Kai-Kit Wong

Kai-Kit Wong
University College London | UCL · Department of Electronic and Electrical Engineering

BEng, MPhil, PhD

About

567
Publications
76,191
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
16,575
Citations
Citations since 2016
300 Research Items
11837 Citations
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000
201620172018201920202021202205001,0001,5002,000

Publications

Publications (567)
Article
Full-text available
Fluid antenna multiple access (FAMA) is a new way of accommodating a large number of users on a single channel for massive connectivity, with slow FAMA (s-FAMA) being the practical version for achieving this. The impressive performance is understood to be achievable if the users have independent Rayleigh fading envelopes. With mobile networks vampi...
Article
Driven by the demand for massive and accurate sensing data to achieve wireless network intelligence under a limited available spectrum, the coexistence between radar and communication systems has attracted public attention. In this paper, we investigate a novel dual-functional full-duplex relay aided radar-communication system where the phased-arra...
Preprint
Full-text available
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes, requiring a large amount of communication cost. To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication. Based on the proposed system...
Article
The power consumption and hardware cost are two of the main challenges for realizing beyond fifth-generation (B5G) and sixth-generation (6G) wireless communications. Recently, the emerging reconfigurable intelligent surface (RIS) have been recognized as a promising tool for enhancing the propagation environment and improving the spectral efficiency...
Article
With the continuous trend of data explosion, delivering packets from data servers to end users causes increased stress on both the fronthaul and backhaul traffic of mobile networks. To mitigate this problem, caching popular content closer to the end-users has emerged as an effective method for reducing network congestion and improving user experien...
Article
This paper investigates a cooperative non-orthogonal multiple access (C-NOMA) system, where the NOMA and buffer-aided cooperative transmission modes between the users are integrated. Two novel mode selection schemes are proposed, which adaptively select the NOMA and cooperative modes according to different buffer states and communication environmen...
Article
The unmanned aerial vehicle (UAV) technique provides a potential solution to scalable wireless edge networks. This paper uses two UAVs, with accelerated motions and fixed altitudes, to realize a wireless edge network, where one UAV forwards downlink signals to user terminals (UTs) distributed over an area while the other one collects uplink data. T...
Preprint
Full-text available
In this paper, the problem of maximizing the sum of data rates of all users in an intelligent reflecting surface (IRS)-assisted millimeter wave multicast multiple-input multiple-output communication system is studied. In the considered model, one IRS is deployed to assist the communication from a multiantenna base station (BS) to the multi-antenna...
Preprint
Full-text available
The full-duplex (FD) communication can achieve higher spectrum efficiency than conventional half-duplex (HD) communication; however, self-interference (SI) is the key hurdle. This paper is the first work to propose the intelligent Omni surface (IOS)-assisted FD multi-input single-output (MISO) FD communication systems to mitigate SI, which solves t...
Article
Full-text available
In this paper, the performance of simultaneous wireless information and power transfer (SWIPT) in downlink (DL) Internet-of-things (IoT) networks relying on cell-free massive multiple-input multiple-output (CF-mMIMO) technique is investigated. In such a network, the access points (APs) beam the radio-frequency (RF) energy toward IoT sensors during...
Article
Full-text available
This paper utilizes a reconfigurable intelligent surface (RIS) to enhance the anti-jamming performance of wireless communications, due to its powerful capability of constructing smart and reconfigurable radio environment. In order to establish the practical interactions between the base station (BS) and the jammer, a Bayesian Stackelberg game is fo...
Conference Paper
Full-text available
Fluid antenna has emerged as a new antenna technology that enables software-controllable position reconfigurability for great diversity and multiplexing benefits. The performance of fluid antenna systems has recently been studied for single and multiuser environments adopting a generalized spatial correlation model that accounts for the channel cor...
Article
Owing to the increasing demand of higher spectrum efficiency and large-scale connectivity, non-orthogonal multiple access (NOMA) has become a highly competitive candidate for the upcoming sixth-generation (6G) systems. Nevertheless, the instable wireless propagation environment and potential wireless security risk become bottlenecks in applications...
Article
Full-text available
In this paper, we consider the problem of sensing the environment within a wireless cellular framework. Specifically, multiple user equipments (UEs) send sounding signals to one or multiple base stations (BSs) and then a centralized processor retrieves the environmental information from all the channel information obtained at the BS(s). Taking into...
Article
Plane spiral orbital angular momentum (PSOAM) mode-groups (MGs) and multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) serve as two emerging techniques for achieving high spectral efficiency (SE) in the next-generation networks. In this paper, a PSOAM MGs based multi-user MIMO-NOMA system is studied, where the base station tr...
Preprint
This paper investigates the use of the reconfigurable dual-functional surface to guarantee the full-space secure transmission in non-orthogonal multiple access (NOMA) networks. In the presence of eavesdroppers, the downlink communication from the base station to the legitimate users is safeguarded by the simultaneously transmitting and reflecting r...
Conference Paper
Full-text available
This paper investigates the secure and efficient e-health data transmission problem in a simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) assisted Internet of Medical Things (IoMT) network. The STAR-RIS is employed to safeguard the patients' telemedicine against eavesdroppers in the whole space. The joint a...
Conference Paper
This paper investigates a reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicles (UAVs) system with non-orthogonal-multiple access (NOMA), where the transmit signals from multiple UAVs to ground users are strengthened through a RIS. An innovative framework is designed to minimize the total power consumption of the system, by jointl...
Article
Full-text available
This paper investigates the use of the reconfigurable dual-functional surface to guarantee the full-space secure transmission in non-orthogonal multiple access (NOMA) networks. In the presence of eavesdroppers, the downlink communication from the base station to the legitimate users is safeguarded by the simultaneously transmitting and reflecting r...
Article
Full-text available
Wireless communications are increasingly vulnerable to simultaneous jamming and eavesdropping attacks due to the inherent broadcast nature of wireless channels. With this focus, due to the potential of reconfigurable intelligent surface (RIS) in substantially saving power consumption and boosting information security, this paper is the first work t...
Preprint
Reconfigurability is a desired characteristic of future communication networks. From a transceiver's standpoint, this can be materialized through the implementation of fluid antennas (FAs). An FA consists of a dielectric holder, in which a radiating liquid moves between pre-defined locations (called ports) that serve as the transceiver's antennas....
Article
Full-text available
Fluid antenna system promises to obtain enormous diversity in the small space of a mobile device by switching the position of the radiating element to the most desirable position from a large number of prescribed locations of the given space. Previous researches have revealed the promising performance of fluid antenna systems if the position with t...
Article
Full-text available
The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potenti...
Article
In this paper, the problem of the deployment and resource management for visible light communication (VLC)-enabled, reconfigurable intelligent surfaces (RISs)-assisted unmanned aerial vehicle (UAV) networks is investigated. In the considered model, UAVs provide terrestrial users with wireless services and illumination simultaneously. Moreover, RISs...
Article
Full-text available
The Internet-of-Things (IoT) is an emerging technology that connects and integrates a massive number of smart physical devices with virtual objects operating in diverse platforms through the internet. Due to massive size and physical spread of many applications such as smart healthcare, IoT is increasingly implemented in distributed setting. This d...
Article
Full-text available
While 5G is tasked to transform our lives for the better over the next 10 years, next-generation mobile communications, a.k.a. 6G, will undoubtedly demand even higher energy and spectral efficiencies capable of providing myriads of new services and experience to users everywhere they go. Although our technologies do evolve from one generation to th...
Article
Full-text available
An intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel wherein the angular direction of the eavesdropper (ED) is aligned with a legitimate user. A two-phase communication system under active attacks and passive eavesdropping is considered in this scenario. The base station avoids dire...
Article
This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an oute...
Preprint
Full-text available
This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an oute...
Article
The integration of device-to-device (D2D) communications with cooperative non-orthogonal multiple access (NOMA) can achieve superior spectral efficiency. However, the mutual interference caused by D2D communications may prevent NOMA from diverging its high spectral efficiency advantage. Meanwhile, the low adaptability of the fixed transmission stra...
Preprint
Full-text available
Fluid antenna system promises to obtain enormous diversity in the small space of a mobile device by switching the position of the radiating element to the most desirable position from a large number of prescribed locations of the given space. Previous researches have revealed the promising performance of fluid antenna systems if the position with t...
Article
The industrial Internet of Things (IIoT) has been viewed as a typical application for the fifth generation (5G) mobile networks. This paper investigates the energy efficiency (EE) optimization problem for the device-to-device (D2D) communications underlaying unmanned aerial vehicles (UAVs)-assisted IIoT networks with simultaneous wireless informati...
Article
In this paper, we investigate the security enhancement by combining intelligent reflecting surface (IRS) and energy harvesting (EH) jammer for the uplink transmission. Specifically, we propose an IRS-aided secure scheme for the uplink transmission via an EH jammer, to fight against the malicious eavesdropper. The proposed scheme can be divided into...
Article
Massive connectivity over wireless channels relies on aggressive spectrum sharing techniques. Conventionally, this may be achieved by sophisticated signal processing and optimization of applying multiple antennas and/or complex multiuser decoding at each user terminal (UT). Different from previous methods, this letter proposes a radical approach fo...
Article
Reconfigurable intelligent surface (RIS) has been developed as a promising approach to enhance the performance of fifth-generation (5G) systems through intelligently reconfiguring the reflection elements. However, RIS-assisted beamforming design highly depends on the channel state information (CSI) and RIS’s location, which could have a significant...
Article
This paper investigates non-orthogonal multiple access (NOMA)-based cloud radio access networks (C-RANs), where edge caching is adopted to cut down the crowdedness of the fronthaul links. We aim to maximize the energy efficency (EE) by jointly optimizing the power allocation, analog and digital precoding, which turns out to be an intractable non-co...
Article
Despite the wide utilization of unmanned aerial vehicles (UAVs), UAV communications are susceptible to eavesdropping due to air-ground line-of-sight channels. Intelligent reflecting surface (IRS) is capable of reconfiguring the propagation environment, and thus is an attractive solution for integrating with UAV to facilitate the security in wireles...
Article
Fluid antenna system represents an emerging technology that enables an antenna to switch its physical location in a predefined space. This paper explores the potential of using a single fluid antenna at each mobile user for multiple access, which we refer to it as fluid antenna multiple access (FAMA). FAMA exploits spatial moments of deep fade suff...
Article
Full-text available
The combination of unmanned aerial vehicles (UAVs) and millimeter wave (mmWave) multiple-input multiple-out (MIMO) system is regarded as a key enabling technology for beyond 5G networks, as it provides high data rate aerial links. However, establishing UAV-enabled mmWave MIMO communication is quite challenging due to the high hardware cost in terms...
Article
Full-text available
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immedi...
Article
Full-text available
Standard machine-learning approaches involve the centralization of training data in a data center, where centralized machine-learning algorithms can be applied for data analysis and inference. However, due to privacy restrictions and limited communication resources in wireless networks, it is often undesirable or impractical for the devices to tran...
Article
Full-text available
Orbital angular momentum (OAM) has gained a lot of attention due to its potential in enhancing the spectral efficiency for wireless communications. Using different OAM modes, multiple independent data streams are simultaneously transmitted by using spatial distribution of helical phase, which enables OAM as a new form of multiple access technique f...
Article
Full-text available
Device-to-device (D2D) communication is an emerging paradigm that can improve system capacity and spectral efficiency by using cooperative communication coexisting with cellular networks. In spite of these advantages, D2D communication suffers from unfair resource usage, security risks posed by eavesdroppers, and limited energy storage. To deal wit...
Article
Full-text available
The emerging intelligent reflecting surface (IRS) can significantly improve the system capacity, and it has been regarded as a promising technology for the beyond fifth-generation (B5G) communications. For IRS-assisted multiple input multiple output (MIMO) systems, accurate channel estimation is a critical challenge. This severely restricts practic...
Article
This paper investigates the robust beamforming design in a secrecy multiple-input single-output (MISO) network aided by the intelligent reflecting surface (IRS) with simultaneous wireless information and power transfer (SWIPT). Specifically, by considering that the energy receivers (ERs) are potential eavesdroppers (Eves) and imperfect channel stat...
Chapter
In this paper, a plane spiral orbital angular momentum (PS-OAM) mode-groups (MGs) based multi-user multiple-input-multiple-out-put (MIMO) non-orthogonal multiple access (NOMA) system is studied, where a base station (BS) transmits date to multiple users by utilizing the generated PSOAM beams. For such scenario, the interference between users in dif...
Chapter
The combination of orbital angular momentum (OAM) and multi-input multi-output (MIMO) is identified as an effective solution to improve energy efficiency (EE) in the next-generation wireless communication. According to the orthogonality of OAM, we adopt uniform circular array (UCA) to establish the transmitter and receiver of the OAM-MIMO system in...
Article
Thanks to their flexibility and mobility, unmanned aerial vehicles (UAVs) have been widely applied in wireless networks. However, UAV communications may suffer from blockage and eavesdropping in practical scenarios due to the complex environment. Taking the recent advances in intelligent reflecting surface (IRS) to reconfigure the propagation envir...
Conference Paper
Unmanned aerial vehicle (UAV) communications are susceptible to eavesdropping, and intelligent reflecting surface (IRS) is capable of reconfiguring the propagation environment, thereby facilitating the security for UAV networks. In this paper, we aim to maximize the average secrecy rate for an IRS-assisted UAV network by jointly optimizing the UAV...
Preprint
Full-text available
This paper studies the allocation of shared resources between vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links in vehicle-to-everything (V2X) communications. In existing algorithms, dynamic vehicular environments and quantization of continuous power become the bottlenecks for providing an effective and timely resource allocation p...
Conference Paper
The combination of unmanned aerial vehicles (UAVs) and millimeter wave (mmWave) multiple-input multiple-out (MIMO) systems is considered as a key enabling technology for 5G networks, as it provides high data rate aerial links. However, establishing UAV-enabled mmWave MIMO communication is challenging duo to the high hardware cost in terms of radio...
Article
Full-text available
As capacity-achieving codes under successive cancellation (SC) decoding, nested polar codes have been adopted in 5G enhanced mobile broadband. To optimize the performance of the code construction under practical decoding, e.g. SC list (SCL) decoding, artificial intelligence based methods have been explored in the literature. However, the structure...
Preprint
Full-text available
This paper studies the fast adaptive beamforming for the multiuser multiple-input single-output downlink. Existing deep learning-based approaches assume that training and testing channels follow the same distribution which causes task mismatch, when the testing environment changes. Although meta learning can deal with the task mismatch, it relies o...
Article
The proof-of-work (PoW) mining process requires a large amount of intensive computing, which leads to some plights such as heavy equipment and fixed access nodes in traditional blockchain networks. A novel mobile blockchain network with the help of a mobile edge computing (MEC) server is presented, where all mobile users participate in the PoW mini...
Article
In this letter, we design a resource allocation algorithm for communications in millimeter wave (mmWave) multicast systems adopting multiple unmanned aerial vehicle (UAV)-borne intelligent reflecting surfaces (IRSs). Considering the effect of blockages of building, we jointly optimize the placement of UAVs and the beamforming at the ground base sta...
Article
Full-text available
The intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) communication system has emerged as a promising technology for coverage extension and capacity enhancement. Prior works on IRS have mostly assumed perfect channel state information (CSI), which facilitates in deriving the upper-bound performance but is difficult to realize i...
Preprint
With the continuous trend of data explosion, delivering packets from data servers to end users causes increased stress on both the fronthaul and backhaul traffic of mobile networks. To mitigate this problem, caching popular content closer to the end-users has emerged as an effective method for reducing network congestion and improving user experien...
Article
Full-text available
This paper proposes a multi-agent deep reinforcement learning-based buffer-aided relay selection scheme for an intelligent reflecting surface (IRS)-assisted secure cooperative network in the presence of an eavesdropper. We consider a practical phase model where both phase shift and reflection amplitude are discrete variables to vary the reflection...
Article
This paper studies the allocation of shared resources between vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links in vehicle-to-everything (V2X) communications. In existing algorithms, dynamic vehicular environments and quanti- zation of continuous power become the bottlenecks for providing an effective and timely resource allocation...
Article
This paper studies the fast adaptive beamforming for the multiuser multiple-input single-output downlink. Existing deep learning-based approaches assume that training and testing channels follow the same distribution which causes task mismatch, when the testing environment changes. Although meta learning can deal with the task mismatch, it relies o...
Article
Full-text available
The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.or...
Article
Beamforming and non-orthogonal multiple access (NOMA) serve as two potential solutions for achieving spectral efficient communication in the fifth generation and beyond wireless networks. In this paper, we jointly apply a hybrid beamforming and NOMA techniques to an unmanned aerial vehicle (UAV)-carried wireless-powered mobile edge computing (MEC)...