Ka Lok Chan

Ka Lok Chan
German Aerospace Center (DLR) | DLR · Department: Atmospheric Processors

PhD

About

95
Publications
25,281
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,480
Citations
Additional affiliations
December 2014 - present
Ludwig-Maximilians-Universität in Munich
Position
  • Researcher
Education
May 2012 - May 2015
City University of Hong Kong
Field of study
  • Environmental Science
September 2009 - September 2011
City University of Hong Kong
Field of study
  • Environmental Science
September 2006 - September 2009
City University of Hong Kong
Field of study
  • Physics

Publications

Publications (95)
Article
Full-text available
The contribution of major aerosol components emitted from local and remote regions to Hong Kong's Aerosol Optical Depth (AOD) in 2007 is quantitatively determined using the chemical transport model GOCART (Global Ozone Chemistry Aerosol Radiation and Transport). Of the major aerosol components, sulphur has the largest influence (68%) on Hong Kong,...
Article
Full-text available
In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about...
Article
Full-text available
We introduce the new Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO), and total column sulfur dioxide (SO2) (daily products 10.15770/EUM_SAF_A...
Article
Full-text available
Water vapor plays an important role in the greenhouse effect, rendering it an atmospheric constituent that requires continuous and global monitoring by different types of remote sensing instruments. The TROPOspheric Monitoring Instrument Sentinel-5 Precursor (TROPOMI/S5P) Total Column Water Vapor (TCWV) is a new product retrieved from the visible b...
Preprint
Full-text available
We introduce the new GOME-2 daily and monthly level 3 product of total column ozone (O3), total and tropospheric column nitrogen dioxide (NO2), total column water vapour, total column bromine oxide (BrO), total column formaldehyde (HCHO) and total column sulphur dioxide (SO2). The GOME-2 level 3 products are aimed to provide easily translatable and...
Article
Full-text available
A novel integrated water vapor (IWV) product from TROPOspheric Monitoring Instrument (TROPOMI) is validated together with a Global Ozone Monitoring Instrument-2 (GOME-2) standard product. As reference, ground-based Global Navigation Satellite Systems (GNSS) IWV data in 235 European stations from May 2018 to May 2019 are used. Under cloud free situa...
Preprint
Full-text available
Water vapor plays a very important role on the greenhouse effect, rendering it an atmospheric constituent that requires continuous and global monitoring by different types of remote sensing instruments. The TROPOMI/S5P Total Column Water Vapor (TCWV) is a new product retrieved from the blue wavelength band (435 –455 nm), using an algorithm that was...
Article
Full-text available
Explosive volcanic eruptions can produce vast amounts of volcanic ash made up mainly of fragments of magmatic glass, country rock and minerals < 2 mm in size. Ash particles forming from magma fragmentation are generated by several processes when brittle response accommodates (local) deformation stress that exceeds the capability of the bulk materia...
Article
Full-text available
We present results from the Munich Nitrogen dioxide (NO2) Imaging Campaign (MuNIC), where NO2 near-surface concentrations (NSCs) and vertical column densities (VCDs) were measured with stationary, mobile, and airborne in situ and remote sensing instruments in Munich, Germany. The most intensive day of the campaign was 7 July 2016, when the NO2 VCD...
Article
In this paper, we present the total column water vapour (TCWV) retrieval for the TROPOspheric Monitoring Instrument (TROPOMI) observations in the visible blue spectral band. The TROPOMI TCWV algorithm is being optimized and validated in the framework of the Sentinel 5 Precursor Product Algorithm Laboratory (S5P-PAL) project from the European Space...
Article
Full-text available
Robust calibration and validation (Cal and Val) should guarantee the accuracy of the retrieved information, make the remote sensing data consistent and traceable, and maintain the sensor performance during the operational phase. The DRAGON program has set up many remote sensing research topics on various application domains. In order to promote the...
Article
Full-text available
Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The DLR nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrum...
Preprint
Full-text available
We present results from the Munich NO2 imaging campaign (MuNIC) where nitrogen dioxide (NO2) near-surface concentrations (NSC) and vertical column densities (VCD) were measured with stationary, mobile and airborne in situ and remote sensing instruments. The most intensive day of the campaign was 7 July 2016, when the NO2 VCD field was mapped with t...
Article
Full-text available
The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017 on board the Sentinel-5 Precursor (S5P) satellite, monitors the composition of the Earth's atmosphere at an unprecedented horizontal resolution as fine as 3.5 × 5.5 km2. This paper assesses the performances of the TROPOMI formaldehyde (HCHO) operational product compared to i...
Presentation
Full-text available
The very important role of water vapor on the greenhouse effect makes it a species that needs to be continuously and globally monitored, as well as thoroughly studied. The TROPOMI/S5P Total Column Water Vapor (TCWV) is a new product retrieved from the blue wavelength band (435 –455nm), using an algorithm that was originally developed for GOME-2. Th...
Article
Full-text available
In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural netwo...
Preprint
Full-text available
Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument...
Article
Full-text available
Crop residue burning is the major biomass burning activity in China, strongly influencing the regional air quality and climate. As the cultivation pattern in China is rather scattered and intricate, it is a challenge to derive an accurate emission inventory for crop residue burning. In this study, we proposed a remote sensing-based method to estima...
Article
Full-text available
The second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) took place in Cabauw (the Netherlands) in September 2016 with the aim of assessing the consistency of multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of tropospheric species (NO2, HCHO, O3, HONO, CHOCHO and O4). This was achieved th...
Article
Full-text available
The Environmental Trace Gases Monitoring Instrument (EMI) is the first Chinese satellite-borne UV–Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale. The EMI instrument onboard the GaoFen-5 satellite was launched on 9 May 2018. In this paper, we present the tropospheric nitrogen dioxide (NO2) vertical c...
Article
Full-text available
We present an improved TROPOspheric Monitoring Instrument (TROPOMI) retrieval of formaldehyde (HCHO) over China. The new retrieval optimizes the slant column density (SCD) retrieval and air mass factor (AMF) calculation for TROPOMI observations of HCHO over China. Retrieval of HCHO differential SCDs (DSCDs) is improved using the basic optical diffe...
Article
Full-text available
In many cities around the world the overall air quality is improving, but at the same time nitrogen dioxide (NO2) trends show stagnating values and in many cases could not be reduced below air quality standards recommended by the World Health Organization (WHO). Many large cities have built monitoring stations to continuously measure different air...
Article
Full-text available
We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide mea...
Article
Full-text available
We present two-dimensional scanning Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of nitrogen dioxide (NO2) and formaldehyde (HCHO) in Munich. Vertical columns and vertical distribution profiles of aerosol extinction coefficient, NO2 and HCHO are retrieved from the 2D MAX-DOAS observations. The measured surface aer...
Article
Full-text available
We present a new total column water vapor (TCWV) retrieval algorithm in the visible blue spectral band for the Global Ozone Monitoring Experience 2 (GOME-2) instruments on board the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Metop satellites. The blue band algorithm allows the retrieval of water vapor from se...
Article
Full-text available
This joint feature issue of Optics Express and Applied Optics highlights contributions from authors who presented their latest research at the OSA Optical Sensors and Sensing Congress, held in San Jose, California, USA from 25–27 June 2019. The joint feature issue comprises 6 contributed papers, which expand upon their respective conference proceed...
Article
Full-text available
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants for a period of 17 d during the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) that took place at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). We report on the outcome of the formal semi-blind intercomp...
Preprint
Full-text available
Abstract. We present the improved retrieval of TROPOspheric Monitoring Instrument (TROPOMI) tropospheric formaldehyde (HCHO) over China. The new retrieval optimizes the slant column density (SCD) retrieval and air mass factor (AMF) calculation for TROPOMI observations of HCHO over China. HCHO SCDs are retrieved using the basic optical differential...
Article
Full-text available
We present a new aerosol extinction profile retrieval algorithm for multi-axis differential optical absorption spectrometer (MAX-DOAS) measurements at high-altitude sites. The algorithm is based on the lookup table method. It is applied to retrieve aerosol extinction profiles from the long-term MAX-DOAS measurements (February 2012 to February 2016)...
Preprint
Full-text available
Abstract. We present two dimensionally scanning Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of nitrogen dioxide (NO<sub>2</sub>) and formaldehyde (HCHO) in Munich. Vertical columns and vertical distribution profiles of aerosol extinction coefficient, NO<sub>2</sub> and HCHO are retrieved from the 2D MAX-DOAS obse...
Article
Full-text available
The Environmental Trace Gases Monitoring Instrument (EMI) is the first Chinese satellite-borne UV--Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale. The EMI instrument onboard the GaoFen-5 satellite was launched on 9 May 2018. In this paper, we present the tropospheric nitrogen dioxide (NO2) vertical...
Preprint
Full-text available
Abstract. We present a new total column water vapor (TCWV) retrieval algorithm in the visible blue spectral band for the Global Ozone Monitoring Experience 2 (GOME-2) instruments on board the EUMETSAT MetOp satellites. The blue band algorithm allows retrieval of water vapor from sensors which do not cover longer wavelengths, such as Ozone Monitorin...
Article
Full-text available
We present different methods for in-field elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments that were applied and inter-compared during the second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2). One necessary prerequisite of consistent MAX-DOAS retrievals is...
Preprint
Full-text available
Abstract. We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different MAX-DOAS instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2), in September 2016,...
Article
High resolution satellite maps are useful for the identification of pollution hotspots. In this work, nitrogen dioxide (NO2) and sulfur dioxide (SO2) observations from the Ozone Monitoring Instrument (OMI) have been averaged and gridded for Shanghai and surrounding areas with a spatial resolution of 0.01x 0.01 degrees. The pollution maps have been...
Preprint
Full-text available
Abstract. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a well-established ground-based measurement technique for the detection of aerosols and trace gases particularly in the boundary layer and the lower troposphere: ultraviolet- and visible radiation spectra of skylight are analysed to obtain information on different atmos...
Article
Full-text available
A multi-layer solar radiative transfer (RT) scheme is proposed to deal with the vertical variation of inherent microphysical properties of clouds in this study. The exponential expressions are used to represent the vertical variation of optical properties caused by inhomogeneous microphysical properties. A perturbation method, coupled with the Eddi...
Article
Full-text available
In this paper, we present long-term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground-based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column...
Article
Full-text available
We present a new aerosol profile retrieval algorithm for Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements at high altitude sites. The study is based on the long-term measurement (February 2012 to February 2016) at the Environmental Research Station Schneefernerhaus (UFS), Germany, which is located near the summit of Z...
Article
Full-text available
A detailed analysis of springtime ozone outbreaks in South/Southwest China is presented in this paper, providing an insight into a regional photochemical and climate problem. A major ozone episode in 2013 was the first ever in April and the worst in Hong Kong up to 2018, measuring a peak ozone concentration of 293 μg m⁻³. This multi-day, ozone poll...
Preprint
Full-text available
We present different methods for in-field elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments that were applied and inter-compared during the second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2). One necessary prerequisite of consistent MAX-DOAS retrievals is...
Article
Full-text available
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated on 2 mainly cloud-free days during the MAD-CAT campaign in Mainz, Germany, in summer 2013. In recent years several studies indicated that measurements and radiative transfer simulations of the atmospheric O...
Article
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated on 2 mainly cloud-free days during the MAD-CAT campaign in Mainz, Germany, in summer 2013. In recent years several studies indicated that measurements and radiative transfer simulations of the atmospheric O...
Article
It is well known that including the delta-scaling in the radiative transfer calculation improves the accuracy of radiative transfer in a cloud layer. An improved scheme is proposed to handle the delta-scaling in the radiative transfer calculation. The improved scheme is able to calculate irradiance of a vertical inhomogeneous cloud layer. The inher...
Article
It is well known that including the delta-scaling in the radiative transfer calculation improves the accuracy of radiative transfer in a cloud layer. An improved scheme is proposed to handle the delta-scaling in the radiative transfer calculation. The improved scheme is able to calculate irradiance of a vertical inhomogeneous cloud layer. The inher...
Article
Full-text available
In this paper, we present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column...
Conference Paper
We present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCD...
Conference Paper
This presentation focuses on tropospheric NO2 and ozone products from TROPOMI/Sentinel-5P as developed at the Remote Sensing Technology institute of the German Aerospace Center (DLR). We present an overview of the retrieval algorithms and show examples of air quality applications. The retrieval of tropospheric NO2 columns from TROPOMI uses an Diffe...
Article
Full-text available
In this paper we present an investigation of the spatial and temporal variability of street-level concentrations of NO2 in Hong Kong as an example of a densely populated megacity with heavy traffic. For the study we use a combination of open-path remote sensing and in situ measurement techniques that allows us to separate temporal changes and spati...
Article
Full-text available
High resolution Fourier transform infrared (FTIR) measurement of direct sunlight does not only provide information of trace gas total columns, but also vertical distribution. Measured O3, CO, CH4, and N2O can be separated into multiple partial columns using the optimal estimation method (OEM). The retrieval of trace gas profiles is sensitive to the...
Conference Paper
The Sentinel-5 Precursor (S5P) mission, launched in October 2017, started the operational atmospheric composition measurements from space as part of the European Copernicus programme. The payload of the S5P mission is the TROPOspheric Monitoring Instrument (TROPOMI) that provides key information on air quality, climate and the ozone layer with high...
Article
Full-text available
In this paper, we present a comparison of model simulations of aerosol profiles with measurements of the ceilometer network operated by the German Weather Service (DWD) over 1 year from September 2015 to August 2016. The aerosol forecasts are produced by the Copernicus Atmosphere Monitoring Service (CAMS) using the aerosol module developed within t...
Article
Full-text available
In this paper we present an investigation of the spatial and temporal variability of street level concentrations of NO2 in Hong Kong as an example for a densely populated megacity with heavy traffic. For the study we use a combination of open path remote sensing and in-situ measurement techniques that allows us to separate temporal changes and spat...
Article
The Environmental trace gas Monitoring Instrument (EMI) onboard the Chinese high-resolution remote sensing satellite GaoFen-5 is an ultraviolet-visible imaging spectrometer, aiming to quantify the global distribution of tropospheric and stratospheric trace gases and planned to be launched in spring 2018. The preflight calibration phase is essential...