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Abstract. The incorporation of defect modes into the perfect crystal structure allows the control of 
the flow of light by altering the photonic bandgap and thereby can be manipulated to achieve optical 
switching. A model for all optical switching and limiting based on two dimensional photonic 
crystals is proposed for AlAs and the performance in square and hexagonal lattice structures were 
evaluated. Simulations were done using 2D finite difference time domain model incorporating 
instantaneous Kerr’s nonlinearity. The optimal nonlinear resonant frequencies and the refractive 
index change required for the performance in the nonlinear regime were obtained. The limiter 
effectiveness is analysed using extinction ratio. The lattice constant and the optimal microcavity 
distance required for the proposed model to work as a switch and a limiter in the telecommunication 
wavelength of 1.55 µm were obtained as a 0.6015μm= and 2a respectively. 

Introduction 
Photonic crystals (PCs) are materials with index of refraction varying periodically between 

high-index regions and low-index regions giving rise to a range of forbidden frequencies called 
photonic bandgaps analogues to electronic bandgaps in semiconductors [1]. There are three types of 
PCs depending on one, two or three-dimensional arrangement in periodicity [2]. Although periodic 
arrangement of atoms within a semiconductor material occurs in nature such as opal gemstones, 
beetles to bird feathers and butterfly wings, PCs are mostly artificially fabricated. For frequency 
energies lying within the bandgap, the photonic crystals do not allow light to propagate through 
unless there is a defect in the otherwise perfect crystal. The introduction of various types of defects, 
provide the ability to guide and mould the flow of light or photons propagation through the gap. 
Linear defects can act as efficient waveguides [3] while point like defects may act as resonant micro 
cavities coupling light to photonic band gap (PBG) waveguides and other optical components [4]. 
Several studies had been carried out using external modifications of material’s refractive index to 
change the band-gap structure such as by temperature variations [5] and electro-optic method [6]. 
However, these are slow in comparison with the speed required for modern communication.  

The field of nonlinear optics, the propagation of light in nonlinear media having nonlinear 
relation between dielectric polarization (P) and electric field (E) emerged with the discovery of 
second-harmonic generation by Franken et al. in 1961 [7]. When nonlinearity is incorporated into a 
photonic crystal, the light propagation can be controlled dynamically [8]. This field has grown 
enormously contributing vastly to the advancement of the telecommunication industry and opened 
up opportunities to design all-optical devices [9]. Kerr nonlinearity is an instantaneous nonlinear 
response that results a dependence of refractive index on the light intensity. This occurs when 
intense light propagates in media such as crystals, glass and gases and holds a great importance due 
to its suitability in ultra-fast devices. Several structures of PC switches have been implemented over 
the years incorporating Kerr’s nonlinearity [10, 11, 12]. 

The principle of optical switching and limiting was demonstrated in a one-dimension (1D) by 
Scalora and Tran in 1993 [10] by modelling both the probe and the pump pulses propagating in the 
same direction. Using Kerr nonlinearity Scholz et al. designed a two-dimensional optical switch 
which incorporated the crossed wave guides [11] and due to the perpendicular directions of 
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propagation of the probe beam and the pump pulse, the undesirable overlay of the two signals was 
reduced. Experiments have been carried out demonstrating all-optical switching action in nonlinear 
PC cross-waveguide geometry of AlGaAs with Kerr nonlinearity and the transmission of a signal 
that can be reversibly switch on and off by a control input [13] and thereby accomplishing both 
spatial and spectral separation between the signal and the control in nonlinear regime. An all optical 
switch based on nonlinear PC microcavities for AlGaAs was demonstrated numerically based on 
Finite Difference Time Domain (FDTD) incorporating Kerr effect [14]. Many suggestions have 
been brought up in implementing optical switches using directional couplers [12, 15, 16] by 
modifying 2D PC structures by creating two single line defect waveguides adjacent to each other, 
separated by the single row of rods with decreased radius [12]. In 2008, numerical experiments 
were carried out investigating the possibility of the radiation intensity stabilization using the 2D PC 
structures [17] approving the possibility of designing optical power limiter circuits using 2D PCs. 
Danaie and his colleagues designed a PC optical limiter using nonlinear Kerr Effect for a triangular 
lattice of holes in a GaAs substrate [18]. Optical limiters have been incorporated in designing 
nonlinear optical devices such as AND gates using Kerr nonlinearity [19].  

To model nonlinearity, finite difference time domain method (FDTD), finite element method 
(FEM), plane wave expansion (PWE) and Wannier function method (WFM) can be used in 
incorporating nonlinear elements into the linear system. FDTD method, which enables modelling 
time evolution of the fields and quantities in the desired structure [20] is regarded as one of the most 
popular numerical methods used to simulate nonlinearity and dispersion structure. FDTD further 
enables to model different geometries in different dimensions. FDTD was first proposed by Yee in 
1966 [21]. This method proposed a discrete solution to Maxwell’s Equations based on central 
difference approximations of the spatial and temporal derivatives of the curl operations. It has been 
developed to a fast algorithm to solve sophisticated problems. An underlying weakness of this 
method is that it requires a full discretization of the electric and the magnetic fields in the entire 
volume domain [22].  

This work investigates nonlinear optical properties of PCs in optical switching and limiting. 
2D PCs with 15×15 square lattice of AlAs rods with air wafer dimensions 17μm 16μm×  and lattice 
constant of a 1μm=  and 15×15 hexagonal lattice structures of AlAs rods with the air wafer 
dimensions17μm 14μm×  and lattice constants a 0.866μm=  and b 1μm=  were considered without 
loss of generality. Kerr nonlinearity was incorporated and a simulation was carried out based on 
FDTD method. An optical switch and an optical limiter are proposed using a side-coupled cavity 
waveguide for AlAs along with fine tuning to work under the telecommunication wavelength.  

Effects of Nonlinearity  
Optical nonlinearity is a phenomenon which occurs due to modification of optical properties 

of a material by the presence of light. Ideally, only laser light in this regard has a sufficient intensity 
to modify optical properties of material [23]. The propagation of light in a photonic crystal is 
governed by the macroscopic Maxwell equations: 

           
; ; 0;

t t
ρ∂ ∂

∇× = − ∇× = + ∇⋅ = ∇ ⋅ =
∂ ∂
B DE H J B E  ,                            (1) 

where ρ  and J  are free electron charge density and current density respectively. The relationships 
between the four electromagnetic field vectors , , ,E D B H are given by: 

        0 0;           ( )ε µ= =D E + P B H + M ,                                               (2) 

where P  is the polarization field and M is the magnetization field. Inside a dielectric, the induced 
polarization P of the medium is given by [23]: 

            
(1) (2) 2 (3) 3   o o oP E E Eε χ ε χ ε χ= + + +L                                             (3) 
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Here (1) (2),χ χ and (3)χ are called the first, second and third order susceptibility coefficients 
respectively.  is only observed in non-centrosymmetric crystals, hence liquids, gas and most of 
the solids do not possess this susceptibility. On the other hand, third-order susceptibility occurs for 
both centrosymmetric and non-centrosymmetric media and most of the materials display this 
susceptibility which gives rise to Kerr nonlinearity. A monochromatic electric field cosE E tω ω=  
induced polarization of the medium [24]:   

            

2(1) (3)
0
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4
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                     (4) 

Here the formula 3cos (cos3 3cos ) / 4t t tω ω ω= +  is used. Resultant susceptibility can be considered 
to be a summation of linear Lχ  and nonlinear NLχ  components. The index of refraction: 
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where 0 1 Ln χ= +  is the linear refractive index, 2n  is the second order refractive index and I is the 
intensity of light. The electric field and displacement fields are now related by: 

           ( ) 22 2 (3)
0 0 0 0

3( ) ( ) ( ) ( )
4rD t E t n E t n E t E tε ε ε ε χ = = = + 

 
         (6) 

The most commonly used time-domain differential equation approach in computational 
electrodynamics (CEM), is finite difference time domain method (FDTD) and it mainly helps in 
solving time dependent Maxwell’s equations given in equation 1 with: 

          0 0;r rε ε µ µ= =D E B H                                   (7) 

Electric fields are normalized so that the E-field and the H-field have the same order of magnitude. 
This has an advantage in formulating the perfectly matched layer (PML) which is a crucial part of 
FDTD simulation. Hence, the normalized electric fields are introduced as:  

             

0

0 0 0
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µ µ ε

= = = 

DE E D D                                  (8) 

The Maxwell’s equations with normalized E-fields read: 

            
1;r

c t c t
µ ∂ ∂
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B DE H                       (9) 

These equations are independent of the material in use and hence lead to lesser complications in 
deriving the equations in the main FDTD algorithm. The constitutional relationship which related 
the E and the D-fields will account for the material properties which are given by the Kerr’s 
nonlinearity. Assuming that the relative permeability of the material ( rµ ) is diagonal and the z 
direction is uniform and of infinite extent (i.e. / 0z∂ ∂ = ), equations in 9 can be expanded as 
follows: 

(2)χ
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These two sets of equations corresponds to the TM mode ( zE  mode) and the TE mode ( zH ) mode 
respectively. In this paper we consider photonic crystal behaviour in TM mode only and therefore 
the curl elements of the TM mode equations in 2-D finite differences are rearranged in order to 
obtain the basic TM mode field update equations of the main FDTD algorithm: 
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                    (11) 

In order to avoid reflections, perfectly matched layer (PML) boundaries are incorporated into FDTD 
algorithm to avoid reflections at the boundaries. In the simulation, the imperfect truncation of the 
problem space will create numerical reflections which will corrupt the computational results in the 
problem space after some time. The perfectly matched layer (PML) introduced by Berenger in 1994 
[25] has been proven to be one of the most strong absorbing boundary condition (ABCs) when 
compared to other techniques used in the past [26], [27]. PML is a finite-thickness layer of special 
medium surrounding the computational space based on fictitious constitutive parameters to create a 
wave-impedance matching condition, which is independent of the angles and frequencies of the 
wave incident on this boundary. The PML boundaries were incorporated to the main FDTD 
algorithm by the method proposed by Zachary et al. [28]. Time increment ( tD ) was obtained by 
separating out the finite-difference algorithm into separate time and space eigenvalue problems by 
enforcing the stability condition called the Courant-Friedrich-Levy (CFL) or Courant’s stability 
condition [29]: 

           
min min[ , ]

2
n x yt

c
D D

D =                      (12) 

Switch Coupler Structure Geometry Analysis  
Two dimensional photonic crystals were designed for the square and hexagonal geometries. 

Hexagonal structure was composed of 15×15 hexagonal lattice of AlAs rods with the air wafer 
dimensions17μm 14μm×  and lattice constants a 0.866μm=  and b 1μm=  while the square lattice 
structure was composed of 15×15 square lattice of AlAs rods with air wafer dimensions 
17μm 16μm×  and lattice constant of a 1μm= .  The AlAs rods has the linear refractive index ( Ln ) 
2.892 at wavelength 1550 nm [30]. For band gap calculations Optiwave PWE (plane wave 
expansion) band solver software was used. A line defect to the crystal structure was introduced by 
removing a single row of AlAs rods. The waveguides created for both structures are shown in 
Fig. 1. The transmittance of radiation for the power variation of 13 10 1.6 10 Wm− −− ×  through the 
wave guide were measured for the change in the radii of the AlAs rods from 0.1a  to 0.4a.  The 
normalized transmission spectra for different radii for the square and hexagonal lattice structures 
with a single waveguide  are presented in Fig. 2. The radii range which gave the maximum 
transmission corresponds to 0.13a 0.25a− and 0.14a 0.28a− for square and hexagonal lattice 
structures respectively. The radius 0.1875a  was found to be the best value which gave the 
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maximum output power for the square lattice structure while 0.2050a  was considered as the best 
radii for the hexagonal structure. Hence, circular cylindrical pillars of the photonic crystal structures 
were changed to the best radius value and the transverse magnetic (TM) band gap of this structure 
was obtained by the PWE method. 

 
Figure 1. Photonic crystal with line defects. (Left) Square lattice (Right) Hexagonal lattice. 

 
Figure 2. The power transmitted for different radii of square and hexagonal PC lattice waveguide 
structures of AlAs. 

Square PC Lattice Structure 
For the given parameters of the square PC lattice structure, the band gap for the TM mode is 

0.112638 / λ and the gap lies in the range of normalized frequencies 0.345 1/ 0.457λ≤ ≤  where λ  
denotes the optical wavelength in the free space. Forbidden bands of wavelengths called photonic 
band gaps give rise to distinct optical phenomena which can be used to obtain controlled photon 
behaviour. The lattice was modified thrice by introducing a microcavity by removing a single AlAs 
rod at distances a, 2a  and 3a  from the middle of the waveguide separately. The wavelengths 
corresponding to the respective normalized frequency bandgap 2.188μm − 2.899μm were 
transmitted through the source point and the transmittance at each scenario was recorded. Fig. 3 
shows the normalized transmission spectra for the three cases, a, 2a  and 3a . In all the three cases, 
there are sudden drops of the transmission powers for certain wavelength values. These sudden 
drops occur when the frequency of the incoming signal resonates with the resonance frequency of 
the microcavity. At this instance the incoming wave couples with the microcavity and hence the 
transmission through the waveguide is seized. These resonance wavelengths and the corresponding 
resonance frequencies of the cavity are tabulated in table 1. The simulation results for AlAs square 
PC crystal switch structure with microcavity at distances a, 2a and 3a from the wave guide at the 
resonant wavelengths are presented in Figs. 4: (a), (b) and (c) respectively while figs. 4: (d), (e) and 
(f) represents the simulation results at 2.600μm  wavelength for microcavity distances a, 2a and 3a 
respectively.  
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Figure 3. The normalized transmission spectra for the PC square lattice switch structure for 3 
different microcavity distances a, 2a and 3a from the middle of the waveguide. 
Table 1. Resonance frequencies for each of the cavity distances a, 2a and 3a with the normalized 
transmission powers detected for AlAs square PC lattice. 

 

Cavity distance (a) 
 

 

Resonance wavelength (μm ) 
 

Normalized transmission 

a 2.448 41.174 10−×  
2a 2.470 

 

3a 2.472 0.496 

     
(a)                                             (b)                                            (c) 

     
(d)                                              (e)                                            (f) 

Figure 4. Simulation results of AlAs square PC crystal switch structure with microcavity at 
distances  a, 2a and 3a from the wave guide. (a), (b) and (c) represents the simulation results at the 
resonant wavelengths and figures (d), (e) and (f) represents the simulation results at 2.600μm  
wavelength  for microcavity distances a, 2a and 3a respectively. 

From Fig. 4 it is clear that when the microcavity is at a distance ‘a’ away from the waveguide, 
the normalized transmittance power along the waveguide at the resonance is minimum value of the 
order  compared to Figs. 4(b) and Fig. 4(c). However, at 2.600 µm wavelength fig. 4(d) shows 

31.094 10−×

410−
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a less intense beam being propagated along the waveguide with a normalized transmission power of 
0.383 compared to the fig. 4(e) and fig. 4(f). Hence the optical switch formed from AlAs square 
switching structure with the microcavity at a distance ‘a’ from the waveguide shows poor 
performance. PC structure with the microcavity at a distance 2a from the waveguide has a sharp 
drop of transmission power at resonance to an order of 310− .  Fig. 4(b) shows that at resonance the 
incoming wave couples well with the microcavity. At other wavelengths the incoming wave goes 
through the waveguide without being coupled to the resonance cavity. The intense propagation of 
normalized transmission of 0.839 in fig. 4(e) further proves this. When the microcavity is at a 
distance 3a from the waveguide the resonance occurs with a slight drop of transmission. 
Normalized transmission in this instance was 0.496. Fig. 4(c) shows that there is a comparably 
intense output together with coupling to the microcavity. Hence, this structure too shows poor 
performance at resonance. Therefore for the square lattice structure of AlAs, the best optical 
switching can be obtained for rods of radius 0.1875a with a resonance wavelength of 2.470μm 
when the microcavity is at a distance 2a from the waveguide. 

Hexagonal PC Lattice Structure  
For the given parameters of the hexagonal PC lattice structure, the band gap for the TM mode 

is 0.160954 / λ and the gap lies in the range of normalized frequencies 0.321 1/ 0.481λ≤ ≤  where 
 denotes the optical wavelength in the free space. The lattice was modified by introducing a 

microcavity by removing a single AlAs rod at distances a, 2a and 3a from the middle of the 
waveguide separately. Thereby, wavelengths corresponding to the respective normalized frequency 
bandgap 2.08 3.11μm−  were transmitted through the source point and the transmittance for each 
case was recorded and Fig. 5 shows the normalized transmission spectra for these three cases. The 
resonance wavelengths and the normalized transmission detected at resonance are tabulated in 
Table 2.  

 
Figure 5. Variation of the normalized transmission spectra for the hexagonal PC lattice switch 
structure for microcavity distances a, 2a and 3a from the middle of the waveguide.  
Table 2. Resonance frequencies for the cavity distances a, 2a and 3a with the corresponding 
normalized transmission detected for AlAs Hexagonal PC lattice. 

Cavity distance (a) Resonance wavelength (μm) Normalized transmission 
a 2.282 

 

2a 2.396 
 

3a 2.422 0.4011 

λ

 

              
                

53.757 10−×
32.764 10−×
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(a)                                                (b)                                                (c) 

       
(d)                                               (e)                                                 (f) 

Figure 6. Simulation results of AlAs Hexagonal PC crystal switch structure with microcavity 
distances at a, 2a and 3a distances from the wave guide. (a), (b) and (c) represents the simulation 
results at the resonant wavelengths and figures (d), (e) and (f) represents the simulation results at 
2.600 µm wavelength for microcavity distances a, 2a and 3a. 

The simulations for AlAs hexagonal PC crystal switch structure with microcavity at distances 
a, 2a and 3a from the wave guide at the resonant wavelengths are presented in figs. 6: (a), (b) and 
(c) respectively while Figs. 6: (d), (e) and (f) represents the simulation results at 2.600μm  
wavelength for microcavity distances a, 2a and 3a respectively. When the microcavity is at ‘a’ 
distance away from the waveguide, the transmittance at the resonance is a minimum (~10−5) along 
the waveguide compared to Fig. 6(b) and Fig. 6(c). At wavelength 2.600 µm Fig. 6(d) shows a less 
intense beam being propagated along the waveguide compared to Fig. 6(e) and Fig. 6(f). Hence, 
optical switch formed from AlAs hexagonal structure with the microcavity at a distance ‘a’ from the 
waveguide shows poor performance.  When the microcavity at a distance 2a from the waveguide, 
transmission power has a sharp drop at resonance with transmittance of an order of 310− . Fig. 6(b) 
shows that at resonance, the incoming wave couples well with the microcavity. The intense 
propagation of the beam in Fig. 6(d) at 2.600 µm wavelength shows that the incoming wave goes 
through the waveguide without being coupled to the resonance cavity. When the microcavity is at a 
distance 3a from the waveguide the resonance occurs with a slight drop of transmission. 
Normalized transmission in this instance was 0.4011. Fig. 6(c) shows that there is a comparably 
intense output together with coupling to the microcavity. Hence, this structure too shows poor 
performance at resonance. Therefore, for the hexagonal lattice structure of AlAs the best optical 
switching can be obtained for rods of radius 0.2050 a with a resonance wavelength of 2.393 μm 
when the microcavity is at a distance 2a from the waveguide. 

Square and Hexagonal PC Structure Switches of AlAs 
Both proposed square and hexagonal crystal structures show optimum results, when the 

microcavity is 2a away from the waveguide and these are presented in Fig. 7. Square structure 
exhibits a very sharp resonance drop compared to the hexagonal structure. Further, average 
normalized power through the waveguide is high in the square lattice for other wavelengths other 
than the point of resonance. The wavelength range that the square lattice can be used as a switch is 
larger compared to that of the hexagonal lattice. Hence, the square structure is highly preferred than 
the hexagonal lattice structure for AlAs switch. 

8 Volume 77



 
Figure 7. The normalized transmission spectra for the square and hexagonal PC lattice switch 
structures for microcavity distance 2a from the middle of the waveguide. 

Nonlinear Situation for AlAs 
When Kerr’s nonlinearity is present in the medium, as the intensity of the pump signal is 

increased, the refractive index of the dielectric rods increases. Hence, the optimal situation for the 
square AlAs PC structure with the microcavity at 2a from the middle of the waveguide was 
obtained for nonlinear case by plotting the normalized transmittance curves for the hypothetical 
refractive index change range of 0.1 0.6− .These with linear case (in red) are shown in Fig. 8. The 
resonance wavelength increases as the intensity of the pump pulse which is proportional to the 
refractive index change increases. For the refractive index changes of 0.3 0.5−  resonance is in one 
range whereas for the refractive index changes in the range 0.0 0.2−  shows resonance in another 
range. With the increase of nonlinearity the transmission at the resonance slowly increases. The best 
nonlinear case should contain its resonance wavelength away from the linear resonance as well as it 
should show a good transmission at the point of resonance wavelength as that of the linear case. 
Hence the best nonlinear PC structure that may act as a switch will correspond to the refractive 
index change in the range 0.3 0.5− . The resonance frequencies and the transmittance at the linear 
resonance frequency of the nonlinear instances are tabulated in table 3. 

 

 
Figure 8. Normalized power transmission spectrum through the waveguide with the increase of 
refractive index change. The red line shows the linear case whereas other lines depict the behaviour 
in nonlinear situation. 
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Although for the 0.2 change in the refractive index, delivers a high output, Fig.8 shows that 
the resonance drop off overlaps with the linear situation. Hence, a small difference in the refractive 
index change about the 0.2 may give adverse results. Therefore 0.3 to 0.5 range which shows a 
stable power output with their resonance wavelengths away from the linear resonance wavelength 
can be considered as the optimal range.  

Performance of the Proposed Structure as an Optical Limiter 
Table 3. Nonlinear AlAs optimal square lattice PC structure with microcavity 2a away from the 
waveguide with refractive indices, corresponding resonance wavelengths and power transmitted. 

Refractive index 
change 

Resonance wavelength 
(μm) 

Normalized transmission at 
its own resonance 

Normalized transmission at  
2.4708μm (resonance of linear) 

0.1 2.5006  0.4264 
0.2 2.5251  0.8218 
0.3 2.5758  0.7715 
0.4 2.5809  0.7337 
0.5 2.5914  0.7533 
0.6 2.6393 0.1166 0.8039 

From the best switching parameters obtained for AlAs square PC structure, the resonance 
wavelength at the linear instance was evaluated for a range of nonlinear situations. The intensity of 
the incoming pulse with a wavelength coinciding with the resonance frequency of the linear case 
was increased gradually and the normalized transmittance at the end of the waveguide was 
measured. The intensity of the incoming signal is represented by the corresponding refractive index 
as defined by Kerr’s nonlinearity. These are shown in Fig. 9. The output power of AlAs is gradually 
increased with the increase input power denoted in terms of refractive index change and the 
transmittance stabilizes at the refractive index change of 0.07.  

The extinction ratio was obtained as 2.89 by considering the normalized transition at 
resonance and the stabilization transmittance in nonlinear instance in log scale for the proposed 
limiter.  

Extinction Ratio for a range of refractive indices were obtained for comparison purpose as 
given in table below. 

 
Figure 9. Behaviour of the normalized transmittance through the waveguide at linear resonance 
frequencies of the optimal structure of AlAs with the increase in input power (denoted in terms of 
refractive index changes). 

-35.169 10×
-37.3638 10×
-22.0546 10×
-23.1754 10×
-28.4818 10×
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Table 4. Extinction ratio for refractive indexes in log scale for square PC lattice structure with 
microcavity at a distance ‘2a’ from the center of the waveguide. 

Refractive Index Extinction Ratio 
2.50 2.34 
2.60 2.19 
2.70 2.81 
2.80 2. 89 
2.90 1.81 
3.00 1.92 
3.10 1.63 
3.20 1.08 
3.30 1.43 
3.40 0.93 
3.50 0.75 

Therefore, AlAs is suitable for the implementation of the proposed limiter structure.  

Tuning the Optical Switch and the Limiter 
It is essential to tune the optical switch and the limiter to the desired frequency range. The 

range of wavelengths dealt with, in the simulations carried so far are in the range of 2.0 μm to 4.00 
μm. However, depending on the necessity it is essential to have the flexibility to tune the switch and 
the limiter to any required wavelength range. For this, the band gap of the photonic crystal needs to 
be shifted to the desired wavelength range. The variation of bandgaps with the lattice constants of 
square AlAs lattice is shown in Fig. 10. By changing the lattice constant, the frequency band of 
operation can be altered. Hence, photonic crystals possess the ability to be tuned to the required 
operational frequency. For the AlAs square lattice with the optimal radius of AlAs rods 0.1875a, the 
bandgap obtained with lattice constant of 1μm is 0.345 1 0.457λ≤ ≤ and the mid gap lies at 

10.401λ− . If the crystal needs to be tuned to work at the most commonly used telecommunication 
wavelength 1.55μm, it should be made to operate in the middle of the gap. For this, 

a a a 0.401 a 0.6015μm
2 1.55μmc
ω
π λ

= = = ⇒ =
       (13) 

The corresponding bandgap for the above lattice constant lies in the range  
and the mid gap is at 10.68325λ− . The wavelength range corresponding to the band gap is 

 which includes the telecommunication wavelength of 1.55μm.  Therefore, 
AlAs photonic crystals can be fine-tuned to the range of frequencies need to be operated.  

0.5943 1/ 0.7722λ≤ ≤

1.2950μm 1.6827μm−
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Figure 10. Variation of band gap with the lattice constant for AlAs square lattice with refractive 
index 2.892. 

Conclusions  
For the proposed structure, when the input signal frequency is equal to the resonant frequency 

of the microcavity, the output through the waveguide becomes negligibly small. In the nonlinear 
case due to Kerr’s nonlinearity the resonant frequency of the cavity red shifts, as a result the signal 
transmits through the waveguide producing a considerable output. With the increase of microcavity 
distance from the waveguide the resonant frequency of the microcavity decreases. Square lattice 
structure is more preferable over the hexagonal lattice for the implementation of the switch and the 
limiter structures with the microcavity situated 2a away from the centre of the waveguide. The best 
nonlinear situation for the proposed AlAs square lattice PC structure to be active as a switch will be 
corresponding to the refractive index change 0.3 to 0.5 with cylindrical rod radius of 0.1875a. The 
extinction ratio of the limiter was obtained as 2.09. The proposed switch can be fine-tuned to work 
under the intended frequency by altering the lattice constant of the structure. The lattice constant for 
the proposed structure to work at the telecommunication wavelength of 1.55μm is 0.6015 μm. 
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