematical, and computational challenges remain to
be solved for the construction of genome-scale dynamic models
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of biological cells. We are still missing many of the parame-
ters needed, and, perhaps more importantly, the right conceptual
framework for such models must be established.

To achieve such global understanding of cellular functions we
need to associate methods from several fields, including biology,
computer science, physics, mathematics, and chemistry. This is
the aim of systems biology. An important precondition to the
construction of large integrative models is the development of
methodologies and tools for high-throughput data integration
to depict the relationships between different levels of cellular
processes and components. In this chapter, we review and dis-
cuss a number of recent developments paving the way toward
large-scale integrative analysis and modeling of dynamic processes
in biological cells. We start with a description of methodolo-
gies enabling the integration of genome-scale and heterogeneous
“omics” datasets (Section 2), before presenting approaches lead-
ing toward the construction of genome-scale dynamic models of
cellular processes (Section 3).

2. Data
Integration and
Integrative
Modeling
Approaches

High-throughput technologies enable the acquisition of the
genome-scale data for different cellular components (RNA tran-
scripts, proteins, metabolites, etc.). It is a difficult task to analyze
information at this scale because of the large quantity and hetero-
geneity of the data. In order to understand cellular processes, it is
necessary to combine this data. Their integration should rely on
hypotheses about cellular mechanisms and serve as a preparatory
step for modeling.

Data integration usually relies on simple assumptions, e.g.,
proteins that interact have a higher chance to be co-expressed
or to participate in the same metabolic function or co-expressed
genes have a higher chance to be involved in the same metabolic
pathway than randomly selected genes. From a good experimen-
tal design directed to the generation of high-quality data, we
should be able to substantiate these hypotheses using integrative
strategies supported by statistical models. Then, data integration
methodologies allow the interpretation of the results in order to
elucidate biological processes and mechanisms under the condi-
tions under investigation.

Many studies have been carried out to interpret gene expres-
sion data in a metabolic context. These studies are driven by an
implicit hypothesis, which is that co-expressed genes in a specific
condition should code for proteins/enzymes that are involved
in specific metabolic pathways linked to the particular cellular
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response. If a significant correlation is observed between co-
expressed genes and some specific metabolic pathways, then this
information helps to understand the metabolic functions that are
activated or repressed by the cell in response to the specific con-
ditions studied (we can talk of “pathway analysis”). This type of
work may be performed with any “omics” data, but the most
important developments have been reported with gene expression
(RNA and protein expression) data, which we describe below.

2.1. Integration of
Gene Expression
Data and Metabolism

There are two main difficulties to take into account in an inte-
grative approach. First, any analysis is dependent on the quality
of the datasets used (obtained from experiments under equiv-
alent/comparable conditions) and the way they are processed
before being integrated. Second, the results obtained also depend
on the “metabolic model” used. In a genome-scale study, all
metabolic reactions occurring in the cell should be considered as a
whole. They constitute a highly complex network, which is why it
is often necessary to decompose it into smaller modules (1). Many
works integrating gene expression data and metabolism consider
the metabolic network as a set of pathways (2–5), for example,
as defined in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (6). But this representation in pathways con-
stitutes a static and arbitrary decomposition of the metabolism of
a cell. If we want to analyze data more accurately and answer bio-
logical questions, we need a representation of metabolism that is
more precise, flexible, and able to reflect the dynamic fluctuations
of cellular functions.

In recent years, new strategies have been proposed to exploit
the metabolic network taking into account its topology and/or
overcoming the problem of the decomposition in pathways.
Draghici et al. (7) developed a statistical approach for pathway
analysis that incorporates parameters such as the magnitude of
gene expression changes, the position of these genes in the given
pathways, and the topology of metabolic pathways. For exam-
ple, with a dataset containing genes associated with a better sur-
vival in lung cancer, they identified the cell cycle, focal adhe-
sion, and Wnt signaling as the most perturbed pathways. These
results were already observed in experimental researches on can-
cer and may lead to the identification of potential drug targets.
Antonov et al. (8) have developed the KEGG Spider tool that
uses a global metabolic network integrating all KEGG metabolic
pathways, together with a statistical treatment. Many datasets
reporting variations of gene expression levels in several diseases
were analyzed to extract the main metabolic pathways affected.
The results gave relevant clues of metabolic changes due to dis-
eases and thus provided insights into possible treatment. Nacher
et al. (9) used a correlation-based approach to identify metabolic
sub-networks associated with expression data without being
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constrained by pre-defined pathway boundaries, and Goffard et al.
(10) proposed an “Entire Pathway” approach in PathExpress to
serve a similar purpose.

We have proposed a new way to exploit the metabolic net-
work based on the computation of elementary modes (11). Ele-
mentary modes, and the very similar concept of extreme path-
ways, are minimal sets of reactions that can operate in steady
state in a metabolic network (12–14). The computation of ele-
mentary modes at the genome scale is seriously hampered by
the problem of combinatorial explosion (functions growing very
rapidly at the combinatorial level). We have developed an alterna-
tive approach that consists in (1) computing elementary modes
in each metabolic map of the KEGG database and (2) assem-
bling elementary modes that have a metabolite in common and
belong to different pathways in order to overcome the constraint
of pathway boundaries. We used the integration tool Blastsets
(15) to map sets of up- and downregulated genes onto elementary
modes in various stress conditions in the yeast Saccharomyces cere-
visiae. We showed that a set of elementary modes that constitute
a metabolic response can be linked to activated or repressed genes
in specific conditions (Fig. 24.1). As an example, among the four
elementary modes activated in response to cadmium exposure,
three have cysteine as their final product. Vido et al. (16) reported
that cadmium exposure increases the synthesis of cysteine and

Fig. 24.1. Set of elementary modes activated in yeast cells during cadmium exposure.
Each type of arrow represents a different metabolic pathway. The metabolites at each
extremity of the arrows correspond to the starting and ending metabolites of an elemen-
tary mode. Cysteine is produced by three different elementary modes.
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perhaps of glutathione, which are essential for cellular detoxifi-
cation. The synthesis of these compounds is possible through the
activation of the sulfur amino acid pathway (16). This example
illustrates how this data integration technique can provide new
insights into metabolic activity based on gene expression data.

Such works allow the observation of modifications at the
metabolic level and the observation of dynamic processes affected
by a range of conditions. They enable the identification of bio-
logically relevant metabolic responses that may be used to define
treatments for disorders or identify drug targets. It is neverthe-
less important to note that the approaches described so far, as
well as all tools allowing the mapping of gene expression data
onto pathways or ontologies, rely on a simplifying assumption
that gene expression at the mRNA level may be a valid indicator
of the activity or flux of metabolic reactions. In fact, there are
many intrinsic mechanisms that affect the relationship between
mRNA and metabolic fluxes, including mRNA stability, regula-
tory processes, translation efficiency, post-translational modifica-
tions, protein turnover, and others. Thus, when analyzing tran-
scriptome data, the assumption that a high level of transcription
of a specific gene leads always to a high abundance of its pro-
tein product is a simplification (see below). Comprehensive high-
throughput studies are showing this and call for the development
of more advanced integrative strategies.

2.2. Multi-level
Integration
Strategies

In order to progress toward comprehensive models of cellular
functions, a combination of all available biological data (e.g.,
genomics, transcriptomics, proteomics, metabolomics, fluxomics,
physiological data, and phenotypes) is needed. Large-scale exper-
imental analyses were recently carried out integrating transcrip-
tomic, proteomic, and metabolomic data for different organ-
isms, notably S. cerevisiae (17) and Escherichia coli (18). Castrillo
et al. (17) analyzed growth rate-specific patterns in yeast at
several “omics” levels. They observed cell growth-associated
trends (upregulation and downregulation of expression of specific
groups of transcripts, proteins, and metabolite levels with increas-
ing growth rate) occurring at all transcriptome, proteome, and
metabolome levels. They investigated the congruence between
the variations of the transcripts and their respective protein prod-
uct(s) and showed that during balance cell growth there is only
a moderate correlation due to the existence of intrinsic post-
transcriptional and translational mechanisms, different for each
nutrient limitation condition tested. More specifically, the con-
trol of translational efficiency is one of the main mechanisms used
to finely regulate protein (e.g., enzyme) levels and final metabolic
activities (17).
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Post-transcriptional regulation has also been examined by
Beyer et al. (19). They investigated how yeast cells use transcrip-
tional and post-transcriptional regulation to control protein levels
by determining the translational efficiency, measured by ribo-
some density and occupancy on the mRNAs, and protein degra-
dation rates. They demonstrated that these mechanisms must be
taken into account to better interpret protein levels in relation
to mRNA levels. So far, such mechanisms are not sufficiently
well characterized, to enable a systematic computation of pro-
tein abundances from mRNA levels. Such studies nevertheless are
beginning to give insights into the relationships and variations
of levels of cellular components. Accordingly, these works con-
firmed the importance of taking into account the different regula-
tory mechanisms existing at the mRNA and protein levels. These
results can be used to determine basic principles allowing the
design of more accurate large-scale cellular models. In addition
to post-transcriptional control, regulatory feedback mechanisms
between metabolites and transcript expression exist, that need to
be characterized. Some analyses based on metabolomic and tran-
scriptomic data have been performed to identify the relationships:
first, between gene expression products and metabolite levels and
second, between metabolites and transcription factors. Bradley
et al. (20) have searched for a correlation between transcripts and
metabolite concentrations in S. cerevisiae. They found a strong co-
regulation that varies in nature and in strength according to the
experimental conditions and the type of metabolites. These cor-
relations cannot be quantified in general, but some trends were
observed for metabolites and gene products involved in certain
biological processes (e.g., the tricarboxylic acid cycle and amino
acid metabolism). Moreover, they identified new interactions and
relationships, either direct or indirect, between specific metabo-
lites and transcripts.

In another study, Yeang and Vingron (21) investigated the
influence of the substrates of metabolic reactions on enzyme reg-
ulation focusing on the central carbon metabolism of E. coli. They
developed a probabilistic approach to link the metabolic network
to the gene regulatory network and constructed a joint network.
Perturbation datasets such as those obtained from gene knockout
experiments, gene overexpression, or metabolite limitations were
used to infer links that constitute paths in the joint network and
enable an explanation of the observed responses (gene expression
and metabolic flux data). They evaluated the explanatory power of
their model by comparing the predicted response to the observed
response. This integrative approach enabled the identification of
regulatory feedback mechanisms between metabolites and tran-
scription factors and leads to the construction of a model connect-
ing the regulatory and metabolic networks of carbon metabolism.
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We are still a long way from being able to infer prin-
ciples of cellular activity from sets of high-throughput data.
However, particular mechanisms for groups of genes, transcripts
(including mRNAs and non-coding RNAs such as tRNAs, small
RNAs, and microRNAs), proteins, or metabolites can be inferred
and used for the construction of realistic models and simulations.
As more data are being generated, properly curated and collected
in data repositories, it is important to further develop integrative
approaches as an essential step toward comprehensive modeling
of biological systems. Data integration techniques can highlight
relationships between the different cellular compounds (RNAs,
proteins, metabolites, etc) and interactions between them (e.g.,
cooperativity, allosteric regulation, covalent modifications, and
catalysis regulation). As a summary, a simple scheme is presented
in Fig. 24.2 to illustrate the links existing between molecules and
the different mechanisms involved at different levels of cell orga-
nization. All these processes must be taken into account in order
to better explain and understand the changes occurring in the
cell in any condition. These processes are usually difficult to study
at the genome scale and many more than the ones cited herein
exist. Moreover, if we want to construct usable and efficient mod-
els, adequate simplifications and proper assumptions need to be
made.

Fig. 24.2. Simplified scheme of cellular organization. Transcription enables the copy of genes into mRNAs; it is mainly
regulated by proteins that bind DNA (e.g., transcription factors). The efficiency of mRNA translation into proteins is
controlled by various mechanisms such as mRNA stability and ribosome density. Translation is the synthesis of proteins
based on the decoding of mRNA. Enzymatic proteins catalyze metabolic reactions, which produce new molecules that
can influence other cellular processes (e.g., new biochemical reactions; transcript and/or protein regulation).
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3. Genome-Scale
Dynamic Modeling

Even assuming that it were possible to measure the levels of all
components in a biological cell with the desired accuracy and
precision, we would still be far from a comprehensive under-
standing of how the cell functions. While data integration tech-
niques are a necessary precondition, other techniques are needed
to build informative and predictive models of cellular functions.
Before looking at some of the approaches that may help us toward
the construction of genome-scale dynamic cellular models, it is
important to keep in mind some of the principles and point of
the process of modeling itself. A model is not meant to be a
totally accurate and complete representation of a real system, but
an oriented representation that embeds our understanding of cer-
tain mechanisms which we believe are important to explain cer-
tain phenotypes. A model is a simplified representation of reality,
designed to help us cope with the complexity of the real object.
There is no such thing as an exact model; the only conceivable
exact model would be a duplicate of the object itself. There-
fore, there is no unique way to build a genome-scale dynamic
model of a biological cell, but we should expect multiple solu-
tions to appear in the future, focusing on different biological pro-
cesses, having different levels of precision, and serving different
purposes. The success of a model is not necessarily linked to its
complexity and completeness; having a model that duplicates the
complexity of the real system does not necessarily help to under-
stand it. In fact, minimal models built from sets of principles may
enable us to better comprehend the organization, dynamics, and
regulation of cellular functions.

Cellular metabolism is probably the area where most progress
has been made in the construction of large-scale models so far,
with S. cerevisiae and E. coli being the most frequently used organ-
isms in such works. There are many examples of static genome-
scale models of biological cells, which are either purely topolog-
ical (metabolic network reconstructions and stoichiometric mod-
els) or based on an assumption of steady-state fluxes (flux balance
analysis, elementary modes, and flux minimization). These mod-
eling approaches are not the object of this chapter and are prop-
erly covered in other chapters of this volume; instead, the follow-
ing sections provide an overview of approaches that go beyond
static representations and pave the way toward the construction
of genome-scale dynamic models.

3.1. Structural and
Logical Modeling

A logical model constitutes the first step from a topological to a
dynamic model. These models use qualitative information about
the structure of cellular networks and the nature of interactions
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between components to infer dynamic properties of the system.
A great advantage of these approaches is that detailed kinetic
parameters of reactions are not required. In a logical model, the
state of a molecular compound is represented either by a Boolean
value (e.g., present/absent and active/inactive) or by a discrete
set of values (e.g., increasing/decreasing/constant). Qualitative
rules are used to determine the change in the state of a com-
pound as a result of its interactions with other compounds (e.g.,
A activates B). Logical rules may be used to represent the com-
bined effect of different interactions (e.g., “AND” indicates that
the presence of two compounds is required for a reaction to pro-
ceed). Given an initial state for all compounds, the model then
enables the computation of the states reached by all compounds
in the system over time, thus providing an approximation of the
dynamics of the system.

While a logical model may a priori look like a very coarse
approximation of a real biological system, many properties of
dynamic systems are in fact strongly constrained by network
topology. Logical models are therefore able to provide valuable
information in a number of cases (22–24). Whelan and King (25)
(see also Chapter 26, this volume) have presented what is prob-
ably the first genome-scale logical model of yeast metabolism.
Their model was based on an earlier genome-scale stoichiometric
network (26) augmented by data from the KEGG database (6). It
was aimed at the determination of minimal medium and essential
gene requirements for cellular growth. The fundamental principle
used to predict the outcome of a growth experiment was based
on binary associations: if a path exists from the input metabolites
present in the medium to each of a set of essential metabolites for
growth, then the model predicts that the yeast will grow indis-
tinguishably from the wild type. Different medium compositions
or environmental conditions were simulated by varying the list
of input metabolites, and phenotypes of gene knockout mutants
were simulated by removing the reaction in question from the
model. The output of the model was therefore of a binary nature
as well: if all essential compounds were present the model pre-
dicted continued growth, while if any essential compound was
missing then arrested growth was predicted.

Two closely related formalisms have been reported to model
signaling and transcriptional regulatory networks using a logical
approach. Klamt et al. (27) presented a framework based on log-
ical interaction hypergraphs, and Gianchandani et al. (28) pre-
sented a matrix-based formalism to represent logical interaction
rules allowing the functional analysis of such networks. The fun-
damental difference between a graph and a hypergraph network
representation is that the latter allows the modeling of interac-
tions involving more than one substrate and one product, which
is essential in most biological examples. For example, a metabolic
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Fig. 24.3. Interaction graphs and hypergraphs. (a) In an interaction graph, substrates
and products of a reaction A+B ↔ C+D can be connected in multiple ways and the
logical dependency between compounds is not represented. (b) In an interaction hyper-
graph, a unique hyperarc connects all substrates and products, embedding the logical
dependency between them.

reaction transforming two substrates A and B into two products
C and D is only possible when both A and B are present, and it
produces C and D in equal amounts. A graph representation is
not able to capture the logical “AND” relationship (Fig. 24.3a),
but a hypergraph embeds such a relationship by defining a unique
hyperarc that links both A and B to both C and D (Fig. 24.3b).
An “OR” relationship can be easily represented by using multiple
hyperarcs connected to a common node. Such logical operators
enable the modeling of complex logical interaction rules between
components of metabolic or signaling networks.

An important application of logical interaction hypergraphs
is the enumeration of all possible steady states of a system, that
is, given a set of external input signals reaching the cell, what is
the logical pattern generated by signaling and regulatory path-
ways and does it lead to the activation or inhibition of certain
molecules? Saez-Rodriguez et al. (29) presented a logical hyper-
graph model of T-cell activation and were able to successfully pre-
dict unexpected signaling events after perturbation of a receptor,
which were subsequently experimentally validated. Gianchandani
et al. (30) used their matrix-based formalism to enumerate pos-
sible transcription states in a genome-scale model of E. coli and
to evaluate how transcription states were affected by the avail-
ability of nutrients in the cell’s environment. Both formalisms
are in effect closely related, as a hypergraph can be represented
by a matrix. These concepts and the methodology used for the
enumeration of regulatory states were derived from elementary
mode and extreme pathway analysis, which are well established in
metabolic pathways (13, 14, 31).

Flux balance analysis (FBA) has been one of the most suc-
cessful and widely used methods for genome-scale networks so
far (32). While a detailed description of FBA is outside the scope
of this chapter (as it is not a dynamic method), it is worth recall-
ing some of its principles and mention attempts to bridge the gap
between FBA and dynamic modeling. FBA relies on the topol-
ogy and stoichiometry of a metabolic network, associated with
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the definition of an objective function, to calculate a steady-state
flux distribution. The objective function reflects a hypothesis of
physiological optimization of the organism, e.g., the organism is
assumed to maximize the production of biomass, energy, or any
other relevant product. FBA does not need kinetic parameters
and does not produce any inference about metabolite concen-
trations, but only enables the computation of steady-state fluxes.
Integrated dynamic flux balance analysis (idFBA) (33) is an exten-
sion of FBA based on the assumption that the turnover time
of metabolic and signaling reactions is generally fast compared
to regulatory or receptor responses. The idFBA framework pro-
ceeds by assuming quasi-steady-state conditions for fast reactions,
while slow phenotypic reactions are integrated into the stoichio-
metric framework over time. Modeling of slow reactions is not
based on detailed kinetic parameters, but only on their typical
duration and delay time. Lee et al. (33) illustrated this approach
using a prototypic model of S. cerevisiae incorporating signaling,
metabolism, and transcriptional regulatory networks. The signal-
ing network included a set of ligands binding to receptors and
the subsequent internalization and phosphorylation of their com-
plexes. The metabolic network included a set of reactions repre-
sentative of glycolysis and amino acid synthesis. Regulation was
modeled by a set of logical rules describing the effect of environ-
mental factors, such as extracellular metabolites and pH values.
While idFBA only provides an approximation of the dynamics of
the system between different steady states, it is a fast and efficient
method to model integrated systems of metabolic, signaling, and
regulatory networks, which may potentially be applied to large
systems.

3.2. Intermediate
Modeling
Approaches

Another set of methods have been presented that attempt to go
beyond structural modeling and open possibilities for the con-
struction of large-scale dynamic models. The construction of
accurate kinetic models is hampered by the need to know the
exact form of all rate equations and associated parameter values.
Such detailed information is not generally available for all reac-
tions and requires extensive experimental measurements. Further-
more, parameter values may vary depending on many environ-
mental and physiological factors.

For these reasons, it is difficult to imagine building a kinetic
model of an entire cell without some form of simplification and
generalization of rate equations. In the structural kinetic method
proposed by Steuer et al. (34), kinetic rate functions were approx-
imated by constructing a local linear model at each point in
parameter space. This local representation was embedded by a
Jacobian matrix. It did not depend on the exact form of kinetic
rate functions, and all terms used in the representation had a
clear biochemical interpretation or were directly experimentally
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accessible (e.g., a flux, concentration, or degree of saturation).
This approach is particularly useful to assess the stability of a
physiological state in a range of parameter values or to determine
bifurcation points between different types of dynamic behaviors.
As an example, Steuer et al. were able to determine the required
conditions for a switch between steady-state conditions and sus-
tained oscillations in yeast glycolysis without the need to refer to
the exact form of rate equations. Because it allows the identifica-
tion of reaction steps and parameters that are crucial in shaping
the dynamic behavior of a system, structural kinetic modeling is a
useful preliminary step to a more detailed kinetic model.

A different approach was proposed by Smallbone et al.
(35), who used linlog kinetics to approximate the dynamics of
enzymatic reactions. In the linlog approximation, the effect of
metabolite levels on flux was described by a linear sum of log-
arithmic terms. A generic kinetic relation was thus assumed for
all enzymes and no detailed data about kinetic parameters and
reaction mechanisms were needed. Nonetheless, an approximate
assessment of the dynamics of fluxes and metabolite concentra-
tions was made possible. When compared to a precise mecha-
nistic model of yeast glycolysis (36), the linlog model was able
to provide good agreement with the detailed model. Some con-
cerns, however, are that the linlog approximation may only be
reasonable over a certain range of parameter values, with the gap
between linlog kinetics and real kinetics increasing rapidly outside
this range. Comparisons with other detailed models and/or over
wider ranges of parameter values would be needed to better assess
the reliability of this approximation.

A general idea behind such intermediate approaches is to
apply a generic kinetic equation to all reactions. This idea offers
several advantages: (1) a simplified kinetic equation reduces the
computational burden and accelerates simulations, allowing the
modeling of larger systems; (2) kinetic rate equations depend on
the exact enzymatic binding mechanism, which can be complex
or unknown for some reactions; (3) complex reaction mecha-
nisms result in a profusion of parameters that are not experi-
mentally accessible. To be appropriate, a generic equation should
reflect the essential mechanistic principles of the majority of reac-
tions, but not incorporate excessive level of detail and parame-
ters that are not experimentally tractable. It is useful in this con-
text to think of analogies with physics and engineering, where
such approaches are commonly used; the art of creating a useful
model is to make the right approximations. A successful illustra-
tion of this principle has been reported by Ao et al. (37), who con-
structed a relatively large model (80 reactions and 80 metabolites)
of the central metabolism of Methylobacterium extorquens using
generic kinetic equations. The parameters used in their equations
had a clear experimental interpretation, and the authors described
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methods to estimate biologically meaningful values of parameters
when experimental data were not available. The authors showed
that their generic model successfully captured the behavior of the
bacterium’s metabolism in steady state, as well as in response to a
perturbation in formaldehyde concentration. The principles used
in this work may serve as a basis toward genome-scale models
based on generic kinetic equations.

3.3. Thermodynamics The behavior of all biochemical systems obeys universal physical
laws. One of them is the conservation of mass and matter, which
can be translated into mass balance and flux conservation relations
in the case of metabolic networks. Another universal law is the
conservation of energy, which can be translated into thermody-
namic laws. Incorporating thermodynamic laws into biochemical
models, however, is not as straightforward as incorporating mass
balance. Thermodynamic principles are therefore often ignored in
biological modeling, which can result in models that are funda-
mentally wrong, violating fundamental natural laws. This issue is
particularly crucial when a system involves cycles (as do most bio-
logical systems), because cycles may easily violate thermodynamic
laws if no special care is taken.

Several authors have reported methods enabling the importa-
tion of thermodynamic principles into biochemical models. Any
large-scale model should incorporate these principles to be mean-
ingful. As explained by Ederer and Gilles (38), the second law
of thermodynamics implies that an isobaric and isothermal sys-
tem (e.g., cells) that is not exposed to external thermodynamic
forces will reach a state of thermodynamic equilibrium. This con-
dition introduces new relations of interdependency between the
kinetic parameters of the model, restricting the range of possi-
ble parameter values. This principle was illustrated by a simple
example describing the random order complexation of three com-
pounds: in this system involving eight kinetic parameters, only
seven parameters could be fixed independently of each other.
When these parameters were fixed, the value of the eighth param-
eter was constrained by a relation of “detailed balance” arising
from thermodynamic laws. If this condition was ignored, the
model described a physically impossible system. Ederer and Gilles
introduced a new framework for kinetic modeling that embeds
detailed balance, preventing the creation of thermodynamically
unfeasible models. Called “thermodynamic kinetic modeling,”
this framework may become valuable to construct large mod-
els that do not violate physical laws. The authors furthermore
demonstrated that their formalism reduces the number of equa-
tions and parameters needed, as thermodynamic constraints are
directly embedded in equations and no longer have to be
separately written.
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It is worth noting that thermodynamic laws must be satisfied
whether the system under consideration actually reaches thermo-
dynamic equilibrium or not. Living systems are generally not iso-
lated from their environment but are open to exchanges of matter
and energy. They rarely reach thermodynamic equilibrium and
are better represented by a non-equilibrium steady state, where
fluxes are stationary over time but not zero. The basic princi-
ples of non-equilibrium steady-state systems are closely related
to those in equilibrium. Generalized frameworks representing the
thermodynamics of biochemical systems far from equilibrium are
still under development (39).

In parallel, several authors have presented methods to inte-
grate thermodynamic constraints into FBA models, as it was
found that classical FBA may result in solutions that violate ther-
modynamic laws. These laws impose that the direction of flux in
a reaction must correspond to the direction of decreasing Gibb’s
free energy (40). Actual changes in free energy can be calculated
from the standard free energy (which is related to the equilibrium
constant of the reaction and the temperature) and metabolite con-
centrations. The resulting constraints on the direction of reactions
are then enforced by a new set of linear constraints in the FBA
framework. Hoppe et al. (40) showed that these new constraints
yielded different flux distributions than classical FBA under some
ranges of metabolite concentrations. Henry et al. (41) reported
a systematic calculation of the Gibb’s free energy of reactions in
a genome-scale metabolic model of E. coli. They subsequently
identified thermodynamically unfavorable reactions and ranges of
thermodynamically feasible metabolite concentrations.

3.4. Toward
Genome-Scale
Dynamic Models

For a long time, the perspective of building a dynamic model
of an entire biological cell was considered an unrealistic goal,
not to be achieved before several decades. But recent progress
in data collection techniques, computational performance, and
methodologies makes this objective look more and more achiev-
able (Fig. 24.4). A crucial question to keep in mind is what the
purpose of the model should be. The degree of precision and the
nature of processes integrated in a model must be tailored to the
purpose the model is expected to serve. Depending on the level
of approximation and its purpose, it is not unrealistic to expect
dynamic genome-scale models to be developed within a few years.

Jamshidi and Palsson (42) described a workflow that may lead
to the construction of a genome-scale dynamic model of cellular
metabolism. The process starts with the construction of dynamic
mass balance equations, which relate the change in metabolite
concentrations to reaction fluxes by use of the stoichiometric
matrix of the network. The next step is the representation of reac-
tion kinetic functions, which describe how reaction rates depend
on metabolite concentrations and kinetic parameters. These
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Fig. 24.4. Three types of laws must be considered in order to build a dynamic model.
(a) Mass conservation laws link variations in metabolite concentrations to the fluxes of
reactions producing and consuming them. (b) Kinetic rate equations describe the depen-
dency of reaction rates on metabolite concentrations and kinetic constants (these may
be dependent on the concentration of “active” protein, controlled by post-transcriptional
and/or post-translational mechanisms: regulatory RNAs, covalent modifications, e.g.,
phosphorylation and others). (c) Thermodynamic laws impose that reactions proceed in
the direction of decreasing Gibb’s free energy.

relations are generally complex; thus to construct large-scale
models a simplified representation is likely to be needed. The
workflow proposed by Jamshidi and Palsson (42) relies on a lin-
earization of reaction rates, represented by a gradient matrix that
embeds kinetic and thermodynamic properties. This representa-
tion has the advantage of offering a duality between concentra-
tions and fluxes, where either can be used as independent variables
for simulation.

Important obstacles remain in the completion of such a work-
flow, the most often cited being the difficulty to acquire sufficient
experimental data for kinetic parameter values. Nevertheless, the
significance of parameter values in biological models, while impor-
tant, should not be overestimated. By the analysis of elementary
mode fluxes in a model of yeast glycolysis, we observed that the
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main features of the flux distribution were robust to large changes
in parameter variations (31). The investigation of a wider range
of examples confirmed that the behavior of many biochemical sys-
tems is characterized by “parameter sloppiness” (43, 44), which
means that their main phenotypes are insensitive to changes in
most parameter values inside a large space of variations, except
for a few “stiff” combinations of parameters. Such observations
suggest that biological properties may depend more fundamen-
tally on design principles, interaction mechanisms, and scaling
laws than on the fine-tuning of individual parameters. The pre-
dictive and informative value of a model may not necessarily be
dependent on a high level of precision in parameter values.

References

1. Papin, J., Reed, J., and Palsson, B. Ø.
(2004) Hierarchical thinking in network
biology: the unbiased modularization of bio-
chemical networks. Trends Biochem. Sci. 29,
641–647.

2. Ghazalpour, A., Doss, S., Sheth, S. S., et al.
(2005) Genomic analysis of metabolic path-
way gene expression in mice. Genome Biol. 6,
R59.

3. Goffard, N., and Weiller, G. (2007) PathEx-
press: a web-based tool to identify relevant
pathways in gene expression data. Nucleic
Acids Res. 35, W176–181.

4. Yang, H. H., Hu, Y., Buetow, K. H., and Lee,
M. P. (2004) A computational approach to
measuring coherence of gene expression in
pathways. Genomics 84, 211–217.

5. Ekins, S., Nikolsky, Y., Bugrim, A., Kirillov,
E., and Nikolskaya, T. (2007) Pathway map-
ping tools for analysis of high content data.
Methods Mol. Biol. 356, 319–350.

6. Kanehisa, M., and Goto, S. (2000) KEGG:
Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28, 27–30.

7. Draghici, S., Khatri, P., Tarca, A. L., et al.
(2007) A systems biology approach for path-
way level analysis. Genome Res. 17, 1537–
1545.

8. Antonov, A., Dietmann, S., and Mewes,
H. (2008) KEGG Spider: interpretation of
genomics data in the context of the global
gene metabolic network. Genome Biol. 9,
R179.

9. Nacher, J. C., Schwartz, J. M., Kanehisa,
M., and Akutsu, T. (2006) Identification of
metabolic units induced by environmental
signals. Bioinformatics 14, e375–383.

10. Goffard, N., Frickey, T., and Weiller, G.
(2009) PathExpress update: the enzyme

neighbourhood method of associating gene-
expression data with metabolic pathways.
Nucleic Acids Res. 37, 335–339.

11. Schwartz, J. M., Gaugain, C., Nacher,
J. C., de Daruvar, A., and Kanehisa, M.
(2007) Observing metabolic functions at the
genome scale. Genome Biol. 8, R123.

12. Papin, J. A., Price, N. D., Wiback, S. J., Fell,
D. A., and Palsson, B. Ø. (2003) Metabolic
pathways in the post-genome era. Trends
Biochem. Sci. 28, 250–258.

13. Schilling, C. H., Letscher, D., and Palsson,
B. Ø. (2000) Theory for the systemic defi-
nition of metabolic pathways and their use
in interpreting metabolic function from a
pathway-oriented perspective. J. Theor. Biol.
203, 229–248.

14. Schuster, S., Fell, D. A., and Dandekar, T.
(2000) A general definition of metabolic
pathways useful for systematic organization
and analysis of complex metabolic networks.
Nat. Biotechnol. 18, 326–332.

15. Barriot, R., Poix, J., Groppi, A., et al. (2004)
New strategy for the representation and
the integration of biomolecular knowledge
at a cellular scale. Nucleic Acids Res. 32,
3581–3589.

16. Vido, K., Spector, D., Lagniel, G., et al.
(2001) A proteome analysis of the cadmium
response in Saccharomyces cerevisiae. J. Biol.
Chem. 276, 8469–8474.

17. Castrillo, J. I., Zeef, L. A., Hoyle, D. C., et al.
(2007) Growth control of the eukaryote cell:
a systems biology study in yeast. J. Biol.
6, 4.

18. Ishii, N., Nakahigashi, K., Baba, T., et al.
(2007) Multiple high-throughput analyses
monitor the response of E. coli to perturba-
tions. Science 316, 593–597.



Genome-Scale Integrative Data Analysis and Modeling of Dynamic Processes in Yeast 443

19. Beyer, A., Hollunder, J., Nasheuer, H. P.,
and Wilhelm, T. (2004) Post-transcriptional
expression regulation in the yeast Saccha-
romyces cerevisiae on a genomic scale. Mol.
Cell. Proteomics 3, 1083–1092.

20. Bradley, P. H., Brauer, M. J., Rabinowitz, J.
D., and Troyanskaya, O. G. (2009) Coor-
dinated concentration changes of transcripts
and metabolites in Saccharomyces cerevisiae.
PLoS Comput. Biol. 5, e1000270.

21. Yeang, C. H., and Vingron, M. (2006) A
joint model of regulatory and metabolic net-
works. BMC Bioinformatics 7, 332.

22. Sontag, E., Kiyatkin, A., and Kholodenko,
B. N. (2004) Inferring dynamic architec-
ture of cellular networks using time series of
gene expression, protein and metabolite data.
Bioinformatics 20, 1877–1886.

23. Grimbs, S., Selbig, J., Bulik, S., Holzhütter,
H. G., and Steuer, R. (2007) The stability
and robustness of metabolic states: identify-
ing stabilizing sites in metabolic networks.
Mol. Syst. Biol. 3, 146.

24. Conradi, C., Flockerzi, D., Raisch, J.,
and Stelling, J. (2007) Subnetwork anal-
ysis reveals dynamic features of complex
(bio)chemical networks. Proc. Natl. Acad.
Sci. USA 104, 19175–19180.

25. Whelan, K. E., and King, R. D. (2008) Using
a logical model to predict the growth of
yeast. BMC Bioinformatics 9, 97.

26. Förster, J., Famili, I., Fu, P., Palsson, B.
Ø., and Nielsen, J. (2003) Genome-scale
reconstruction of the Saccharomyces cerevisiae
metabolic network. Genome Res. 13, 244–
253.

27. Klamt, S., Saez-Rodriguez, J., Lindquist, J.
A., Simeoni, L., and Gilles, E. D. (2006)
A methodology for the structural and func-
tional analysis of signaling and regulatory
networks. BMC Bioinformatics 7, 56.

28. Gianchandani, E. P., Papin, J. A., Price, N.
D., Joyce, A. R., and Palsson, B. Ø. (2006)
Matrix formalism to describe functional states
of transcriptional regulatory systems. PLoS
Comput. Biol. 2, e101.

29. Saez-Rodriguez, J., Simeoni, L., Lindquist,
J. A., et al. (2007) A logical model provides
insights into T cell receptor signaling. PLoS
Comput. Biol. 3, e163.

30. Gianchandani, E. P., Joyce, A. R., Palsson, B.
Ø., and Papin, J. A. (2009) Functional states
of the genome-scale Escherichia coli transcrip-
tional regulatory system. PLoS Comput. Biol.
5, e1000403.

31. Schwartz, J. M., and Kanehisa, M. (2006)
Quantitative elementary mode analysis of
metabolic pathways: the example of yeast gly-
colysis. BMC Bioinformatics 7, 186.

32. Varma, A., and Palsson, B. Ø. (1994)
Metabolic flux balancing: basic concepts, sci-
entific and practical use. Bio/Technology 12,
994–998.

33. Lee, J. M., Gianchandani, E. P., Eddy, J.
A., and Papin, J. A. (2008) Dynamic anal-
ysis of integrated signaling, metabolic, and
regulatory networks. PLoS Comput. Biol. 4,
e1000086.

34. Steuer, R., Gross, T., Selbig, J., and Bla-
sius, B. (2006) Structural kinetic modeling
of metabolic networks. Proc. Natl. Acad. Sci.
USA 103, 11868–11873.

35. Smallbone, K., Simeonidis, E., Broomhead,
D. S., and Kell, D. B. (2007) Something
from nothing – bridging the gap between
constraint-based and kinetic modelling. FEBS
J. 274, 5576–5585.

36. Teusink, B., Passarge, J., Reijenga, C. A.,
et al. (2000) Can yeast glycolysis be under-
stood in terms of in vitro kinetics of the con-
stituent enzymes? Testing biochemistry. Eur.
J. Biochem. 267, 5313–5329.

37. Ao, P., Lee, L., Lidstrom, M., Yin, L., and
Zhu, X. (2008) Towards kinetic modeling of
global metabolic networks: Methylobacterium
extorquens AM1 growth as validation. Chin.
J. Biotechnol. 24, 980–994.

38. Ederer, M., and Gilles, E. D. (2007)
Thermodynamically feasible kinetic mod-
els of reaction networks. Biophys. J. 92,
1846–1857.

39. Qian, H., and Beard, D. A. (2005) Thermo-
dynamics of stoichiometric biochemical net-
works in living systems far from equilibrium.
Biophys. Chem. 114, 213–220.

40. Hoppe, A., Hoffmann, S., and Holzhütter,
H. G. (2007) Including metabolite concen-
trations into flux balance analysis: thermody-
namic realizability as a constraint on flux dis-
tributions in metabolic networks. BMC Syst.
Biol. 1, 23.

41. Henry, C. S., Broadbelt, L. J., and Hatzi-
manikatis, V. (2007) Thermodynamics-based
metabolic flux analysis. Biophys. J. 92,
1792–1805.

42. Jamshidi, N., and Palsson, B. Ø. (2008) For-
mulating genome-scale kinetic models in the
post-genome era. Mol. Syst. Biol. 4, 171.

43. Gutenkunst, R. N., Waterfall, J. J., Casey, F.
P., Brown, K. S., Myers, C. R., and Sethna, J.
P. (2007) Universally sloppy parameter sensi-
tivities in systems biology models. PLoS Com-
put. Biol. 3, 1871–1878.

44. Daniels, B. C., Chen, Y. J., Sethna, J. P.,
Gutenkunst, R. N., and Myers, C. R. (2008)
Sloppiness, robustness, and evolvability in
systems biology. Curr. Opin. Biotechnol. 19,
389–395.



Chapter 25

Genome-Scale Metabolic Models of Saccharomyces
cerevisiae

Intawat Nookaew, Roberto Olivares-Hernández, Sakarindr
Bhumiratana, and Jens Nielsen

Abstract

Systematic analysis of Saccharomyces cerevisiae metabolic functions and pathways has been the subject
of extensive studies and established in many aspects. With the reconstruction of the yeast genome-scale
metabolic (GSM) network and in silico simulation of the GSM model, the nature of the underlying
cellular processes can be tested and validated with the increasing metabolic knowledge. GSM models
are also being exploited in fundamental research studies and industrial applications. In this chapter, the
principle concepts for construction, simulation and validation of GSM models, progressive applications of
the yeast GSM models, and future perspectives are described. This will support and encourage researchers
who are interested in systemic analysis of yeast metabolism and systems biology.

Key words: Saccharomyces cerevisiae, yeast, metabolism, metabolic network reconstruction,
genome-scale metabolic model (GSM), systems biology.

1. Introduction

The eukaryotic model organism Saccharomyces cerevisiae (bud-
ding yeast) has been used for beer, wine, and bread making since
ancient times. In modern times it is also being exploited as a host
for production of many compounds of industrial interest (1, 2).
Yeast was proved as the main responsible for the process of fer-
mentation by Louis Pasteur (1822–1895) and has been exten-
sively studied at the molecular biology, biochemistry, physiology,
and genetic levels. In 1996, the complete genome sequence of
S. cerevisiae was released (first sequenced eukaryotic genome)
(3, 4), and this enabled the first comprehensively study of an
eukaryotic cell as a whole. Yeast shares a significant number of
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cellular processes with human (e.g., more than 20% of yeast genes
are human orthologs (5–7)) which makes it a good model organ-
ism for the study of human diseases and drug screening (8–10).
Moreover, several high-throughput experimental platforms for
generation of multilevel omics data and implementation of com-
prehensive databases have been established and validated in yeast
(1), with methods and strategies being progressively applied to
higher eukaryotes. This places S. cerevisiae as a reference model
organism for systems biology studies of eukaryotic cells.

Metabolism constitutes a well-known, essential process of liv-
ing cells. Metabolic changes play a crucial role to sustain life
by adaptation to environmental changes. Together with this,
changes in yeast metabolic fluxes may be exploited for the pro-
duction of novel products by heterologous expression and/or
metabolic engineering (e.g., polyketides (11, 12), isoprenoids
(13–16), insulin (17, 18), and ethanol (19, 20)). At the clini-
cal level, metabolic changes/imbalances are characteristic of many
diseases and understanding the metabolism at a fundamental level
may lead to identification of targets and drug discovery (21). The
knowledge of metabolism derived from qualitative and reduc-
tionistic approaches is not sufficient to accomplish the applica-
tions mentioned above. Progressive incorporation of quantitative
approaches at a holistic level is necessary. Mathematical model-
ing of yeast metabolism is a very good approach to quantitatively
model phenotypes in various environmental conditions. Perform-
ing in silico experiments can demonstrate whether proposed
molecular mechanisms are theoretically feasible and can help to
guide experimental work. Once a computer model has been cre-
ated and validated, it can be used to test different hypotheses and
mimic experiments that are difficult (or impossible) to carry out
in the laboratory. Hereby, quantitative models can help to under-
stand the behavior of complex biological systems.

Here, we describe a conceptual framework to construct
genome-scale metabolic networks, the basic mathematical formu-
lation underlying these networks, and how they can be used for
simulation of metabolism. The historic, progressive development
of S. cerevisiae metabolic models from prototypes to genome-
scale metabolic models is also presented. Finally, applications and
future perspectives of yeast genome-scale metabolic models in the
area of systems biology are summarized and described.

2. Genome-Scale
Metabolic (GSM)
Model
Construction and
Simulation

The biochemical information and metabolic pathways have been
progressively collected from biochemical evidences in different
organisms and this resulted in a complete biochemical network
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2.1. Metabolic
Network
Reconstruction

compilation (22) that is widely used as a reference text. Nev-
ertheless, specific metabolic networks of organisms of interest,
such as S. cerevisiae, are needed to achieve a high-quality quali-
tative model that can be further used for mathematical quantita-
tive modeling. The reconstruction of such metabolic models relies
on three main levels of biological information, i.e., genomics,
biochemistry, and physiology (23). Functional genomics is used
mainly to identify functional annotation of open reading frames
(ORFs; i.e., putative protein coding genes) encoding metabolic
enzymes. Organism-specific genome databases represent valu-
able resources of high-quality annotations of ORFs in differ-
ent genomes, for example, the Saccharomyces Genome Database
(SGD) (24) and the Comprehensive Yeast Genome Database
(CYGD) (25). Together with this, established bioinformatics
approaches can be used to infer function of non-annotated ORFs
from newly released genomes (26), such as Basic Local Align-
ment Search Tool (BLAST), Cluster of Orthologous Groups
(COGs), Hidden Markov Model (HMM) of protein families and
others. Metabolic databases are other useful resources for recon-
struction of metabolic pathways and networks of specific organ-
isms that have been annotated, such as the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (27), Reactome (28, 29), and
MetaCyc (30) databases. These resources represent a good start-
ing point for metabolic network reconstruction. However, evolu-
tion of each organism has resulted in slightly different ways to
catalyze biochemical reactions or whole pathways (e.g., isoen-
zymes, enzyme complexes, with different substrate specificity,
and/or cofactor usage). To generate a highly accurate genome-
scale metabolic network, comprehensive literature surveys of evi-
dences derived from biochemical and physiological studies, sub-
jected to constant revision and curation, are therefore needed.
For a review on comprehensive strategies for microbial metabolic
network reconstruction, see (31).

2.2. Mathematical
Formulation of a
Reconstructed
Metabolic Network

Once a high-quality reconstructed metabolic network has been
accomplished, formulation of the network in mathematical terms
is the next step. Quantitative representation of metabolism by
functional integration of the reconstructed metabolic network
in mathematical terms can be achieved by different strategies.
Dynamic formulation based on ordinary differential equations
describing the mass balances of all the metabolites and using
kinetic expressions for the conversion rates has been applied to
metabolism for over three decades and has led to large-scale
metabolic models of red blood cells (32, 33), Mycoplasma gen-
italium (33, 34), and the hepatic lobule (35). The requirements
of a large number of kinetic constants for dynamic formulation
do, however, represent a major obstacle, in particular because
these constants depend on environmental factors and are highly
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Fig. 25.1. Mathematical formulation of a simple metabolic pathway.

organism specific. To overcome this problem, static formulation
of reconstructed metabolic networks has been developed. Based
on metabolite balancing, the stoichiometry of reactions and ther-
modynamics under pseudo-steady-state assumption, a set of lin-
ear equations can be formulated. To illustrate this consider the
simple metabolic network system in Fig. 25.1a. There are five
metabolites (A, B, C, D, and E), six intracellular fluxes (vi), and
their exchange fluxes (bi). Using metabolic balancing and pseudo-
steady-state assumption, a set of linear ordinary differential equa-
tions can be expressed as illustrated in Fig. 25.1b. As there is a
large difference in the relaxation time between enzymatic reac-
tion and cellular growth, a pseudo-steady-state condition can be
assumed for each metabolite (36). The differential equations can
therefore be reduced to algebraic equations that can be repre-
sented in a matrix from S · v = b as illustrated in Fig. 25.1c.

2.3. Model
Simulation

Stoichiometric models have been intensively used for quantitative
understanding of metabolism. For example, metabolic flux analy-
sis (MFA) (37), metabolic topology analysis like elementary flux
mode (EFM) (38–40) or extreme pathway (EP) (38, 41–44), and
flux balance analysis (FBA). Flux balance analysis, which relies on
data-driven constraints and linear optimization theories, was first
developed in 1994 by Vamar and Palsson (45). The approach was
first applied to a GSM model of Escherichia coli (46) and, a few
years later, to a GSM model of S. cerevisiae (47). The cellular con-
straints for FBA are classified into two major categories: adjustable
and nonadjustable constraints, as summarized in Table 25.1. It is
very important to collect a set of good constraints to bracket cel-
lular behavior and the further consideration of metabolic adapta-
tions during simulations. The nonadjustable constraints are inher-
iting properties of living cells that follow the laws of nature.
On the contrary, measurable fluxes (vm), kinetic rate constant
(k), and metabolic regulations, which are obtained from exper-
iments, are adjustable and very important for simulations because
they are condition dependent. After the constraints are mathe-
matically formulated, optimality principles (i.e., optimization of
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Table 25.1
Summary of constraints used in GSM model simulations

Constraint (property) Typea
Mathematical
expression

Imposition of the
solution space

Metabolite balancing and
stoichiometry under steady-state
assumption (connectivity)

HN Sv = 0
(Subspace of
universal space)

Themodynamic analysis of
reversibility of biochemical fluxes
(convex)

HN vi ≥ 0
(convex space)

Minimum and maximum fluxes
(capacity)

N/Ab vi ≥ vi,min, vi ≤ vi,max
(confined convex
space)

Mass action, enzyme kinetics,
metabolic regulation (condition
dependent)

A vi = vm
ki  kj
vi = 0 if vj �= 0
(operational space)

aHN = Hard nonadjustable, N = Nonadjustable, A = Adjustable. bCapacity property can be adjusted by cellular
adaptation.

an objective function) are used, from which metabolism simu-
lation will be performed. First, an objective function has to be
defined (to determine the optimal solution from a given set of
constraints). It is important to formulate a realistic objective func-
tion that can represent the physiological state of the cell in a bio-
logically meaningful way. Different objective functions have been
developed based on different biological hypotheses such as energy
efficiency and production (48–51), capability to produce specific
metabolic products (45), nutrient utilization (52), and the rate of
biomass production, which has been reported the best objective
function to describe the phenotypes of microorganisms (46, 47).
Formulation of the biomass equation (i.e., how the biomass is
formed from different metabolites like amino acids, fatty acids,
and nucleotides) is a crucial step in order to accurately reproduce
cellular phenotypes (53). To formulate the biomass equation it is
necessary to take into account growth requirements such as the
need for different macromolecules and free energies required for
biomass synthesis as summarized in Table 25.2.

A few algorithms based on FBA, such as minimization of
metabolic adjustment (MOMA) (54) and regulatory on/off



450 Nookaew et al.

Table 25.2
Examples of growth requirements for formulation of the
biomass equation

Growth requirements Precursors (examples)

Macromolecules
– Protein
– Carbohydrate
– Deoxynucleotide
– Ribonucleotide
– Lipid

Amino acids
Trehalose, mannan, glucan, chitin
dAMP, dCMP, dGMP, dTMP
AMP, CMP, GMP, UMP
Phospholipids, storage lipids, sterols,

sphingolipids, fatty acids

Energy Polymerization, maintenance, P/O ratio
Others Intracellular metabolite pools

minimization of metabolic flux (ROOM) (55), have been imple-
mented to improve in silico gene lethality predictions by GSM
models. Comparing the prediction power of the three approaches,
MOMA provides more accurate results in early state of transient
growth, whereas FBA and ROOM are better to predict the out-
comes after adaptation (55). Recently, incorporation of regulatory
and signal transduction pathways into metabolic networks using
formalisms of boolean logic together with ordinary differential
equation on FBA, so-called regulatory FBA (rFBA) (56, 57) and
integrated FBA (iFBA) (58, 59), has been established. These tech-
niques have improved the capability of phenotypic prediction of
FBA. Although FBA provides a good agreement between sim-
ulation results and experimental observations, it is important to
realize that the fluxes calculated from FBA are based on the high
degrees of freedom in the network, with not a unique solution in
terms of the flux vector. For GSM simulation a MATLAB tool-
box named the COBRA toolbox (60) has been developed. This
toolbox is compatible with the systems biology markup language
(SBML) (61, 62), and it provides a variety of useful features for
GSM model simulations and sensitivity analyses.

2.4. GSM Evaluations
and Examinations

Once a GSM model has been created, the first validation is to
compare in silico results with various set of experimental observa-
tions, e.g., growth rates, rates of by-product secretion, substrate
uptake rates, and the respiratory quotient (rate of CO2 produc-
tion divided by the rate of oxygen consumption). In S. cerevisiae,
aerobic and anaerobic growth conditions under different nutrient
limitations are good test cases because the physiological behavior
is markedly different in each condition. This allows to examine
the capability of the GSM model in a wide range of conditions
and the necessary metabolic adaptations, with experimental data
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from steady-state chemostat fermentations particularly useful (47,
53) for model validation.

With the availability of the comprehensive collection of gene
deletion mutants of S. cerevisiae (63), the comparison of in sil-
ico gene lethality predictions from GSM model against in vivo
results is also a good validation test of the model (53, 64–66).
Usually, in high-quality GSM models the results from in silico
gene lethality predictions and in vivo results are in good agree-
ment. However, certain amount (10–15%) of false predictions

Fig. 25.2. Summary of the conceptual framework of GSM model construction and simulation. Knowledge of genomics,
biochemistry, and physiology is used to collect reactions and their related information. Once a qualitative metabolic
network is achieved, mathematical formulation based on metabolites balancing is applied to obtain a stoichiometric
model. For simulation, constraints derived from a priori knowledge and an objective function are necessary, in order to
use the FBA approach to predict phenotypes in silico. Comparisons of in vivo and in silico phenotypes lead to iterative
model improvements and new hypotheses generation.
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is to be expected due to missing information on, for example,
regulatory mechanisms, biomass compositions, dead-end reac-
tions, reversibility of reactions, and influence of the medium
composition on simulations(64, 66). Sensitivity analyses of GSM
models such as phenotypic phase plane analysis (67), robust-
ness analysis (68), and flux viability analysis (60) are other good
approaches to examine the properties and prediction capability of
the reconstructed network.

An overview of GSM model construction and simulation is
illustrated in Fig. 25.2. A GSM model is constructed by gather-
ing and combining related data and previous knowledge, and it
is generally necessary to continuously improve the GSM model
using newly released data and/or adding missing data.

3. S. cerevisiae
GSM Models

3.1. From Prototype
to Genome Scale

The construction of metabolic networks based on metabolite bal-
ancing and stoichiometry to study the metabolic capabilities of
S. cerevisiae was not a straightforward formulation. Even though
metabolic models used for flux analysis of other organisms such
as E. coli (69) and Corynebacterium glutamicum (70) were devel-
oped and applied in biotechnology, it was not until 1995 when
the first metabolic model for S. cerevisiae was published.

The first reference regarding yeast metabolic models is the
study of van Gulik and co-workers in 1995 (48), they con-
structed a metabolic network model of the central metabolism
of two eukaryotic cells, S. cerevisiae and Candida utilis. Back
then, using the available biochemical information, the model was
used to predict the growth of the yeasts under different carbon
sources. Depending on the cultivation conditions, they used dif-
ferent sets of reactions in the model to simulate and examine
yeast physiological responses. In their formulations, one model
contained 70 reactions with 86 metabolites and another model
contained 81 reactions with 88 metabolites. They pointed out
that the P/O ratio and the maintenance coefficients were the
parameters that had the largest influence on the growth pheno-
types. Considering the relevance of this first application of yeast
metabolic networks, a better construction and parameters analy-
ses were introduced by Vanrolleghenm and co-workers (71) who
used many experimental datasets to calibrate the yeast metabolic
network. The capabilities of the network to predict biomass yields
on different substrates and the correspondence between predicted
metabolic fluxes and presence or absence of the corresponding
enzyme activities in cell-free extracts were examined. Their model
included 78 reactions, which were adopted from the previously
reported model by van Gulik et al. (48). The second metabolic
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model for yeast was reported by Nissen and co-workers (72),
who performed a more rigorous reconstruction of the central
metabolic network of S. cerevisiae. They applied the stoichiomet-
ric model with more extensive descriptions and introduced the
application of MFA. They used their model to explore many capa-
bilities of flux analysis in strain engineering. They proposed three
major applications of metabolic models: (1) the facilitation of
analysis of physiological data and the possible evaluation of intra-
cellular fluxes under various growth conditions; (2) the impact
of the presence or absence of single reactions or whole pathways
in flux distributions; and (3) MFA as a mean to calculate yields
of compounds that are not possible to experimentally measure.
In this study the authors focused in the detailed description of
the pathways and their flux distribution using anaerobic glucose
limited chemostat cultures at various dilution rates (dilution rates
equal to growth rates in steady-state chemostat cultures). Many
other applications of the yeast prototype models were found,
for instance, the calculation of the metabolic flux distribution in
recombinant strains during heterologous protein production (73)
and in the optimization of ethanol production (74). With the
development of the analysis of carbon transitions in 13C-labeled
experiment by GC-MS and/or NMR, the yeast prototype models
were first exploited for rigorous estimation of flux distributions
to study glucose repression phenomena in S. cerevisiae (75). Due
to the reliability and reproducibility of 13C-labeled MFA, several
researchers have still employed this technique together with yeast
prototype network models to gain insight into the metabolism
of S. cerevisiae (76–78). Based on a different, metabolic network
topology approach, Carlson and co-workers (79) applied elemen-
tary flux mode (EFM) analysis to study a yeast strain geneti-
cally engineered to produce poly-beta-hydroxybutyrate (PHB).
The authors also reconstructed a metabolic model of S. cerevisiae
which included the pathway for PHB production. In the same
year, Förster and colleagues (80) demonstrated the combination
of in silico pathways analysis of the yeast prototype model and
metabolome data to identify the function of orphan genes under
aerobic growth conditions. This work showed that in silico anal-
ysis of metabolic pathway is an applicable tool in the field of
functional genomics. Later on, the prototype model of Förster
was adopted by Nookaew et al. (81) to map cellular operations
under various growth conditions by extending the concept of
EFM analysis.

In 2003, the first comprehensive reconstruction of the GSM
network of S. cerevisiae was accomplished (82). The GSM model
consisted of 708 ORFs accounting for 1,175 metabolic reac-
tions and 733 metabolites including two major cellular compart-
ments, namely the cytosol and the mitochondria. It was the first
GSM network for an eukaryotic system. The in silico predictions
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of cellular phenotypes by simulation of the GSM model under
FBA technique were in good agreement with various experimen-
tal observations and showed high accuracy in prediction of gene
essentiality in large scale (47, 64).

The GSM model created by Förster et al. (82) has served as
a reference for later models trying to reach more accuracy in the
predictions and to include more biochemical as well as physio-
logical evidences. For instance, the GSM model which was gen-
erated by Duarte et al. (66) included more compartments and a
cell-wide proton balance. To distinguish between different GSM
models, a nomenclature was established where the letter i to refer
to the in silico model, the initial of the scientist(s) who made the
reconstruction and the number of ORFs involved; for example,
the model generated by Förster et al. is known as iFF708 and the
model from Duarte et al. is called iND750. Nearly all the genes
in iFF708 model are included in iDN750 and the only consider-
able difference is the number of unique reactions which reached
1,149 compared to 842 in iFF708. In spite of the fact that includ-
ing more compartments would capture more biological knowl-
edge of the yeast cell, the ability to predict phenotypes, e.g., gene
essentiality, was reduced compared with the iFF708 model. The
GSM model, iND750, was also studied for its sensitivity to dis-
play the maximum allowable phenotypes and distinct patterns of
metabolic pathway utilization by phenotypic phase plane analysis
(67). Furthermore, transcriptional regulatory network of nutrient
controlled of 55 known transcription factors based on literature
surveys (83) was combined with iND750. The combined model
called iMH805 showed good capability to predict growth phe-
notypes of regulatory gene mutants as well as gene expression
profiles by rFBA simulation strategy.

After iFF708 and iND750 were released, two more yeast
GSM models were constructed, the iLL672 (65) and the iIN800
(53) model. Through the integration of experimental and in sil-
ico analysis the first GSM model, iLL672, aimed to the eluci-
dation of duplicated genes and their metabolic function. The
GSM model included less number of reactions (1,038 reactions),
but the authors claimed that the redundancy of the information,
which is less relevant than dead-end reactions, was eliminated
from iFF708 leading to improved gene essentiality prediction.
The second GSM model, iIN800, which was also derived from
the original iFF708, had an improved biomass formation equation
and extended by several reactions involved in the lipid metabolism
leading to increased applicability to study lipid related processes
in eukaryotes. This GSM model contains 1,446 reactions and
1,013 metabolites, and the resulting model iIN800 was proven
to have very good prediction performances and probably repre-
sents the best agreement with experimental observations. In order
to overcome a problem with differences in nomenclature used in
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the different models a combined effort of several research groups
resulted in the development of the GSM network named iMM904
(84), which included 1,412 reactions (85). Despite the differ-
ences in size and predictive power among all these yeast GSM
models, the scientific community has accepted the existence and
applicability of all these models. Table 25.3 summarizes the pro-
gressive efforts in metabolic network reconstructions and model-
ing of S. cerevisiae.

3.2. Applications of
GSM Models

The applications of GSM models, not only S. cerevisiae mod-
els but also from other organisms, can be grouped according
to three main objectives: (1) Comprehension of the topology of
the metabolic network; (2) Identification of essential genes and
gene deletion targets for improved by-product formation as well
as prediction of growth and by-product secretion rates under var-
ious culture conditions; (3) The integration of different types of
omics datasets such as transcriptome, proteome and metabolome
data, thanks to the optimum development of high-throughput
methods.

A first example of the use of a genome-scale model is the
aid to find metabolic engineering strategies to maximize the pro-
duction of desired compounds. Bro and co-workers (19) used
the iFF708 model to perform in silico flux distribution analyses
to identify a number of strategies to metabolically engineer the
cell to decrease glycerol production and increase ethanol pro-
duction from glucose under anaerobic conditions. The authors
successfully decreased the yield of glycerol by 40%, whereas they
increased the ethanol yield by 3% without affecting the growth
rate. In a similar way, Asadollahi et al. (86) identified new target
genes for enhancing biosynthesis of sesquiterpenes by perturba-
tion of the ammonium assimilation pathway. Yeast GSM models
have also been used to analyze the redundancy and robustness of
metabolic networks. Åkesson et al. (87) tried to reduce the solu-
tion space of FBA simulations by adding more constraints from
transcriptome data. They showed that imposing constraints in
transcriptional gene expression leads to improved metabolic pre-
dictions of iFF708 in batch cultivations. Gene knockouts strate-
gies for metabolic engineering based on GSM models have also
been investigated. Patil et al. (88) developed an evolutionary
algorithm to find the best gene deletion target(s) associated with
desired optimal phenotypes. They applied the algorithm to iden-
tify potential gene targets to increase the production of suc-
cinic acid, vanillin, and glycerol. Another promising systems biol-
ogy application of the GSM models in omics data integration
was developed by Patil and Nielsen (89). Their algorithm called
“reporter algorithm” enabled a combination of the topology of
the yeast iFF708 network and transcriptome data for uncover-
ing metabolic hotspots in metabolic networks called reporter
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metabolites. Using a similar approach, Cakir et al. (90) inte-
grated metabolome data and the yeast GSM model to identify
reporter reactions. Recently, the reporter algorithm was extended
to cover other biological networks by Oliveira et al. (91). The
concept has been widely applied in many applications in yeast to
rule out important biological processes related to specific pertur-
bations (92–95). In another study of the yeast metabolic net-
work, Blank and co-workers (96) used iLL672 combined with
13C tracer experiments for genome-scale 13C flux analysis. The
goal of this study was to examine the robustness of various
yeast mutants. Recently, iMM904 has been applied to investi-
gate intracellular phenotypes by random sampling of the solu-
tion space confined by given secreted metabolites. This method
is a promising approach to exploit metabolome data from dif-
ferent physiological states using a GSM network. An overview of
these different applications of yeast GSM models is summarized in
Table 25.4.

Table 25.4
GSM models applications/studies. Two of the major applications of GSM models
are the investigation of new metabolic engineering strategies and the integration of
omics data in systems biology studies

References
Model
Applied Study

Patil et al. (88) iFF708 The authors used genome-scale models to develop an
evolutionary algorithm to identify metabolic strategies for
the overproduction of targeted compounds

Patil et al. (89) iFF708 Using information from the topology of the metabolic
networks the authors developed an algorithm to integrate
transcriptome data and indentify so-called reporter
metabolites

Blank et al. (96) iLL672 The model was used to identify key experiments to perform
genome-scale 13C flux analysis

Bro et al. (19) iFF708 Improvement of ethanol production in yeast
Cakir et al. (90) iFF708 Using the basis of the algorithm developed by Patil et al.

(89), this new algorithm integrates metabolome data to
identify reporter reactions

Asadollahi et al. (86) iFF708 Together with the evolutionary algorithm developed by Patil
et al. (88) the aim of this study was to increase
sesquiterpenes production

Mo et al. (84) iMM904 Applied random sampling of solution space to indentify
significant metabolic states from genetic perturbations of
the ammonium assimilation pathway



Genome-Scale Metabolic Models of Saccharomyces cerevisiae 459

4. Current Status
and Future
Perspectives

As described in the previous section, five different GSM mod-
els of S. cerevisiae have been developed and extensively applied
in many different applications. Considering the different scopes
and contents as well as performances of these GSM models,
the scientific community has gathered to unify the yeast recon-
structed network in a consensus manner (85). Based on this jam-
boree work, metabolites in the consensus network were named
in a standardized fashion by using international chemical (InChi)
or KEGG identifiers, which allows easy comparison of all yeast
reconstructed GSM networks using SMBL format. However,
there is a need for developing the consensus yeast GSM network
into a model that can be used for simulation, and this is the next
task for the yeast scientific community. The availability of a con-
sensus GSM model will have several advantages in terms of com-
parison of simulations and to be used as the common tool in yeast
systems biology research.
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Chapter 26

Representation, Simulation, and Hypothesis Generation
in Graph and Logical Models of Biological Networks

Ken Whelan, Oliver Ray, and Ross D. King

Abstract

This chapter presents a discussion of metabolic modeling from graph theory and logical modeling per-
spectives. These perspectives are closely related and focus on the coarse structure of metabolism, rather
than the finer details of system behavior. The models have been used as background knowledge for
hypothesis generation by Robot Scientists using yeast as a model eukaryote, where experimentation and
machine learning are used to identify additional knowledge to improve the metabolic model. The logical
modeling concept is being adapted to cell signaling and transduction biological networks.

Key words: Graph theory, logical models, metabolic networks, machine learning.

1. Introduction

This chapter discusses metabolic network modeling from two
related perspectives: graph theory and logical modeling. It
includes an informal presentation of some of the possible rep-
resentations in graph theory, propositional, and first-order logic
(FOL), and how these representations are related. The chapter
focuses on the FOL models used as background theories for two
Robot Scientists. A Robot Scientist is a combination of laboratory
automation and artificial intelligence (AI) designed to automate
the scientific discovery process. The discussion will highlight how
the various AI methods used for hypothesis generation have con-
strained the available representations for models and how more
recent techniques have enabled the relaxation of these constraints.
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1.1. Systems Biology
and the Modeling of
Biochemical
Networks

Systems biology (1–4) represents a shift toward a synergistic
approach to whole-organism modeling, emphasizing the inter-
actions between many interrelated components rather than the
behavior of the individual components. Advances in mathemat-
ics and computer science have led to the development of diverse
techniques and formalisms enabling the in silico modeling of cel-
lular systems. All computer models represent varying degrees of
abstraction from the corresponding observable phenomena, from
coarse large-scale models that capture the basic interactions and
components of the system, e.g., KEGG (5, 6) and EcoCyc (7), to
higher fidelity representations of detailed functioning and inter-
actions of a smaller set of components (8).

Logic and graph (LG) models are related qualitative represen-
tations for modeling metabolism, where the interactions and net-
work structure are represented without quantitative details such
as reaction kinetics/dynamics. Graph-based models are used in
metabolic databases such as KEGG and EcoCyc/MetaCyc, where
metabolic pathways are represented explicitly with each metabo-
lite being a node in the graph and edges representing the chemical
transformations found in the reactions comprising the pathway.
Such qualitative methods differ from quantitative methods such
as flux balance analysis (FBA) and ordinary differential equation
(ODE) models.

Diagrams illustrating the components and interactions of
graph models are easy to understand and represent a natu-
ral method for communicating the overall system structure. To
take advantage of this aspect of graph models, online databases
such as KEGG are almost exclusively diagram based. However,
although diagrammatic representations of graph models are easy
for humans to understand, it is necessary to provide a logical
representation of such diagrams for computational purposes, by
encoding the sets of nodes and edges implicit in the mathe-
matical definition of the corresponding graph. Moreover, addi-
tional annotations, which play a key role in most graphical data
sources, can also be represented in logic and utilized by compu-
tational inference procedures. The ability to use this and other
background knowledge for learning and revision of biological
networks is a key advantage of logical methods over related
approaches. Logical models may use computationally efficient
forms of both propositional and FOL as their representation lan-
guage (9). The increased expressive power of logic can be used
to extend the LG modeling paradigm beyond the mere topology
of the network to allow accurate and explicit representation of
the relationships between the genes, enzymes, and gene products
used as annotations to the reactions, as well as various cellular
compartments. This strong correspondence between graph mod-
els and logical models is described in more detail in later sections
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of this chapter where examples illustrate how various types of
graphs can be directly coded in Prolog logic programming lan-
guage (9).

Logic and graph models have been developed to study many
components of systems biology including metabolism, signaling
pathways, and transcription networks, for example:

• Lemke and coworkers (10, 11) have developed a graph-
based model of the metabolic network of Escherichia coli
and have used it to analyze how much damage the absence of
each enzyme causes to the metabolic network. They defined
metabolic damage as the number of metabolites that can
no longer be produced by the organism. They showed that
only 9% of enzymes catalyze the production of five or more
metabolites but that more than 50% of essential enzymes are
to be found in this group.

• The BIOCHAM system (12) is a dedicated biochemical rea-
soning engine that uses a rule-based temporal logic lan-
guage to model and query all of the possible behaviors of
a given biochemical model, and the MAP kinase (MAPK)
signal transduction cascades have been used as an example.

• Random Boolean networks (13, 14) have also been used
to model 106 genes comprising a yeast transcriptional net-
work. Random Boolean networks are useful for modeling
systems where interactions are not known beforehand. Kauff-
man et al. (14) used this process to identify those networks
that were most stable, thereby representing rules of biologi-
cal relevance to the regulation of gene transcription.

1.2. The Robot
Scientist Concept
and Functional
Genomics

A Robot Scientist is a physically implemented robotic system that
applies techniques from artificial intelligence to execute cycles of
automated scientific experimentation (15, 16). A Robot Scientist
can automatically execute cycles of hypothesis generation, selec-
tion of efficient experiments to discriminate between hypothe-
ses, execution of experiments using laboratory automation
equipment, and analysis of results.

The development of the Robot Scientist concept has seen
two main stages: an initial proof-of-principle study comprising a
rediscovery task (15) and a more recent study investigating the
potential for the discovery of new biological knowledge using
ADAM (16) – a Robot Scientist that is capable of automating
the required laboratory (wet) experiments. Both investigations
used Saccharomyces cerevisiae (Baker’s or budding yeast) func-
tional genomics as the application domain (see Section 5.3). The
Robot Scientists used background models of yeast metabolism.
The use of logic provides a common framework for the biological
knowledge and the generation of hypotheses.
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2. Representing
Metabolic
Networks Using
Graph Theory and
Logic

2.1. Graph Theory

In general, a graph (17) G = {V , E} consists of a set of vertices (or
nodes) V and a set of edges (or arcs) E. In biological systems, the
nodes generally correspond to biological entities such as genes,
proteins, or chemical compounds, and the edges correspond to
interactions between the biological entities, e.g., protein interac-
tions, gene expression interactions, and chemical transformations.
A graph representing the most basic metabolic network will have
chemical compounds as nodes and the chemical transformations
found in biochemical reactions as edges (17). Figure 26.1 shows
how to represent the graph structure of a metabolic network.
Figure 26.1a is a hypothetical metabolic network with six reac-
tions by which the cell might synthesize compounds G and H
from compounds D and A (although many biochemical reactions

Fig. 26.1. Common representations used to model metabolic networks. (a) Reaction network; (b) stoichiometric matrix;
(c) substrate graph; (d) reaction hypergraph; (e) bipartite reaction graph. For more information, see text.
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are reversible, these reactions are considered non-reversible for
clarity). Figure 26.1b shows how the reaction network can be
transformed into a stoichiometric matrix, a representation cen-
tral to FBA models. Each index in a stoichiometric matrix corre-
sponds to the stoichiometry coefficient for a particular compound
in a single reaction (the rows are labeled with the compounds, the
columns are labeled with the reactions – all indices in a column
describe the chemical transformations found in a single reaction),
negative coefficients for substrates, positive coefficients for prod-
ucts, and a coefficient of zero indicates that the compound plays
no role in a reaction. Figure 26.1c is a substrate graph corre-
sponding to the chemical transformations comprising the reaction
network. The substrate graph is a directed simple graph; the edges
have an explicit direction and are bilateral, and each edge connects
exactly two nodes. Substrate graphs are often used in metabolic
network diagrams because they are clear and simple; however,
there is a fundamental problem when this type of graph is used to
represent a metabolic network. At first glance, the reader might
think that the substrate graph effectively describes the reaction
network and is equivalent to the stoichiometric matrix; however,
this simple graph does not capture the interactions in the reaction
network adequately. This graph suggests that there are alternative
mechanisms by which molecule E can be synthesized from A, one
“route” by C and another by B. In contrast, the reaction network
has two reactions 1 and 4, both of which are required for synthesis
of E (as well as essential reaction 3); if either reaction was missing,
the cell would no longer be able to synthesize E, i.e., there is only
one route to E.

If a directed hypergraph (Fig. 26.1d) or a bipartite graph
(Fig. 26.1e) is used instead of the simple graph, the resulting
graphs will have none of the ambiguities of the simple substrate
graph. A hypergraph is a more general form of a simple graph,
where each e ∈ E is a hyperedge connecting two or more vertices
Vi that correspond to a subset of V. Reaction networks require
the use of directed hypergraphs where hyperarcs, denoted a(T,H),
connect several start nodes (the tail T) with several end nodes (the
head H): T and H are subsets of V, the full set of vertices. The
directed hyperarcs correspond to the direction of the reaction.

A bipartite graph is the simplest case of a k-partite graph
(18). In k-partite graphs, the vertices V can be partitioned into
k disjoint subsets, each subset corresponding to different type of
node, i.e., a different type of biological entity. In Fig. 26.1e, the
nodes correspond to the reaction numbers (R) and the molecules
(M) – this graph can then be defined as G = {M , R, E}. Defin-
ing subsets for reaction and molecule identifiers allows this graph
to again have simple or bilateral edges. An interesting and com-
monly found property of k-partite graphs is that the edges link
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nodes from different subsets; in Fig. 26.1e, each edge links a
molecule to a reaction number or vice versa.

2.2. Propositional
Logic

In propositional logic, logical formulae or rules are constructed
by combining atomic propositions with logical connectives (AND
(�), OR (�), NOT (¬), and IF (←)). Each proposition has a
truth status, i.e., one of {true,false}. The implication connector
divides each rule into a head (LHS, left-hand side) and a body
(RHS, right-hand side).

If the head of the rule is limited to a single positive propo-
sition, as is the case for rules defined using disjunctive normal
form (DNF) (19), each rule can be thought of as defining how
the truth value of the head variable can be determined from the
truth values of the body variables. The reaction network can be
written as the rule system shown in Fig. 26.1a, where the truth
value of each proposition A,B corresponds to the presence or the
absence of molecules A,B etc. It is interesting to note the simi-
larity between these rules and the equation systems used in ODE
models, where the concentration of a (head) molecule is deter-
mined by the concentrations of dependent (body) molecules and
related kinetic parameters. Propositional rule sets are also equiv-
alent to single database tables, where each column is one propo-
sition, with as many columns as propositions in the rule set. The
stoichiometric matrix in Fig. 26.1b is in effect a single database
table.

2.3. First-Order Logic
and Prolog

In brief, first-order logic (FOL) is an extension of propositional
logic that, by the introduction of quantifiers and predicates, sig-
nificantly extends the scope of knowledge than can be expressed
using logic representations. FOL has been a core modern con-
cept in mathematics and philosophy, and in artificial intelligence
(AI). The logic programming language Prolog is a useful subset
of FOL with additional support for functions such as arithmetic
evaluation and default negation (9). There are now highly effi-
cient computational theorem provers for Prolog. We will limit
the discussion of modeling in FOL to Prolog.

A Prolog clause (see below) is similar to a rule in DNF propo-
sitional logic in that there are head and body components. Each
component is termed a literal l, and literals can be atoms (a, see
below) and other non-classical operators allowing, e.g., arithmetic
calculations as well as the negation-as-failure operator (denoted
not) which allows a reasoner to assume the negation of an atom
in the absence of any evidence to the contrary. An atom a consists
of a predicate symbol p and a set of related terms t: p(t1, ..., tn).
Terms can be atoms, lists, variables, constants, or other (nested)
terms. Prolog clauses restrict the number of head literals to at
most one, usually an atom, and the body literals are restricted
to conjunctions (9). A clause C is an expression of the form
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a← l1, ..., ln, where a is the head atom and l1, ..., ln are the body
literals. The most relevant here is the existence of three kinds
of Prolog clauses: rules, facts, and queries. Rules capture gen-
eral principles and represent these as implications; facts represent
specific items of knowledge and are Prolog clauses with no body
literals and where no terms are variables; and queries are Pro-
log clauses for which a solution is requested. Theorem proving in
Prolog involves finding a solution to a query by consulting a logic
program and proving that the query is a logical consequence of
the logic program. Logic programs consist of sets of general rules
and facts (see example below). General concepts can be introduced
in Prolog by the use of variables (9).

Predicates in Prolog are equivalent to tables in relational
databases; indeed the term relation is often considered inter-
changeable with predicate. As a relational database can have many
entries, i.e., rows in the table, a predicate (relation) can have many
instances represented as facts. As an example, the reaction net-
work in Fig. 26.1a can be written as the rule system presented in
Fig. 26.2 and be represented by the facts shown in Fig. 26.3.

The small logic program (Fig. 26.3) describing the reaction
network is an example of a completely declarative logic program;

Fig. 26.2. Rules describing the six hypothetical reactions in Fig. 26.1a.

Fig. 26.3. A simple Prolog program describing the six hypothetical reactions in
Fig. 26.1a (quoted terms are text strings). For more information, see text.
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all of the predicates are ground facts, with no use of extra-logical
constructs such as lists and no nesting of functions. In most
knowledge-based applications of logical models, there is a distinct
separation between the “raw” knowledge, declared as sets of facts,
and rules that are used to manipulate the knowledge and derive
conclusions to queries. All of the logical models discussed have
this separation and all are declarative to varying degrees; some of
the predicates include lists and other nested constructs because
of procedural considerations relating to how the model has been
used.

2.4. Relating Graph
and Logical
Representations

As mentioned above, Fig. 26.2 is a propositional rule set describ-
ing the reaction network in Fig. 26.1a. Converting the chemical
reaction notation into this representation is straightforward; mul-
tiple substrate molecules can be represented as conjunctions in the
body of a single rule; multiple products are translated into mul-
tiple rules, one for each product. If the reactions were reversible,
new rules would be constructed with the products as conjunctions
and the substrates as separate rules. This rule set is also equivalent
to the hypergraph in Fig. 26.1d, where the substrates correspond
to hyperarc heads and products to hyperarc tails. A similar pro-
cess can be used to generate rules from all of the hyperarcs in the
hypergraph.

These two examples illustrate how hypergraphs and propo-
sitional logic models are equivalent representations, where only
one type of object or node is considered. The reaction numbers
and molecule names in the bipartite graph in Fig. 26.1e can be
most effectively represented in logic using FOL or Prolog. Extra
propositional variables could be introduced to represent the reac-
tion numbers; however, an increasing number of entity types will
lead to more complex rules or more columns in the database
table. The Prolog models discussed in this chapter include more
entity types, allowing enzymes and open reading frames (ORFs,
putative genes, e.g., YGL026C, see Section 5), and the catalyz-
ing and coding roles of these entities to be represented in the
same form as the reactions in the metabolic network. In particu-
lar, two of the models include cell compartments corresponding
to the cytosol, mitochondrion, etc., often with the same reactions
repeated in each compartment. In Prolog, this can be accom-
modated by an additional argument specifying the compartment.
However, in propositional logic, a new proposition is required for
each metabolite in each compartment, and an additional column
is required in the stoichiometric matrix. This additional complex-
ity reduces the ability of these propositional representations to
easily communicate the knowledge contained in the network.

Figure 26.4 shows the metabolic network of a small part of
the sugar metabolism of S. cerevisiae and illustrates the relation-
ship between graph and Prolog representations. The graph is a
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Fig. 26.4. Reactions, enzyme, and ORF information from the metabolism of sugars in S. cerevisiae with corresponding
Prolog clauses (only the form of each predicate is given – the actual program would have sets of facts corresponding to
each predicate). For more information, see text.

k-partite graph G = {O, EC, R, M , E} corresponding to the reac-
tion, enzyme, and ORF relationships found in the network. Each
node subset corresponds to ORFs, enzymes, defined by their EC
(Enzyme Commission) number, reaction numbers, and metabo-
lites, respectively. This graph also contains only bilateral edges
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between members in the different node subsets. The descrip-
tions/legends in Fig. 26.4 show how the edges and nodes corre-
spond to predicates in a Prolog model.

3. Simulation:
Prediction of
Growth
Phenotypes A major task of a logical model is to predict the change in growth

phenotype for deletion mutants when one or more ORFs is/are
removed from the yeast genome. This task is equivalent to find-
ing a set of path(s) in the metabolite graph from a set of initial
compounds, usually representing a (defined) growth medium, to
a set of compounds deemed essential for cell growth. The task is
simplified by assuming that certain common compounds such as
ATP and NADP are always present in the cell. Figure 26.5 illus-
trates how gene/ORF deletions can potentially block reactions in
the graph. This figure assumes a direct relationship between ORFs
and reactions for clarity. It also assumes that there are no cofac-
tor metabolites present (as in Fig. 26.4). In practice, the exis-
tence of cofactor metabolites adds an extra complication: a path-
finding algorithm relying on the simple chemical transformations
as defined in a substrate graph will find shorter erroneous paths
if presence of cofactors is not considered. These erroneous paths
can be discarded by using reaction membership as a constraint
guiding graph traversal. Figure 26.5a is the graph correspond-
ing the wild type strain with no reactions missing; Fig. 26.5b

Fig. 26.5. Prediction of growth phenotypes in logical models, showing reactions (1–6), encoding ORFs (O1–O4), starting
compounds (A and D), essential compounds (G and H), and supplemental metabolites (E and F in c). Crossed out reactions
are those that can no longer take place (3 and 4 have no enzyme and 5 and 6 have no substrates). For more information,
see text.
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shows the reduced graph when ORF O3 is removed, resulting in
arrested cell growth; and Fig. 26.5c has the same deletion but
compounds E and F have been added to the growth medium,
allowing reactions 5 and 6 to proceed again, restoring cell growth.

The k-partite graph representation explicitly illustrates how
the relationships between ORFs, enzymes, and reactions gov-
ern cell metabolism because alternative paths to essential com-
pounds and isoenzyme ORFs can be represented directly. An
equivalent Prolog program is therefore also a direct representa-
tion. The path-following algorithm used to predict cell growth
can be encoded as Prolog rules defining the conditions required
for a reaction to proceed (traversal of the metabolite and reaction
nodes in Fig. 26.4).

For a reaction to proceed, all compounds in the substrates
(or products, if the reaction is reversible) need to be present in
the cell before the reaction can occur, and there exists at least one
catalyzing enzyme with at least one encoding ORF present in the
genome (i.e., not removed):

can_proceed(RNum,Cell) :-
all_substrates_in_cell(RNum,Cell),
catalyses(EC,RNum),
codes(Orf,EC),
not(removed(Orf)).

This simple rule (with an equivalent rule for reaction products
if the reaction is reversible – in Prolog, implication is denoted
using “:-,” AND is denoted by “,” and the rule is terminated by
“.”) will typically be incorporated into a larger logic program with
other rules corresponding to other semantic knowledge, such as
rules for defining and proving that the essential compounds will
be synthesized by the cell. (Note that this rule is a simplification
of the more complex rules actually used in the models.)

The function of the removed gene can then be discovered by
finding a chemical compound or a set of compounds that restore
normal growth, since it can be inferred that the removed gene
plays a role in the synthesis of the compounds, i.e., the removed
gene codes for one or more reactions that produce the com-
pound(s) directly or one or more reactions that produce a crucial
intermediary compound.

4. Hypothesis
Generation Using
Logical Models

The prediction of growth phenotypes is an example of deduc-
tive inference, where the prediction is a direct consequence of the
logic programs comprising the logical model. However, abductive
or inductive reasoning is required to determine gene function
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from the experimental outcomes, i.e., forms of hypothesis gen-
eration. Robot Scientists have so far been restricted to abductive
inference – the new knowledge inferred is of the form of facts
or conjunctions of facts, rather than general rules as inferred by
induction. Abductive inference is more relevant to the knowledge
discovery task in the biological applications investigated by the
Robot Scientists.

Hypothesis generation from experimental observation is a
form of machine learning. There are many different machine
learning paradigms, particularly in propositional logic and equiv-
alent representations, e.g., top-down induction of decision trees
(TDIDT) (20) and linear regression (21). The software package
WEKA (22) includes implementations of many of these meth-
ods. Hypothesis generation in FOL or Prolog, on the other hand,
requires techniques from inductive logic programming (ILP) or
relational learning (23), where the hypotheses and experimen-
tal observations are expressed as logic programs. The relation-
ship between hypotheses and experimental observations can be
then expressed as B ∪H � E, where H and E are the hypotheses
and experimental observations, respectively; B is the background
knowledge; and “�” is the semantic entailment relationship. In
the forward direction (deduction), this formula describes how the
experimental observations can be derived from the background
knowledge and the hypotheses; in the reverse direction (abduc-
tion or induction), it describes hypothesis generation. In the case
of hypothesis generation from logical models, the background
knowledge B is the logical model and the hypotheses are infer-
ences by which the model can be revised so that it can correctly
explain the experimental observations.

The generation of hypotheses using ILP techniques usually
involves searching in a very large, possibly potentially infinite,
space of potential candidates. Much ILP research (23) has been
devoted to the discovery of heuristics that can direct the search
to the most promising candidates, ignoring large irrelevant areas.
These heuristics include an ordering of the search space, restric-
tions in the form of clauses and predicates that may be used to
describe the hypotheses and others. Even with these heuristics,
there can still be restrictions on the nature of possible hypotheses,
and these restrictions have in turn governed the choice of repre-
sentations for the logical models.

5. Logical Models
and the Robot
Scientists

There are three logical models that have been developed in con-
junction with the Robot Scientists. Two of these, the original
aromatic amino acid synthesis model, “Original” AAA model
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(15), and the “New” AAA model (24), are fine-grained, pathway-
specific models of the aromatic amino acid pathway in S. cerevisiae
(i.e., how yeast is able to synthesize tryptophan, tyrosine, and
phenylalanine); the other is “aber” (25), a whole-genome model
including all of the currently known enzymatic and metabolic
components and interactions in yeast metabolism. The Original
AAA model was used in the proof-of-principle Robot Scientist
study and was the one of the first metabolic models constructed
using Prolog. The two newer Prolog models extend the con-
cept in two important ways: (1) the “New” AAA model is a
rewrite of the Original AAA model for use with a more sophisti-
cated hypothesis generation ILP program and (2) the aber model
extends the coverage of the model by several orders of magni-
tude. These different models have allowed our scientific discovery
research to proceed in complementary ways: the pathway-specific
models provide well-described, constrained test beds for the latest
hypothesis generation methods, while the genome-scale model
has been used for the discovery of new biological knowledge,
using techniques from bioinformatics and a reliance on serendip-
itous aspects of the state of knowledge in the aber model, which
cannot be assumed for biological models in general. This section
describes these models, the hypothesis generation technique used
in conjunction with each model, and how limitations of the dif-
ferent hypothesis generation techniques constrain the various rep-
resentations used to construct the models.

5.1. Proof-of-
Principle Modeling:
The Original AAA
Model and C-Progol

The “Original” AAA model was developed as background knowl-
edge for the hypothesis generation steps in the proof – of-
principle Robot Scientist. This was a rediscovery task that was
quite limited in scope – the model was limited to a single path-
way – the aromatic amino acid biosynthesis pathway in the yeast
S. cerevisiae – and one gene was removed at a time. Hypothe-
sis generation was undertaken by the ILP program C-Progol5
(26), an abductive variation of the C-Progol program that uses
inverse entailment to induce general rules from examples spec-
ified as ground facts. C-Progol5 can abduce only one ground
fact to account for any given observation, and it cannot reason
abductively through negated atoms. This limitation led to a sin-
gle predicate-nested list representation, effectively equivalent to
the simple substrate graph in Fig. 26.1c:

enzyme(e13,[′YGL026C′],[′4.2.1.20′,′4.2.1.20′,′4.2.1.20′],1,1,
[[′C00065′,′C03506′],[′C03506′],[′C00065′,
′C00463′]],

[[′C00001′,′C00078′,′C00661′],[′C00463′,
′C00661′],[′C00001′,′C00078′]]).

This single fact represents a complex chemical transformation,
corresponding to EC 4.2.1.20, by which tryptophan (C00078)
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can be synthesized either from (3-indole)-glycerol phosphate
(C03506) directly or by using indole (C00463) as an interme-
diate compound. Although no information is lost with this rep-
resentation, and it was successful for the generation of the redis-
covery hypotheses, it is not the easiest form for comprehension
by human scientists. However, this model also included biolog-
ical concepts not included in the aber model: (1) the inhibition
of enzymes by metabolites and (2) the formation of protein com-
plexes where enzyme activity is controlled by a combination of
more than one gene product. The extra numerical arguments
(arguments 3 and 4) correspond to the reversibility of the reac-
tions and the time in days for the reaction to take place. Other
enzyme facts were constructed for import reactions, to account
for variability in the time taken for the cell to import nutrients
from the growth medium.

The C-Progol5 representation also results in the duplication
of information regarding reactions catalyzed by isoenzymes, and
the Prolog code for determining cell fate contains highly proce-
dural fragments concerned with the sorting and searching of data
structures which effectively limit the type of problem that can
be solved. The limitations of Progol5 mentioned above further
restrict the class of applicable problems to, for example, reason-
ing about single gene knockout experiments.

5.2.
Pathway-Specific
Modeling: New AAA
Model and XHAIL

For the original Robot Scientist work, the laboratory automation
was provided by a Beckman 2000 laboratory robot. In 2005 this
was replaced by the Robot Scientist ADAM, a much more com-
plex and fully automated system. The original rediscovery exper-
imental work was repeated to compare ADAM with the Beck-
man and to determine whether the AAA model was consistent
with the new results. To ensure a meaningful comparison, the
rerun used the “Original” AAA model as background knowledge,
with C-Progol5 for hypothesis generation. The rerun results (16)
showed that ADAM was able to rediscover gene function with
the same number of experimentation/hypothesis generation iter-
ations as the Beckman robot and was more efficient in the use of
laboratory resources.

To determine the consistency of the AAA model, a “New”
logical representation was constructed so that XHAIL (24, 27),
a recently developed ILP program, could be used for hypoth-
esis generation. Unlike C-Progol5, XHAIL uses non-monotonic
inference to reason abductively through clauses that contain nega-
tion and it can infer hypotheses with more than one clause in
order to explain a single example. This non-monotonic basis
gives XHAIL the ability to remove information from a model as
well as add information to a model. The “New” AAA model is
completely declarative, and no extra-logical terms, such as lists,
were required. The resulting logic programs are therefore much
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closer to the k-partite graph in Fig. 26.4, with extra predi-
cates for representing inhibition and protein complexes. Results
from the ADAM rerun were mostly consistent with the Beck-
man results with two important exceptions: (1) growth phe-
notypes for the YGL026C tryptophan synthetase-deletant strain
grown with indole were close to the wild type; however, the
model predicts that there should be no growth because the cell
can no longer synthesize tryptophan and (2) there was gener-
ally poorer growth with anthranilate than that predicted by the
model. Allowing XHAIL to reason with a wider set of clauses than
was possible with C-Progol5 resulted in a revised model with two
new hypotheses. This revised model was consistent with the new
results. The hypotheses were as follows: (1) the indole sample was
contaminated by tryptophan, allowing the YGL026C mutant to
grow, and (2) anthranilate was also imported into the cell slowly.
Mass spectroscopy has since confirmed that the indole sample had
tryptophan as an impurity.

Subsequent experiments were devised to determine whether
XHAIL could infer missing enzyme complexes and reactions,
more typical instances of model revision. These experiments
involved creating an inconsistent model by removing crucial reac-
tions and enzyme complexes, and creating a set of reactions and
enzyme complexes that could be used by XHAIL to complete
the model, and so making it again consistent with the experimen-
tal results. These sets included the removed reactions as well as
reactions from other organisms, and from different pathways in
yeast. In each case, XHAIL was able to select the correct reactions
and enzyme complexes, and recover the consistent model. These
experiments successfully demonstrate the capacity of XHAIL to
discover novel reactions, encoding ORFs by using existing multi-
organism online databases such as KEGG.

5.3. Whole-Genome
Modeling: The Aber
Model

The “aber” model (25) is a whole-metabolism model developed
to extend the logical model concept from the single pathway
model of the AAA model to the whole yeast metabolic network.
It was constructed before the “New” AAA model and is more
declarative than the Original AAA model, but reactions are still
single predicates with lists corresponding to substrate and product
metabolites. The model includes two separate intracellular com-
partments, the cytosol and the mitochondrion, as well as an exter-
nal compartment representing the growth medium. Reactions
can take place in either compartment or transport metabolites
between compartments (external medium included). The aber
model was constructed from the iFF708 model, an FBA model
constructed in 2003 (28). From here, a larger set of essential
compounds was used to determine growth outcome to reflect
the importance of all metabolic pathways and, as a result, in
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2004 additional reactions from KEGG were added to the iFF708
model.

The aber model was used as background knowledge for the
hypothesis generation steps in experiments designed to extend
the capabilities of ADAM to the discovery of novel biology
in yeast (16). This was a relevant study, testing the ability of
Robot Scientists to move beyond the proof-of-principle stage
and to contribute to new scientific knowledge. Hypothesis gen-
eration from the aber model took advantage of missing knowl-
edge in the iFF708 model. In this model, some (orphan)
reactions were included based on biochemical evidence, but
their encoding ORFs were not known. ADAM generated can-
didate ORFs/hypotheses by using sequence similarity searches.
ADAM generated experiments to test these hypotheses using the
model deductively. This process resulted in the generation of
20 hypotheses for genes encoding 13 enzymes for the orphan
reactions, with confirmation of 12 hypotheses. Further in vitro
enzyme assays confirmed the findings of the Robot Scientist and
examination of the literature revealed that seven of these encoding
ORFs were novel. The other six involved bioinformatics informa-
tion missing from the iFF708 model. The results from ADAM
were consistent with these discoveries and some of the novel
hypotheses were validated using manual methods.

The series of experiments using the Robot Scientists has out-
lined the potential for using automated reasoning techniques to
perform the hypothesis generation step in computational scien-
tific discovery. Indeed, the original limitations of C-Progol have
largely been addressed by using the more advanced reasoning
capabilities of XHAIL. Although the pathway-specific models
provide richly structured problems which are well-defined test
beds for different ILP programs, there are still problems regard-
ing problem size; e.g., hypothesis generation by automated rea-
soning using the aber model as background knowledge would
result in a combinatorial increase in the number of candidate
hypothesis consistent with just a single experimental observation.
This is why ADAM used bioinformatics techniques to generate
the hypothesis. However, such techniques are limited in scope
and there is a need to make the logical approach efficient enough
to work with large models.

6. Conclusions
and Further Work

Graph theory and logical models focus on the structural aspects
of metabolic networks, where explicit representations can capture
the connections between the metabolites, as well as the enzyme
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and gene/ORF information. In particular, Prolog models have
been central to the functional genomics investigations undertaken
by the Robot Scientists. Hypothesis generation by the Robot Sci-
entists, using the logical models as background knowledge, has
allowed the discovery of new biological knowledge. These first
discoveries also illustrate how revision and improvement of mod-
els can be automated, a challenging task for automated scientific
discovery.

The Computational Biology group in Aberystwyth Univer-
sity have recently commissioned a new Robot Scientist, “Eve,”
designed for drug discovery. The same combination of labora-
tory automation and computational hypothesis generation will be
used to find active compounds from a library containing thou-
sands of chemical compounds, with potential relevance for studies
on human diseases such as malaria. The logical modeling concept
is also being adapted to model cell signaling networks where
protein interactions, together with metabolic reactions, have a
crucial role. This model will focus on three well-studied path-
ways in S. cerevisiae, the pheromone response pathway which
controls sexual reproduction and mating, the high osmolarity
glycerol (HOG) pathway which enables the yeast to adapt to
hyperosmolarity in the external environment, and the filamen-
tous/pseudohyphal growth pathway which enables adaptation to
resource limitation under specific conditions.
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Chapter 27

Use of Genome-Scale Metabolic Models in Evolutionary
Systems Biology

Balázs Papp, Balázs Szappanos, and Richard A. Notebaart

Abstract

One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypothe-
ses that are not only realistic from a population genetic point of view but also detailed in terms of
molecular biology mechanisms. By providing a mapping between genotype and phenotype for hundreds
of genes, genome-scale systems biology models of metabolic networks have already provided valuable
insights into the evolution of metabolic gene contents and phenotypes of yeast and other microbial
species. Here we review the recent use of these computational models to predict the fitness effect of
mutations, genetic interactions, evolutionary outcomes, and to decipher the mechanisms of mutational
robustness. While these studies have demonstrated that even simplified models of biochemical reaction
networks can be highly informative for evolutionary analyses, they have also revealed the weakness of this
modeling framework to quantitatively predict mutational effects, a challenge that needs to be addressed
for future progress in evolutionary systems biology.

Key words: Flux balance analysis (FBA), constraint-based modeling, gene essentiality, genetic
interaction, genome evolution, fitness landscape, metabolic network, Saccharomyces cerevisiae.

1. Introduction

Addressing many important questions in evolutionary biology
relies on our understanding of the mapping between genotype
and phenotype. Although evolutionary genetics analyses often
use highly simplified and abstract genotype-fitness maps, recent
advances in systems biology provide an unprecedented opportu-
nity to calculate genotype–phenotype relationships using realistic
mathematical models of molecular systems (1). With an increas-
ing potential to computationally predict evolutionary relevant
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parameters, such as the distribution of mutational effects and
genetic interactions, molecular systems biology approaches begin
to offer mechanistic insights into various topics from mutational
robustness to genome evolution (2–6). Mathematical models
that are most suited to address evolutionary questions can either
directly calculate phenotypes that serve as fitness correlates (e.g.,
growth rate) or infer gene–gene relationships based on certain
calculated phenotypes (e.g., identifying gene sets with corre-
lated activities). These models include detailed kinetic models
of metabolic pathways (7), regulatory circuits (cell cycle, circa-
dian clock, etc.) (8), logical models of signaling networks (9),
and constraint-based models of genome-scale metabolic networks
(10). While most modeling approaches focus on small-scale bio-
chemical systems (i.e., individual pathways) and characterize the
mechanism of each enzymatic step, constraint-based models aim
to calculate the metabolic behavior of relatively large systems (i.e.,
600–1,300 genes) with relatively low data requirements. More-
over, these models are available for a number of microbial species,
thereby providing a rigorous way to test evolutionary hypotheses.

The constraint-based framework uses mass balance and capac-
ity constraints to define the space of all feasible steady-state flux
distributions of the metabolic network leading from input (i.e.,
nutrient uptake) to output (an objective function, for instance,
biomass production). Optimal network states are then identified
within this space by maximizing or minimizing a certain metabolic
objective function, an approach called flux balance analysis (FBA)
(10, 11). However, the large size and comprehensive nature of
these metabolic network models comes at a price as the frame-
work lacks mechanistic details (e.g., kinetic rate constants and
regulatory mechanisms), can only calculate steady-state patterns,
and assumes that cells are fine-tuned from an evolutionary point
of view. Furthermore, these models are restricted to simulate the
effects of “large” mutations only (i.e., complete gene deletions or
gene additions). Ultimately, the utility of genome-scale metabolic
models for evolutionary analyses depends on how accurately they
predict fitness correlates (e.g., growth phenotypes) and evolution-
ary relevant gene–gene relationships, a question that needs empir-
ical investigation.

This chapter starts by discussing the use of constraint-based
metabolic modeling in Saccharomyces cerevisiae to predict the
effect of single and multiple mutations and hence to explore fit-
ness landscapes (Fig. 27.1a). Fitness landscapes (or adaptive land-
scapes) visualize the relationship between genotypes and fitness
and allow evolutionary biologists to investigate how mutations
interact (epistasis) and which particular trajectories are taken dur-
ing evolution. For example, the presence of multiple peaks on a
fitness landscape indicates that some of the mutational paths to
higher fitness alleles are selectively inaccessible (12) (Fig. 27.1a).
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Fig. 27.1. Fitness landscape and epitasis studies. (a) An imaginary fitness landscape
visualizing the relationship between genotype and fitness. The plane of the landscape
contains all possible genotypes in such a way that similar genotypes are located close
to each other on the plane and the height of the landscape reflects the fitness of the
corresponding genotype. (b) Positive and negative epistases on a two-locus, two-allele
genotype plane. Independence of gene action (no epistasis) is defined by a multiplicative
model (i.e., when the fitness of the double mutant equals to the product of the fitnesses
of the two single mutants).

Thus, to fully understand why particular evolutionary trajectories
are realized and to what extent systems-level properties constrain
the evolution of biochemical networks, we need detailed fitness
landscapes of molecular systems. Next, we ask whether micro-
bial metabolic network models have the potential to predict the
outcome of evolutionary change, at least on short timescales, a
question that has been addressed by laboratory evolution exper-
iments in bacteria. Although most prior studies on evolution-
ary outcomes focused on Escherichia coli and other bacteria, we
believe that similar approaches could also be adopted to analyze
metabolic network evolution in baker’s yeast. Finally, we analyze
the shortcomings of constraint-based metabolic models to cal-
culate weak fitness effects and genetic interactions, and discuss
the utility of incorporating additional biological knowledge to
increase their predictive performance. Although it is beyond the
scope of the present review, we note that besides evolutionary
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analyses, genome-scale metabolic network reconstructions have
also been employed to draw ecological inferences, for example, to
infer the habitable environments of different species (13) and to
investigate the ecological strategies of bacteria (14).

2. Interrogating
the Fitness
Landscape:
Predicting
Mutational Effects

A straightforward systems biology strategy to begin to explore fit-
ness landscapes is to computationally predict the effects of single
mutations and their pair-wise epistatic interactions (i.e., the non-
independence between the phenotypic effects of two mutations)
(see Fig. 27.1b). Besides providing an intelligible abstraction of
the high-dimensional adaptive landscape, accurate prediction of
single- and double-mutant phenotypes can be used, among oth-
ers, to investigate the nature and evolution of genetic robustness
(3, 15) and can be harnessed to identify potential novel antimi-
crobial drug targets (16, 17).

2.1. Computing the
Growth Effect of
Single-Gene
Deletions

The popular approach of flux balance analysis uses optimization
principles to find one particular solution (i.e., flux distribution)
among all possible metabolic network states that satisfy the gov-
erning physicochemical constraints (10). The objective function
of the optimization protocol may be the rate of biomass forma-
tion (growth rate) or usually the biomass yield (i.e., the rate of
biomass production divided by the rate of nutrient uptake), given
limiting nutrients from the environment. Thus, the phenotype
of wild-type and mutant strains can be computationally charac-
terized by their (optimal) growth rates, a phenotype that can be
easily measured in laboratory experiments. This strategy formed
the basis of one of the first applications of the yeast genome-scale
metabolic model (18), which systematically compared in silico
growth of single-gene deletant strains with in vivo growth phe-
notypes on a qualitative scale (i.e., lethal or viable) (19). Tak-
ing essential genes (i.e., those whose disruption leads to lethal-
ity under standard laboratory conditions) as a reference, differ-
ent versions of the yeast model have been reported to predict
essential and non-essential genes with 83–90% accuracy (19–21).
However, this high percentage of consistent phenotypes obscures
the fact that essential genes are both less frequent in vivo and
more difficult to predict than non-essential ones (21–23). Plot-
ting the true-positive and false-positive rates of essentiality pre-
dictions (Fig. 27.2) reveals that one model (iLL672) is clearly
superior to another (iND750) in terms of its capacity to discrim-
inate between lethal and viable knockout phenotypes across 16
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Fig. 27.2. Comparison of gene essentiality prediction performances of two different
yeast metabolic network models (iND750 and iLL672) and two different optimization
algorithms (FBA and MOMA) using receiver-operating characteristic (ROC) curves. ROC
curves visualize classifier performance and can be employed to explore the trade-off
between true-positive and false-positive rates at all possible cutoff levels (i.e., at dif-
ferent predicted growth rate cutoffs below which a strain is considered lethal). The
closer the ROC plot is to the upper left corner, the higher the overall accuracy of the
prediction. The horizontal axis represents the false-positive rate (number of true non-
essential genes predicted as lethal/number of true non-essential genes), whereas the
vertical axis represents the true-positive rate (number of correctly predicted true essen-
tial genes/number of true essential genes). We compiled gene essentiality data from
(22), which measured growth phenotypes under 16 metabolically relevant conditions,
and from (40), which identified genes that are essential even under nutrient-rich con-
ditions. Computational predictions were taken from (22). Only genes present in both
models were used for the comparison. We note that approximately one-third of the
advantage of the iLL672 model against the iND750 model can be explained by dif-
ferences in the biomass composition of the models (the area under the ROC curve of
iLL672, iND750, and iND750 supplemented with the biomass composition of iLL672 is
0.8176, 0.6822, and 0.7241, respectively).

metabolically relevant growth conditions (see Fig. 27.2 legend
for details).

One conceptual reason why flux balance analysis might mis-
predict in vivo gene essentiality is that it assumes optimal net-
work behavior even in gene knockout strains. To overcome
this difficulty, other optimization criteria have been proposed
that assume minimal flux reorganization in gene deletant strains
with respect to the wild-type flux distribution (minimization of
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metabolic adjustment, MOMA, and regulatory on/off minimiza-
tion, ROOM, algorithms, (24, 25)). Although this approach
yields a more accurate prediction of mutant flux distributions
(26), it only slightly improves gene essentiality predictions (22)
(see continuous and dotted lines in Fig. 27.2). Apparently, suc-
cessful prediction of essential genes more critically depends on the
proper formulation of biomass compositions (i.e., model output)
(21) and on the completeness of our knowledge of the metabolic
processes associated with these genes (23).

While constraint-based metabolic models predict the pres-
ence or the absence of mutant growth with good accuracy, one
might wonder whether these models could also capture quanti-
tative growth differences of viable mutants. In theory, FBA or
MOMA analysis of mutant strains gives growth yields as outputs,
i.e., the rate of biomass production divided by the rate of limiting
nutrient uptake, therefore providing quantitative predictions.
The availability of large-scale competitive fitness (27) and growth
curve measurement data (28) for viable yeast knockouts offers an
opportunity to contrast predicted and experimentally determined
growth parameters for hundreds of metabolic gene deletants. In
agreement with a prior small-scale study (26), we generally find
weak correlations between in vivo competitive fitness or growth
rate and in silico biomass production (predicted biomass yield)
(Fig. 27.3a–c). Here, it should be noted that constraint-based
metabolic models compute biomass yields (29) and a comparison
of growth rate data to predicted biomass yields (Fig. 27.3c)
might not be fully descriptive. Therefore, we also plotted exper-
imentally measured growth efficiency (a proxy for growth yield)
against in silico-predicted biomass yield (Fig. 27.3d) which
resulted in an even weaker association. This suggests that the
constraint-based modeling approach fails to capture quantitative
growth differences in yeast mutants, at least in batch cultures
with glucose-minimal (SD) or -rich (YPD) media. It should be
noted, however, that S. cerevisiae displays repressed respiration
when grown aerobically in excess glucose (30, 31). Indeed, this
regulatory effect varies across gene deletion backgrounds (32,
33) and it could strongly affect mutant growth in a way that
cannot be easily captured by a stoichiometric model. It remains
to be seen whether model predictions better match empirical data
when mutants are grown on non-fermentable carbon sources.

2.2. Predicting
Genetic Interactions

The fitness effect of mutation in one gene might be modu-
lated by mutations in other genes, a phenomenon called genetic
interaction or epistasis (Fig. 27.1b). Negative genetic interaction
occurs when two mutations decrease fitness more than would be
expected based on their individual effects (the most drastic form is
referred to as synthetic lethality), and for positive interactions, the
opposite is true. Epistatic relations reveal functional associations
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Fig. 27.3. Comparisons of in silico-predicted and experimentally determined growth parameters for viable metabolic
gene deletion strains (n = 499). Computational predictions were taken from (22) and are based on the iLL672 model
and MOMA algorithm (conclusions remain unchanged if prediction from the iND750 model or the FBA algorithm is used).
(a) Comparison to competitive fitness data measured on glucose-minimal (SD) medium (27), Spearman’s rho = 0.46,
p < 10–27. (b) Comparison to competitive fitness data measured on glucose-rich (YPD) medium (27), Spearman’s rho =
0.26, p < 10–8. (c) Comparison to growth rate data derived from growth curve measurements on SD (minimal medium)
(28), Spearman’s rho= 0.14, p= 0.002. (d) Comparison to growth efficiency data derived from growth curve measure-
ments on SD (minimal medium) (28), Spearman’s rho = 0.05, p = 0.27.

between genes (34) and influence many evolutionary processes
(35), therefore it is of great importance to understand the molec-
ular mechanisms underlying them and to develop reliable com-
putational tools to predict them. Genome-scale metabolic models
can rapidly calculate growth phenotypes for arbitrary sets of gene
deletions, therefore, in principle, could be applied to systemat-
ically compute epistatic interactions between double or higher
order gene knockouts. Indeed, yeast FBA models have been
applied to compute both positive and negative pair-wise genetic
interactions (36), and to identify synthetic lethality among mul-
tiple gene knockouts (37). However, relatively little is known
about the accuracy of FBA models to capture different forms
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and magnitudes of in vivo genetic interactions, and one might
expect that if predictions of single-gene deletion phenotypes are
not perfect, then those of multiple gene deletions would be even
less accurate. A small-scale experimental validation of model-
predicted synthetic lethal pairs (synthetic lethals) in S. cerevisiae
showed that almost 50% of them were correct (15), which is
much higher than would be expected by chance (<1%, based on
(38)). However, the FBA model missed more than 75% of pub-
lished synthetic lethals in the metabolic network, suggesting that
the constraint-based framework underestimates the prevalence of
negative genetic interactions. Furthermore, given the apparent
failure of FBA to capture quantitative growth differences of sin-
gle mutants, one might speculate that positive and weak genetic
interactions would be predicted with even lower success rates than
synthetic lethals. Future studies using quantitative epistatic data
from large-scale genetic interaction screens (39) would be needed
to rigorously assess the performance and limitations of constraint-
based metabolic models to predict epistasis.

2.3. Understanding
Gene Dispensability
and Mutational
Robustness

Large-scale, single-gene deletion screens have revealed that
almost 80% of protein coding genes in S. cerevisiae seem not to be
essential for viability under standard laboratory conditions (40),
an observation that tallies with results from similar analyses per-
formed in other organisms (41). This finding raises the questions
of what the mechanistic basis of gene dispensability is and whether
it is the result of an evolved capacity of genetic networks to com-
pensate for mutations. It has been suggested that the high fraction
of non-essential genes might reflect mutational robustness, i.e.,
the capacity to compensate for mutations by using either redun-
dant gene duplicates or alternative biochemical pathways (42).
A second possibility is that seemingly dispensable genes are sim-
ply not active in the tested environmental condition(s), although
they have important fitness contributions under special condi-
tions (3). Computational systems biology models that can reliably
predict the viability of single-gene deletants hold the promise to
provide mechanistic explanations for gene dispensability. Indeed,
a flux balance analysis model of yeast metabolism showed that
a large fraction of non-essential enzymatic genes catalyze reac-
tions that are inactive under the tested condition (i.e., carry zero
flux), hence there might be no need to invoke any compensatory
mechanism to explain their dispensability (3, 43). Furthermore,
according to the model, genes that are active but not essential
are mostly compensated by redundant gene duplicates and not by
alternative pathways. It should be noted, however, that FBA mod-
els assume optimal network behavior and are therefore likely to
overestimate the number of in vivo inactive reactions (i.e., subop-
timal pathways are completely silenced in model solutions) (44).
Nevertheless, some of the above computational predictions have
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been confirmed experimentally: 13C-flux analysis of viable yeast
knockouts showed that flux rerouting through alternative path-
ways explains only the minority of non-essential genes (43). Fur-
thermore, simulating gene deletions under a number of differ-
ent nutrient-limiting conditions predicted that many functionally
inactive genes would become essential under other conditions (3).
A large-scale chemical genomic assay in yeast provided strong sup-
port for this notion: 97% of gene deletions exhibited a measurable
growth phenotype in at least one of hundreds of tested conditions
compared to only 34% in rich medium (45).

Although the above computational and experimental studies
suggest that gene dispensability is only apparent and is mostly
explained by condition-specific gene functions, other empirical
works showed that most non-essential genes display synthetic
lethal interactions with some other genes (23). As synthetic lethal
genetic interactions indicate compensation between two genes
(i.e., mutational robustness), this raises the question as to how
these seemingly contradictory findings can be reconciled. A flux
balance analysis study of synthetic genetic interactions under a
large number of environmental conditions demonstrated that
the capacity to compensate null mutations varies substantially
between different nutritional environments (15). More specifi-
cally, it has been shown computationally, and confirmed by dou-
ble deletion experiments, that synthetic lethal interactions are
often restricted to particular environmental conditions, partly
because genes that are compensated in one condition make an
essential fitness contribution in another condition. Further empir-
ical studies on yeast gene duplicates corroborated the widespread
condition dependency of mutational compensation (46, 47).

The above findings also offer indirect insights into the selec-
tive forces shaping metabolic network evolution. Instead of
regarding apparent redundancies as adaptations against harmful
mutations (42), the presence of distinct but functionally overlap-
ping metabolic pathways more likely reflects the outcome of an
evolutionary adaptation characterized by selection for growth in
varying environments (i.e., various different nutrients). As a cor-
related response, some of these pathways may also increase muta-
tional resilience under some conditions (15, 48).

3. Predicting
Evolutionary
Outcomes: FBA as
an Evolutionary
Optimization
Model

How predictable is evolution? Evolutionary change is often con-
sidered to be contingent on initial conditions and chance events
and therefore unique on the one hand, and replicable owing to
predictable adaptive changes on the other hand (49). Systems
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biology modeling offers novel ways to investigate the predictabil-
ity of evolutionary outcomes and organismal diversity. In partic-
ular, metabolic network models have recently been employed to
test various hypotheses regarding the end state of evolutionary
process. First, flux balance analysis of metabolic networks gives
specific predictions on the steady-state behavior of evolutionary
adapted metabolic systems. Second, by accounting for systems-
level gene functions and relationships between genes, constraint-
based metabolic models also have the power to predict inter-
species differences in metabolic gene content, therefore to explain
comparative genomics patterns. The latter includes predicting
genes most likely undergoing loss and horizontal transfer events
(50), asymmetric gain or loss of enzyme pairs (4), and gene con-
tents of reduced genome endosymbiotic bacteria based on knowl-
edge of its distant ancestors and its current lifestyle (5). Here,
we restrict our attention to the use of FBA models to gener-
ate testable hypotheses on the outcome of short-term adaptive
evolution.

As mentioned above, flux balance analysis uses optimization
principles to find one particular network state that maximizes
biomass production, that is, cellular growth. Because growth
can be considered as a fitness correlate in microbes, FBA mod-
els can be seen as models about adaptation (51) in which in
vivo metabolic states are sought that maximize organismal fitness.
Microbial metabolism is optimized by the process of adaptive evo-
lution, therefore FBA has, in principle, the potential to predict
the outcome of evolutionary adaptation and give insight into the
constraints that influence adaptation. An essential step in opti-
mality approaches is to test the model predictions against empir-
ical observations to reveal the particular selective forces and con-
straints that might have played significant roles during the evolu-
tionary history of the organism under study.

Various experimental works have been performed to evalu-
ate the power of FBA to predict the outcome of both natural
and laboratory evolution. For example, it has been demonstrated
that in vivo and in silico flux distributions are consistent under
certain environmental conditions in E. coli (11, 25), suggesting
that maximizing biomass production might have been an impor-
tant selective force in the history of E. coli. However, simple FBA
models fail to explain the metabolic behavior of microbes that do
not metabolize nutrients most efficiently (29, 48). For instance, S.
cerevisiae uses a mixture of respiration (high-yield route) and fer-
mentation (low-yield route) to utilize glucose even under aerobic
conditions when glucose is abundant in the medium (29). Apply-
ing alternative objective functions instead of biomass yield (52)
or using game-theoretical approaches (53, 54), that is, formu-
lating the optimization problem as frequency dependent instead
of frequency independent, could help to resolve discrepancies
between model predictions and experimental observations.
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Suboptimal metabolic behavior of wild-type strains might
also stem from incomplete adaptedness to the tested conditions
and experiments have been designed to adapt strains under spe-
cific growth selection pressures in the laboratory to test whether
evolved strains display in silico-predicted growth properties. One
such adaptive evolution experiment has been performed in E. coli,
with growth rate as the selection criterion and glycerol uptake as
the main carbon source to produce biomass components (55).
Cells initially grew sub-optimally on glycerol, but adapted over
a period of ∼60 days (1,000 generations), toward the FBA-
predicted optimal behavior. One would expect that such an adap-
tation event should be reflected in the genotype and this has
been demonstrated by whole-genome resequencing of evolved
strains. In particular, mutations were identified in the glycerol
kinase gene, which is clearly associated with the growth envi-
ronment (56). Adaptation to utilize glycerol has also been pre-
dicted, and experimentally verified, for a lactic acid bacteria, show-
ing extremely low initial growth rates in a glycerol environment
(57). Growth of lactic acid bacteria with glycerol as the main car-
bon source has never been demonstrated experimentally before,
even though the metabolic model predicted this output pheno-
type. Similarly, FBA can be used to predict the result of evo-
lutionary adaptation in response to gene deletions, that is, the
outcome of compensatory evolution. For example, adaptive evo-
lution of E. coli strains carrying metabolic gene deletions resulted
in increased growth rates that were similar to those predicted
by FBA (in 78% of the strains tested) (58). Taken together,
these studies clearly demonstrate that FBA has the potential
to predict the outcome of adaptive evolution at the phenotype
level.

4. Future
Challenges

Constraint-based models of microbial genome-scale metabolic
reconstructions present a simple computational framework to
explore the metabolic capacity of wild-type and mutant strains
under different environmental conditions, thereby providing a
mapping between genotype and metabolic phenotype. Despite its
simplicity and dependence on optimality principles, these mod-
els proved successful to compute the viability of mutant strains,
to make testable predictions on gene loss and gene gain pat-
terns on the phylogenetic tree, and, in some cases, to predict the
phenotypic outcome of short-term adaptive evolution. However,
the same approach appears to perform poorly in predicting weak
growth effects of mutations in yeast, at least on glucose media.
Furthermore, it remains to be seen how accurately in vivo genetic
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interactions can be captured within this framework. Given that
weak fitness effects and epistatic interactions are especially impor-
tant to understand the process of evolution and are more fre-
quent than strong effects, there is a great need to develop com-
putational approaches that can accurately describe mutations with
weak phenotypic impacts (1). We now briefly discuss some possi-
ble strategies to improve the predictive power of the constraint-
based framework. First, constraint-based metabolic models can be
made more realistic by imposing additional relevant constraints
to decrease the solution space. Some of the proposed extra con-
straints include thermodynamic constraints (59) (i.e., elimina-
tion of thermodynamically infeasible solutions) and regulatory
constraints (60) (i.e., elimination of reactions that are repressed
under a given condition). With the rapid ongoing development of
high-throughput techniques that accumulate data on intracellular
metabolite concentrations, mRNA, protein expression levels, and
reaction fluxes (61, 62), these additional constraints could be rou-
tinely applied in future studies (see (63, 64)). Second, new algo-
rithms to compute the immediate physiological effect of muta-
tions need to be developed and tested. Clearly, the assumption
of optimal growth is not tenable for mutants and some meth-
ods have been put forward to describe metabolic states after gene
removal (24, 25). However, these modified optimization algo-
rithms are largely ad hoc, and it remains to be seen whether
more realistic alternative methods can be developed based on
empirical data on physiological changes following gene deletions,
including high-throughput data on alterations in growth prop-
erties (28), metabolic footprints (65), intracellular fluxes (43),
and mRNA expression (66). Furthermore, by assuming maximal
biomass production in the wild type, the FBA approach is unable
to capture beneficial loss-of-function mutations (only the addi-
tion of new reactions could increase in silico growth in this frame-
work). This particular shortage of FBA could be alleviated only by
developing new algorithms to calculate wild-type growth behav-
ior. Third, there are efforts underway to reconcile constraint-
based and kinetic modeling approaches in order to build large-
scale dynamic models of cellular metabolism without the need
for extensive experimental data (67, 68). Such hybrid frame-
works would allow the piecewise incorporation of both additional
flux constraints and information on enzyme kinetics when they
become available and would hopefully improve the predictive
power of large-scale models in determining metabolic responses
to perturbations. Given the tremendous efforts put into generat-
ing functional genomics and comparative data and inferring cel-
lular networks in yeasts, we expect that S. cerevisiae would be
at the forefront of developing new generations of genome-scale
metabolic models and applying them to evolutionary questions.
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Chapter 28

Contributions of Saccharomyces cerevisiae
to Understanding Mammalian Gene Function and Therapy

Nianshu Zhang and Elizabeth Bilsland

Abstract

Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been
extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to
environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by
sequencing should adopt an integrative approach including both bioinformatics and experimental anal-
ysis to reveal functional conservation and divergence of complexes and pathways. The techniques and
resources generated for systems biology studies in yeast have found a wide range of applications. Here
we focused on using these technologies in revealing functions of genes from mammals, in identifying tar-
gets of novel and known drugs and in screening drugs targeting specific proteins and/or protein–protein
interactions.

Key words: Functional complementation, conservation and divergence, interactome,
chemogenomic profiling, drug targets, drug screening.

1. Introduction

The budding yeast, Saccharomyces cerevisiae, has long been used
as a model organism to study how eukaryotic cells grow, divide,
and respond to environmental cues. Conservation of these cel-
lular activities allows functional annotation of mammalian gene
products in this simple eukaryotic cell (1). The first such func-
tional complementation experiment was performed by Kataoka
et al. (2). They demonstrated that the expression of one of the
human paralogous Ras proteins restores the viability of the yeast
ras1ras2 double mutants. In 1987, Lee and Nurse demonstrated
that the human Cdc2 could functionally replace its counterpart in
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the fission yeast Schizosaccharomyces pombe (3). Ever since, many
human proteins have been shown to complement either the muta-
tion or the deletion of yeast genes involved in every aspect of cel-
lular life, including cell cycle, DNA repair, signaling, and biosyn-
thesis of the building blocks of cells.

Since the publication of its genome sequence in 1996 (4),
a wide range of techniques and resources have been generated
for functional genomics and systems biology studies (see the
review by Suter et al. (5)). As a result, more than 72% of the
open reading frames (ORFs) in yeast have been characterized, as
of July 2009 (SGD). For example, using the collection of the
deletion strains (6) grown under multiple environmental condi-
tions including drugs, it was estimated that more than 97% of
all these ORFs have a phenotype (7–9). With the availability of
these resources and technologies and, the ability of yeast cells to
grow for extended periods under highly controlled conditions,
S. cerevisiae has become a model organism for pharmacological,
post-genomic (10), and systems biology studies (11).

There are now more than 600 completely sequenced
genomes of all organisms (12). The availability of multiple
genome sequences should allow inference about functions of pro-
teins, based on their sequence and structure similarity (13). As
a result, it was predicted that about 25% of the ORFs encoded
by the yeast genome have homologues in humans (p < e−30,
euGenes, http://eugenes.org/). The percentage of yeast ORFs
which have human homologues varies between different func-
tional categories, with those in categories of transposable ele-
ments and uncharacterized proteins significantly smaller than
average and those in cell cycle and DNA processing, metabolism,
protein fate, protein synthesis, signal transduction and mecha-
nisms higher than average. However, such a comparative analy-
sis should not rely exclusively on bioinformatics, since this does
not cope adequately with the multidimensional nature of the
proteome and complexity of functional diversification during the
course of evolution.

2. Functional
Annotation
Requires an
Integrative
Approach

Problems encountered with bioinformatics are twofold. First, not
all the functional counterparts can be identified by bioinformat-
ics analysis. For example, there is no obvious yeast homologue
to F6, the bovine coupling factor 6, as predicted from primary
sequence comparison of the putative polypeptides encoded by all
the open reading-frames in the yeast genome. However, it has
been demonstrated that expression of bovine F6 complements a

http://eugenes.org/
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null mutation in ATP14 gene in yeast S. cerevisiae; Atp14p has
just 14.5% amino acid sequence identity to F6 (14). Second,
sequence similarity between one individual protein and other pro-
tein sequences in the public data libraries is not sufficient to deter-
mine function.

The reasons for this may be threefold. First, functionality may
be assigned in biochemical terms, while giving no clear indica-
tion of the biological role of the novel protein. For instance, rec-
ognizing that an ORF encodes a protein kinase or phosphatase
reveals little about the metabolic or developmental pathway in
which such an enzyme may be involved. One example of this sce-
nario is the S6 kinase 1 (S6K1) in human and the Sch9 kinase
in yeast. S6K1 is a member of the AGC family of protein kinases
and a direct target of mTORC1 (15) which regulates ribosome
biogenesis in mammalian cells. Sch9 is also a member of the AGC
family but was initially classified as the likely orthologue of mam-
malian PKB based on bioinformatics analysis (16). However, the
finding that Sch9 is a direct target of yeast TORC1 involved in
ribosome biogenesis (17) suggests that Sch9 is the yeast ortho-
logue of mammalian S6K1. Second, the assignment of function in
the organism where the gene or protein was originally discovered
may have been incorrect or superficial. For instance, yeast chro-
mosome III contains an ORF showing greater than 40% amino
acid sequence identity to the NifS proteins of nitrogen-fixing bac-
teria (18). S. cerevisiae does not fix N2, yet the nifS homologue
is an essential gene. Similar genes have been found in a num-
ber of other bacteria, none of which fix nitrogen, and experi-
mental and informatic analyses (19) suggest that they encode a
class of transaminases that use pyridoxal phosphate as a co-factor.
Third, the function assigned to genes in the lower organisms
may have been lost or new function gained in the orthologues
of higher organisms during the course of evolution. For example,
both human and yeast Clp1 encode one of the five subunits of
the conserved cleavage factor I which functions in cleavage and
polyadenylation of mRNA 3′ ends (20). However, despite their
high sequence and structural similarity, the expression of human
Clp1, but not the yeast Clp1, is able to complement conditional
and lethal mutations in the essential 5′-OH RNA kinase module
of yeast or plant tRNA ligases. Moreover, human Clp1 cannot
complement the growth defect of a yeast clp1Δ strain, indicat-
ing that yeast and human Clp1 proteins are not functional ortho-
logues (21). These examples demonstrate that an integrated sys-
tems approach, including both “wet experiments” and bioinfor-
matics, is necessary to uncover the functions of the novel and
known genes discovered by systematic sequencing.

Nevertheless, even when functional equivalence of ortho-
logues is reliably predicted by informatics or confirmed by “wet”
experiments, yeast can still be a useful system to analyze the
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functions of essential amino acids or domains of proteins from
higher eukaryotes, especially those involved in diseases. It is esti-
mated that 50% of human genes implicated in inheritable dis-
eases have yeast homologues (22). Examples of using yeast to
characterize human disease genes include those implicated in
congenital disorders of glycosylations (23) and in mitochondrial
disorders (24).

3. Functional
Conservation and
Divergence

Due to its ease of manipulation and genetic tractability (25), the
yeast S. cerevisiae has been used to analyze the functions of many
proteins from mammalian cells. Cases of these studies are sum-
marized according to their specific applications in revealing both
functional conservation and divergence.

3.1. Methodology Functional complementation experiments generally involve con-
structing yeast mutants which are viable conditionally and
expressing the candidate gene in the mutant cells. Complementa-
tion is assumed when cell viability is observed at non-permissive
conditions. There are a variety of means of generating conditional
yeast mutants, including knockout mutants (6), temperature-
sensitive and drug-sensitive mutants, synthetically lethal mutants
(26), or mutants in which the endogenous gene transcript
(27–29) and/or protein level (30, 31) is regulated.

A second class of complementation experiments is performed
by transforming the candidate gene into a heterozygous yeast
diploid strain followed by sporulation and tetrad dissection. Func-
tional complementation is confirmed if expression of the candi-
date gene rescues the phenotype (either inviability or other con-
ditional phenotypes) of the deletion haploid cells.

A third approach includes expression of both the yeast and the
candidate genes in different plasmids in a yeast haploid strain in
which the endogenous gene has been deleted from the genome.
Usually, the plasmid used for expressing the yeast gene has a
marker which can be counter selected, such as URA3 in the
presence of 5-FOA. A reversal of the phenotype of the deletion
cells under the condition of counter-selection would demonstrate
complementation due to the expression of the candidate gene.
This approach has been used for characterizing the functions of
both yeast (32) and human proteins (33).

Expression of mammalian genes in yeast is normally driven by
strong promoters. However, using regulatable promoters, such
as that of the MET3 gene, provides additional advantage of
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eliminating false positives when a human expression library is
screened for functional homologues to a yeast gene (27).

3.2. Essential and
Minimal Functional
Domains

Once the functional equivalence between yeast and mammalian
proteins is established, the yeast-based system can be used to
reveal essential and/or minimal functional domains. Sharma et al.
(34) demonstrated that the C-terminal non-catalytic domain of
WRN (encoding a RecQ helicase in humans) is sufficient to res-
cue the yeast dna2 mutant and this domain physically interacts
with and stimulates flap-endonuclease 1 in Okazaki fragment pro-
cessing. Analysis of the members of the copper uptake trans-
porter (CTR) revealed that the third transmembrane domain
(TM3) plays an essential role in trimeric CTR assembly and func-
tion (35). Essential functional domains can also be demonstrated
by using human–yeast chimeras to complement the deletion or
mutation of the yeast genes (36–38).

3.3. Differentially
Splicing Variants

The human proteome is significantly more complex than its
genome, partly due to the differential splicing of mRNA tran-
scribed from the same gene. A few studies have revealed func-
tional divergences of the splice variants where only one splice
variant is functional or different variants are functional at differ-
ent locations. For example, Vaz et al. (39) reported that only one
of several splice variants of the human TAZ gene, lacking exon
5, complemented the defective acylation phenotype and restored
growth of the yeast taz1Δ mutant on glycerol/ethanol at 37◦C.
Consistently, Ma et al. (40) demonstrated that only the same vari-
ant complemented the taz1Δ mutant defects in energy coupling
and sensitivity of mitochondria to an elevated temperature. Sim-
ilarly, both splicing variants of human divalent metal transporter
1, DMT1A and DMT1B, can complement the growth defect of
the fission yeast dmt1 mutant. However, the two isoforms exhibit
a differential cell type-specific expression pattern and distinct sub-
cellular localization, indicating that they may be involved in the
different iron acquisition steps from the subcellular membranes in
various cell types (41).

3.4. Multiple
Orthologues and
Functional
Divergence

Among the yeast genes which have a human homologue, around
50% of them have multiple orthologues in the human genome
(euGenes, http://eugenes.org/). During the course of evolu-
tion, the function of the original yeast gene may be retained for
only one orthologue, retained in all the orthologues, split among
the different orthologues, or lost completely in all orthologues.
For example, each of the three human adenine nucleotide car-
rier genes (HANC1/2/3) were able to complement the growth
defect of yeast anc2 mutant in the presence of nonfermentable
carbon sources, with HANC3 being the most efficient (42).
Similarly, both the human copper transporting P-type ATPases,

http://eugenes.org/
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ATP7A and ATP7B, were shown to rescue the defect of ccc2
yeast mutant cells grown on iron-limited medium. Conversely,
bioinformatic analysis has identified two mitochondrial transla-
tion release factors in human, mtRF1 and mtRF1a (43, 44), but
only mtRF1a is capable of terminating at UAA/UAG codons
in yeast. mtRF1 is postulated to be a mitochondrial release
factor for decoding the noncognate stop codons AGG/AGA,
which are not used in either E. coli or yeasts (44). Chromatin
assembly is mediated by histone H3–H4 chaperones, including
chromatin assembly factor 1 (CAF-1) and anti-silencing func-
tion 1 (Asf1). Deletion of yeast ASF1 renders cells sensitive to
DNA-damaging reagents, unable to activate the transcription of
PHO5 and susceptible to replicational stress. Two human coun-
terparts (hAsf1a and hAsf1b) of Asf1 were found to complement
distinct functions of yeast Asf1 (45). Only hAsf1a can replace
the role of Asf1 to protect cells against double-stranded DNA-
damaging reagents, while only hAsf1b can substitute for the role
of Asf1 in activating the PHO5 gene and relieving cells of replica-
tional stress. Similarly, the function of mitochondrial EF-Tu of
S. cerevisiae in translation elongation is shared by EF-Tu and
the guanine nucleotide exchange factor EF-Ts in S. pombe and
H. sapiens mitochondria (46).

3.5. Protein
Complexes

Despite high conservation at the sequence level, some human
proteins cannot complement the functions of their counterparts
in yeast. The mammalian Ssu72 shares 45% identity (9.00e–42)
with yeast Ssu72. Like its yeast counterpart, mammalian Ssu72
associates with TFIIB and the yeast cleavage/polyadenylation
factor Pta1 and exhibits intrinsic phosphatase activity. How-
ever, hSsu72 was unable to rescue an ssu72 lethal mutation in
yeast (47). The loss of functional complementation can some-
times be attributed to the evolution of complex formation. The
hetero-oligomeric UDP-GlcNAc transferase, composed of Alg13
and Alg14 in yeast, is essential for the synthesis of the evolu-
tionarily conserved lipid-linked oligosaccharide (LLO) precur-
sor for N-linked glycosylation. The human Alg13 and Alg14
orthologues fail to pair with their yeast partners, but when co-
expressed in yeast can functionally complement the loss of either
ALG13 or ALG14 (48). Similarly, when co-expressed in yeast,
human Trm6p and Trm61p can rescue the temperature sensitiv-
ity of either trm6 or trm61 mutant in yeast, form stable com-
plexes, and restore the activity of the tRNA 1-methyladenosine 58
methyltransferase (49). Furthermore, expression of both Mpp11
and Hsp70L of the mammalian ribosome-associated complex in
yeast complements the growth defects of the zuo1Δssz1Δ dou-
ble mutants more efficiently than expression of either of them
together with a yeast partner (50). These examples demonstrated
that co-evolution can also happen to domains which interact with
other in a complex.
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Functional conservation of complexes can also be inferred
from the conserved function they have in multiple systems,
although not all the subunits can be substituted. RNA polymerase
III contains 17 subunits in yeasts (S. cerevisiae and S. pombe) and
in human cells. Twelve of them are akin to the core RNA poly-
merase I or II. The other five are RNA polymerase III specific.
Pair-wise complementation assays revealed that the five enzyme-
specific subunits of fission yeast cannot replace their S. cerevisiae
counterparts in vivo, contrasting with the complementation seen
for 10 of 12 core enzyme subunits (51). However, homology
searches in all other eukaryotic genomes revealed significant con-
servation to these enzyme-specific subunits, thus showing that
the evolution of RNA polymerase III combines a conserved
12-subunit core with an ancient but fast evolving set of five
enzyme specific subunits.

3.6. Conservation/
Divergence at the
Pathway Level

Functional conservation from yeasts to mammals has been
demonstrated both at the gene level and at the level of pathways
involved in fundamental cellular activities, including metabolism,
DNA/protein synthesis and degradation, signaling. Although it
is often impossible to substitute one protein of a pathway from
one species with its orthologues from a different one, functional
similarity of this pathways can be demonstrated by revealing their
orthologous components and functions. One good example of
these is the nutrient-sensing pathway in both yeast and mammals.
TORC1 is one of the two TOR complexes involved in control-
ling cell growth (52, 53). The TORC1 complex is made up of
Tor1/2, Lst8, Kog1, and Tco89 in yeast and mTOR, mLST8,
Raptor, and Deptor in mammals (54). The downstream direct
targets of TORC1 consists of the Sch9 kinase in yeast (17) and
S6K1 and 4EBP1 in mammals (15) which control translation and
cell size. The upstream activators which respond to nutrients, such
as amino acids, include the Rag GTPases formed by RagA/B and
RagC/D in humans (55, 56) and by Gtr1 and Gtr2 in yeast (57).
Moreover, Vam6 has been identified as the conserved guanine
nucleotide exchange factor (GEF) which modulates the activity of
Gtr1 in yeast (57), providing a link between amino acid availabil-
ity and TORC1 activity. Similar studies are undergoing to identify
the mammalian GEF(s) which regulate the activity of RagA/B.
Studies on the TORC1 pathway have also revealed important
differences between budding yeast and mammals. In mammalian
cells, the Rag GTPases function with the TORC1 activator Rheb
whose activity is negatively controlled by TSC1/TSC2 complex
(58). However, in budding yeast, the Rheb orthologue may play
a different role and there is no orthologous Tsc1/2 complex.
These studies are likely to reveal similarities and differences of
key controllers of cellular activities from lower eukaryotic cells to
mammals.
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3.7. Reverse
Complementation

Functional equivalence has usually been demonstrated using sim-
ple model organisms as hosts due to their ease of manipula-
tion. However, there are an increasing number of reports which
demonstrate that genes from lower organisms can also function-
ally replace their counterparts in higher organisms. Wieland et al.
(59) expressed the S. cerevisiae Cse4p in human cells depleted of
CENP-A by RNAi and found that Cse4p is specifically incorpo-
rated into kinetochore nucleosomes and is able to complement
the RNAi-induced cell cycle arrest. Expression of yeast Npc2p
can efficiently revert the unesterified cholesterol and ganglio-
side GM1 accumulation seen in hNPC2−/− patient fibroblasts,
demonstrating that it is a functional homologue of human NPC2
(56). Similarly, expressing the yeast adenosine triphosphate-
binding cassette (ABC) transporter Ste6 in Drosophila mesoderm
rectified the germ cell migration defect associated with mutations
of mdr49, suggesting that Mdr49 is functionally equivalent to
yeast Ste6 and acts in mesodermal cells to attract germ cells (60).

4. Applications
of Yeast-Based
Technologies

Yeast-based technologies developed over the past decade have not
only contributed to our understanding of functions of genes of
both yeast and mammals, but also found a wide-range of appli-
cations in both industry and medicine. Here we focus on recent
developments on using yeast to reveal protein–protein interaction
(PPI) networks of other organisms, and on using yeast to char-
acterize drug targets, to screen for novel drugs, and to express
therapeutic proteins.

4.1. The Interactome
and Drug Discovery

Protein–protein interactions (PPIs) are essential in virtually every
biological process. PPIs provide clues to functional relationship
between interacting partners, and have emerged as drug targets
(61). The yeast two-hybrid (Y2H) methodology was originally
designed by Fields and Song (62), based on the reconstitution
of a transcription factor upon binding of bait and prey proteins.
Two technological improvements have made automation possi-
ble. One was the introduction of mating two haploid cells car-
rying the bait and prey vector, respectively, with survival of the
diploid cells dependent on the interaction between the prey and
bait proteins (63). The second was the application of the GATE-
WAY recombinational technology to clone large number of ORFs
representing the whole genome of an organism (64). The com-
bination of these two advances, together with development of
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methods for automation has made possible the interrogation of
all PPIs (the interactome) within a cell.

Only about 20% overlap was observed between the two early
yeast binary PPI data sets from two independent studies (65,
66), prompting debates on whether Y2H produces interaction
data with a high false positive rate due to its technical limitation
(67, 68). However, a second-generation Y2H study (69) con-
firmed that the Y2H interactions previously uncovered were of
very high quality and that the binary PPIs are fundamentally dif-
ferent and complementary to those revealed by affinity purifica-
tion followed by mass spectrometry (70, 71). It was concluded
that the small overlap was due to low sensitivity (false negatives)
rather than low specificity (false positives). A similar conclusion
was reached when a different approach, based on protein com-
plementary assay (72), was used to interrogate the yeast inter-
actome. These studies suggest that a large proportion of binary
PPIs (∼20,000 in yeast) remained unexplored (73). Whether all
interactions observed make functional sense is still debatable (74).

Nevertheless, the Y2H system has been used to generate
interactomes of a few non-yeast organisms, including Plasmod-
ium falciparum (75), Caenorhabditis elegans (76, 77), Drosophila
melanogaster (78), and humans (79–81). Several viral–host
interactomes have also been produced using the system (82).
Future directions will probably include analyzing the protein
interaction networks based on protein domains (83) and the
interactome involved in specific pathways (84) and human
diseases (85).

Revealing the protein interaction networks has emerged as
a new approach to unravel the molecular basis of diseases and
disease-related protein interaction networks have provided new
targets toward drug discovery (86). Since most protein interac-
tions involve large contact surfaces and the interfaces are gener-
ally flat without grooves and pockets for small molecules to bind
(87), high-throughput screening does not routinely identify com-
pounds that disrupt protein–protein interfaces (88). Neverthe-
less, over the last few years, there have been considerable progress
in finding small molecules that disrupt protein–protein interfaces
(61, 89), but many challenges remain in designing novel strate-
gies to improve the hit rates in the future (90).

4.2. Drug Target
Identification

A critical challenge in drug discovery is the identification of the
mode of action of a chemical compound. As many medicinally
important drugs target conserved cellular pathways, the bud-
ding yeast S. cerevisiae can provide clues as to their mechanism
of action. This is achieved by studying the effects of chemical
compounds at a genome-wide level, i.e., chemogenomic (chem-
ical genomics) profiling. Chemogenomic profiling is the use of
a genome-wide approach that allows the identification of gene
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products or pathways that functionally interact with bioactive
molecules (91). This was made possible though the development
of a series of yeast strain libraries harboring mutations, deletions,
or overexpression of the majority of the yeast genome.

Chemogenomic profiling can be performed in strains with
altered gene dosage, whereby the identification of direct targets
of drugs are identified. In drug-induced haploinsufficiency pro-
filing (HIP), for example, pools of heterozygous diploid strains
are grown in the presence of bioactive molecules which can tar-
get gene products essential for yeast growth. Strains heterozygous
for the target genes are depleted from the pool. Conversely, it is
possible to overexpress genes encoding drug targets and suppress
drug sensitivity. Homozygous profiling (HOP) and haploid pro-
filing use complete loss-of-function alleles to identify pathways
that confer drug sensitivity or to indentify the direct target of
drugs following the principle that removing the drug target, cells
will no longer be sensitive to the compound (92).

4.2.1. Chemogenomic
Tools

A series of studies (6, 8, 93) from the laboratory of Ronald
W. Davis described the development (and indeed applications)
of a collection of yeast strains where the entire coding region
of ∼6,000 predicted yeast open reading frames (ORFs) were
replaced by a selectable marker flanked by two unique 20 bp
nucleotide sequences (“molecular barcodes”). These strains can
be pooled and grown under various conditions, following
which their DNA can be extracted; the barcodes amplified and
hybridized against oligonucleotide arrays or sequenced through
next generation sequencing, such as 454 Life Sciences or Solexa
platforms. This allows the identification of mutants favorable
(enriched in the pool) or deleterious (depleted in the pool) in
the conditions tested. These barcoded deletion strain libraries
are now commercially available as haploids of either mating
type (nonessential genes), as homozygous diploids (nonessential
genes), and as heterozygous diploids (essential and nonessential
genes).

Recently, Yan et al. (94) generated a collection of loss-of-
function barcoded strains for 87% of all essential yeast genes
through decreased abundance by mRNA perturbation (DAmP),
providing one more invaluable tool for yeast researchers. Ho
et al. (95) present a new strategy for the identifications of drug-
resistant mutations in yeast whereby they construct a molecu-
lar barcoded yeast open reading frame library (MoBY-ORF) that
enables the identification of the effect of introducing individual
genes into a mutant strain.

4.2.2. Examples
of Chemogenomic
Applications

Parsons et al. (96) have screened the single haploid deletion
mutants for hypersensitivity to 82 compounds (such as benomyl,
hydroxyurea, tunicamycin, and rapamycin) and natural product
extracts. Two-dimensional hierarchical clustering of the data
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revealed overlapping patterns of compound sensitivities. With
this approach, the authors were able to identify pathways tar-
geted by the various drugs and interpret the cellular effects of
novel compounds. Yu et al. (97) found that two closely related
compounds, which differ by a single atom, had very different
mechanisms of action in vivo, namely mitochondria disruption or
nuclear DNA damaging agent. They indicate that chemogenomic
profiles obtained in yeast cells can indeed be reproduced in mam-
malian cell cultures, suggesting similar mechanism of action of
compounds in mammalian cells as well as novel structure–activity
relationships.

The use of gene dosage for the identification of drug tar-
gets was first reported in the early 1980s with a study in which
resistance to the drugs tunicamycin and compactin was conferred
by over-expression of different genes identified from a library
screen (98). Today, the use of barcoded heterozygous yeast strains
has proven extremely powerful for the drug target identification
in vivo (99, 100). Using either barcoded heterozygous deletion
strains or barcoded DAmP strains in competition experiments,
Yan et al. (94) could identify known and new targets of drugs
such as sodium fluoride, fluorouracil, fluconazole, hydroxyurea,
and tunicamycin. In a mammoth effort, Hillenmeyer et al. (7)
performed 726 treatment experiments with heterozygous dele-
tion strains and 418 experiments with homozygous strains using
drugs approved by the World Health Organization and U.S.
Food and Drug Administration, well-characterized chemical com-
pounds as well as chemicals with unclear biological activity. With
this approach, significant phenotypes were ascribed to 97% of
yeast genes.

Chemogenomic profiling has enabled the mechanistic deter-
mination of a range of classical drugs such as quinine. Quinine
is a major drug of choice in the treatment of malaria, a disease
endemic to tropical and subtropical regions, including parts of the
Americas, Asia, and Africa. Each year, there are approximately 500
million cases of malaria, killing 1–3 million people. The major-
ity of the victims are young children in Sub-Saharan Africa. The
primary mode of action of the drug is unclear and its efficacy is
marred by adverse side effects among patients. To address this
problem, Khozoie and coworkers (101) carried out a genome-
wide quinine sensitivity screen using a yeast deletion strain collec-
tion. They found that tryptophan and tyrosine uptake via Tap2p
is a major target of quinine toxicity, suggesting that dietary tryp-
tophan supplements might help to minimize the toxic effects of
quinine.

Budding yeast has also been successfully used in the identifi-
cation of the mode of action of other traditional drugs, such as
the antimalarial drug artemisinin (102) and the medicinal herb
St. John’s wort (103). St. John’s wort is traditionally used as
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an antidepressant and for wound healing, but its mechanism of
action was unknown. After conducting haploinsufficiency profil-
ing experiments in yeast and subsequent sequence similarity com-
parisons, the authors could propose likely human intracellular
targets.

Ericson et al. (104) performed comprehensive genome-wide
screenings of S. cerevisiae strains susceptible to psychoactive drugs
such as fluoxetine (Prozac) and cyproheptadine (Periactin). These
psychoactive compounds were initially screened against wild-type
yeast cells, and over 40% of them were selected for further studies
due to their effects on cell growth. They were then used to screen
against pools of diploid heterozygous and homozygous deletion
strains. Approximately 500,000 drug-gene measurements were
made, providing strong evidence for the off-target effects of these
drugs on evolutionarily conserved cellular pathways, such as vesi-
cle transport, establishment of cell polarity and chromosome biol-
ogy. This study provided data supporting a system for devising
derivatives of compounds with fewer side effects and for design-
ing treatments matching individual patients’ genotypes.

Genomic profiling has also been used for identifying and char-
acterizing bacterial virulence proteins, also known as effectors
(105). Siggers and Lesser (106) and Curak et al. (107) provide
good overviews of the applications of S. cerevisiae in identifying
and characterizing bacterial proteins responsible for promoting
infection and causing disease. Analyses of bacterial virulence pro-
teins has previously been limited by the lack of tractable genetic
systems among higher eukaryotes, but the study of bacterial pro-
teins in yeast provides a powerful system to determine the func-
tions of these proteins, to probe eukaryotic cellular processes,
and to model mammalian infection. Once again the vast range
of tools available to yeast researchers allow for systematic screens
at a genome-wide level.

4.3. Toward Therapy A classic drug discovery process goes through a series of steps
including: selection of drug targets (targets associated with a par-
ticular disease) and subsequent validation of that target; in vitro
drug screens; evaluation of the specificity and safety of the new
drug in terms of therapeutic use; drug testing in animal models
and drug testing in pre-clinical and clinical trials. The entire pro-
cess lasts approximately 15 years. In vitro drug screening is per-
formed on purified proteins and a library of small molecules that
are screen for inhibition of protein function. Even when a small
molecule is found to inhibit protein function in vitro, it might
not be able to enter the cell or it might be metabolized before the
inhibition takes place in vivo.

Drug screening in vivo will overcome some of the disadvan-
tages of the previous approach, as only cell-permeable inhibitors
will be selected; however, the inhibition might be due to effects
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of different target proteins. Yeast can be used for in vivo drug
screens, before any tests are performed in mammalian systems; as
they are economical, easy to grow and can be genetically manip-
ulated with greater ease. Yeast is mostly permeable to small com-
pounds and can be further manipulated to improve this aspect
(108). In the following paragraphs we will provide a flavor of the
use of S. cerevisiae in drug design and in the production of thera-
peutic proteins.

4.3.1. G Protein Coupled
Receptors (GPCRs)

G protein coupled receptors (GPCRs) are integral membrane pro-
teins with seven transmembrane domains. They comprise one of
the largest and most diverse protein family found in eukaryotes
with hundreds of examples in humans (half of which are odor-
ant receptors) and three in S. cerevisiae. GPCRs are involved in
a variety of physiological processes including visual sense, sense
of smell, behavioral and mood regulation, immune system activ-
ity and inflammation, autonomic nervous system, and cell den-
sity. Drugs targeting GPCRs account for about 40% of all pre-
scription pharmaceuticals on the market, making them the sin-
gle most used class of drug target. Furthermore, they are one of
the most targeted protein in pharmaceutical research today; either
for the development of modulators (agonists and antagonists) or
as biomarkers for diagnosis and prognosis. GPCRs are potential
therapeutic targets in areas including cancer, diabetes, cardiac dys-
function, neurological disorders, obesity, inflammation, and pain.

In S. cerevisiae the GPCRs are the mating pheromone recep-
tors Ste2 and Ste3 (expressed in mating type a and α cells, respec-
tively) and the nutrient responsive receptor Gpr1. Ste2 and Ste3
couple to the mating pheromone-signaling cascade via interaction
with Gpa1, the Gα subunit of one of the two budding yeast’s
heterotrimeric G protein complexes. Analogously, Gpr1 relays
nutritional signals to the cell via Gpa2. Upon ligand binding,
the receptors undergo a conformational change, which promotes
their binding of the GPCR to trimeric G proteins (comprised of
Gα, Gβ, and Gγ subunits). This allows the release of GDP and the
uptake of GTP from the Gα subunit, which is then dissociated
from the Gβ and Gγ subcomplex. This dissociation activates sig-
naling pathways that will adequately respond to the ligand stimu-
lus. The hundreds of different human GPCRs couple to Gα pro-
teins of four classes: Gαs, Gαi, Gαq/11, and Gα12/13. Coupling to
various G proteins determines the cellular changes to follow.

Several different groups have successfully managed to couple
mammalian GPCRs to the yeast mating pheromone pathway. This
was originally done for the classic target of drugs to treat asthma,
the β2 adrenergic receptor (109), but has since been accom-
plished for β3 adrenergic receptor (110), D2S-dopamine recep-
tor (111), fizzled receptors (112), adenosine A2a receptor (113),
CXCR4 (114), among many others. There are still a number of
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reasons why a heterologous GPCR might not successfully couple
to the yeast pathway. These include low expression of the recep-
tor, failure of localization of the receptor to the plasma mem-
brane, failure of binding of the receptor to the host’s trimeric Gα

protein, and lack of strong or clear activation signals upon recep-
tor binding.

Different groups resorted to a series of solutions to overcome
the difficulties mentioned above. The receptors have been cloned
in plasmids under very strong promoters to increase the expres-
sion levels of the GPCRs. Receptors have been expressed in strains
with mutations in ERG6, leading to a different plasma membrane
composition that facilitates the integration of the receptor. Fur-
thermore, receptors have been coupled to fluorescent markers to
verify the proper subcellular localization. One major limitation
of the system is the potentially poor binding of the heterologous
GPCRs to the yeast Gα subunit. This problem has been overcome
by the creation of chimeric Gα proteins where domains involved
in binding to GPCRs have human sequences whereas domains
interacting with downstream components are derived from the
host. Initial experiments were performed with long replacements
of Gα fragments; however, more recently, different groups have
demonstrated that the replacement of the last five amino acids of
S. pombe or S. cerevisiae Gα proteins with human sequences can
be sufficient for an efficient coupling of the pathways (115–117).
In yeast, activation of the mating pheromone-signaling pathway
can be monitored through the use of single or multiple reporter
genes fused to the promoter of FUS1. Luciferase, LacZ, nutri-
tional markers such as HIS3, and fluorescent markers such as GFP
have all been used to this end. Furthermore, strains can be engi-
neered as to remove negative regulators of the pathway such as the
GTPase Sst2 (negatively regulator of the yeast Gα protein Gpa1)
and Far1 (contributes to cell cycle arrest following STE2 pathway
activation).

Today most pharmaceutical industries have opted for the use
of mammalian cultured cells in GPCR research due to the more
natural context for the receptors as well as the availability of a
number of commercial methods in measuring receptor activation.
However, if suitably optimized, yeast cells can provide a suitable
complementary screening platform in GPCR research. One of the
main advantages of employing S. cerevisiae in GPCR research is
the possibility of working with individual or specific combina-
tions of GPCRs. The low costs of yeast media and its suitability
for automation raise the possibility of developing fully automated
cycles of GPCR drug discovery, both in the search for agonists
and antagonists of well-defined targets and in the search for lig-
ands for orphan GPCRs. Furthermore, heterologous GPCRs can
be expressed in yeast for further purification and functional stud-
ies in vitro (118).
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4.3.2. Antifungal and
Other Drugs

Invasive infection by pathogenic fungi has become an increas-
ingly common problem in critically ill and immunocompro-
mised patients. The pathogenic yeast Candida sp. lives in
80% of the human population without harmful effects; how-
ever, in AIDS patients, cancer patients undergoing chemother-
apy or transplant patients, it can be fatal. During the past
years, in addition to Candida, other fungi groups such as
Aspergillus and Zygomycetes have been increasingly problem-
atic in the clinic (119). That is due to the low efficacy of
current therapies against systemic fungal infections which can
have a mortality rate of over 50%. As genome sequences of
a increasing number of pathogenic fungi become available,
S. cerevisiae can provide a platform for comparative genomic tech-
niques leading to drug target identification. Furthermore, it is an
ideal test bed for new experimental approaches in drug discovery
(120). One major problem in the treatment of systemic fungal
infections is the toxicity of the current therapies. Investigation of
the mechanism of action of these therapies by using chemoge-
nomic approaches can lead to the development of new, less toxic,
and more specific antifungal drugs (121, 122).

Major projects in the pipeline will certainly further pro-
mote the use of S. cerevisiae as a platform for antifungal drug
design. One of these approaches undertaken by the Boone lab-
oratory (http://www.utoronto.ca/boonelab/research_projects/
sigma_deletion/index.shtml) is the creation of a new library of
yeast barcoded deletion collection based on Sigma 1278b, a
S. cerevisiae strain capable of filamentous growth, a developmental
process important to fungal pathogenesis.

Yeast cells have been extensively used for expression of het-
erologous proteins. Human proteins can generally be expressed
at good levels in budding yeast from genes cloned directly from
cDNA libraries. This is also true for genes derived from several
human parasites such as Trypanosoma brucei and Trypanosoma
cruzi (123–126), the agents causing sleeping sickness and
Chagas diseases, which kill approximately 40,000 and 20,000
people each year, respectively. Proteins from Schistosoma sp.,
which cause schistosomiasis (also known as bilharzia or snail fever)
affecting over 200 million people, have also been expressed in
yeast providing insights into their function due to successful com-
plementation of yeast deletion phenotypes (127, 128).

Similarly, proteins derived from Plasmodium sp. have also
been successfully expressed in yeast where they successfully com-
plement the yeast mutant phenotypes (129–132) and provide
good protein yields for structural studies (133). Unfortunately,
the expression of many Plasmodium proteins is not efficient
due to the AT-rich nature of the parasite’s genome. LaCount
et al. (134) demonstrated recently that one important factor con-
tributing to poor expression is the premature cleavage of the
Plasmodium mRNAs through the recognition by the yeast’s

http://www.utoronto.ca/boonelab/research_projects/sigma_deletion/index.shtml
http://www.utoronto.ca/boonelab/research_projects/sigma_deletion/index.shtml
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mRNA processing machinery as a signal for addition of polyA
tails. This problem was overcome by working with strains with
defects in mRNA processing. Alternatively, heterologous genes
can be synthesized in vitro with codon usage optimized for yeast
expression. Yeast strains expressing heterologous proteins can
provide in vivo screening platforms for high-throughput drug
design.

4.3.3. Therapeutic
Protein Production
in Yeasts

Various yeast species ranging from S. cerevisiae, through Pichia
pastoris to S. pombe are commercially used or being developed as
live factories for production of pharmaceutically relevant proteins.
These proteins can be of different nature, ranging from insulin,
enzymes for enzyme replacement therapy, antibodies, cytokines
to viral antigens for use as vaccines, such as the hepatitis B surface
antigen (135), human papillomavirus capsid protein (136, 137),
and dengue virus envelope proteins (138).

The World Health Organization estimates that 2–3% of the
world population suffers from some form of diabetes, a condi-
tion in which the body does not produce enough or does not
respond to the hormone insulin. Diabetes is a chronic disease that
is controlled through dietary changes as well as administration of
insulin, which is commercially produced in S. cerevisiae (139).

Lysosomal storage diseases (LSDs) are a group of about 40
inherited disorders that together affect 1:5,000 to 1:10,000 of the
human population. LSDs are caused by deficiencies in the produc-
tion of different lysosomal enzymes and are generally treated with
enzyme replacement therapy (ERT). Usual hosts for the produc-
tion of enzymes for ERT are mammalian cells; however, due to
their very low yields and high production costs, combined with
the large amount of protein required for each therapeutic infusion
(1 mg of protein/kg of body weight for fortnightly treatment of
Fabry disease), treatment of LSDs are exorbitant and frequently
prohibitive. Therefore, the development of methods for produc-
ing human enzymes in various yeast species has the potential of
greatly improving the life expectancy and quality of life of affected
patients (140–143).

Further protein therapeutics, such as cytokines and antibod-
ies, are the largest class of drug candidates being developed by
pharmaceutical companies (144). Today most of these proteins
are produced in mammalian cells; however, their large-scale pro-
duction could be threatened by the inadequate supply of bovine
serum and by the risk of spread of viral infections. Therefore, yeast
protein expression systems can once again provide a cheaper and
more reliable source of therapeutic proteins. However, yeasts do
not naturally produce the same type of glycoproteins as humans,
but using a combination of systems biology approaches and sub-
sequent genetic manipulations, researchers have been able to
develop “humanized” yeast cells which are able to produce gly-
coproteins compatible with human therapies (144–152).
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5. Conclusions

Decades of close collaborations among the yeast research com-
munity yielded a wide range of methods, strains, plasmids, and
other resources, allowing generation of vast amount of high-
throughput data to study the functions of genes in this simple
eukaryotic cell. We are now in a privileged position of having
these tools available to investigate and eventually manipulate cel-
lular activities at a systems level.

Classic yeast genetics defined pathways as well as provided
mechanistic insights into cellular events, most of which have
been further confirmed to some extent in higher eukaryotes.
With these traditional techniques combined with various sys-
tems biology technologies, yeast will continue to be a tractable
model for functional studies of individual human proteins or
pathways, especially those implicated in diseases. Furthermore,
S. cerevisiae research is paving the way for genome-wide stud-
ies aiding in the understanding of modes of action of drugs,
drug design, and therapeutic protein production. A systematic
approach in analyzing the available data and designing new exper-
iments will further enhance the contributions of S. cerevisiae
toward human health.
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