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NUMERICAL METHODS IN HEAT TRANSFER RESEARCH 

] 1. INTRODUCTION 

The main objective of the paper is to convey methodology for the numerical 

1 
] solution ofheat transfer and related fluid flow problems. The paper topics include finite­

difference and fmite-element methods for parabolic and elliptic systems; a comparative 
appraisal of finite-difference versus fmite-element methods; Monte Carlo methods; finite 

J 
analytic methods and average magnitude analysis method for supercomputers. 

A detailed comparison of the finite-difference and finite-element methods in 
their classical forms is presented. Particular emphasis is on the evaluation and 
propagation oferrors in both methods. 

The relatively recent finite analytical method is used for one-, two-, and three­
dimensional problems, including conduction heat transfer, natural and forced convection, ] 
and subsonic and supersonic flow problems. Mont Carlo method is used for solving 
conduction and convection problems as well as radiative transfer problems. Absorbing 

J and emitting media are included. Methods for integral and integro-differential systems 
with particular attention given to the influence of radiative transfer are presented due to 
illustrative applications. Radiation, conduction-radiation, and conduction-convection­

] radiation problems are considered, including emitting, absorbing, and scattering media. 

J 
2. FINITE-DIFFRENCE METHODS FOR PARTIAL DIFFERENTIAL 

EQUATIONS 

J 

The basic techniques needed in the formulation of finite-difference representation 
are introduced. In the finite-difference approach, the problem domain is "discretized" so ] that the dependent variables are considered to exist only at discrete points. Derivatives are 
approximated by differen~es resulting, in an algebraic representation of the partial 

. differential equation(pDE). The nature of the resulting system of algebraic equations 
depends on the character of the problem posed by the original PDE (or system ofPDEs). 
Partial differential equations in two independent variables can be classified as elliptic or 
parabolic. Each class has distinguishing features. The Laplace and poission equations, ] which govern many important physical processes, are examples of elliptic PDEs. More 
specificanlly, Laplace's equation governs the steady-state temperature distribution ina 
homogeneous solid. The unsteady heat conduction( or "diffusion") equation is an] 
example of a parabolic PDE. Elliptic PDEs are said to govern "equilibrium" problems, 
and parabolic equations govern "marching" problems. 

J Equilibrium problems occur on a closed domain, and the solution must meet 

1 
prescribed conditions on all the boundaries. A single solution is sought that satisfies 
both the PDE and the boundary conditions. In contrast, marching problems arise on open 
domains - at least, the solution cannot be forced to meet specific conditions at more 
than one value of the time like variable. Initial conditions must be specified for 
marching problems, but the other end of the time interval is open. The solution is 
"marched" in time from the initial conditions. For problems occuring in a region 
(physical space) of finite extent boundary conditions must be specified. For some 



-----

problems for which the extent of the region and boundary conditions must be specified. 
For some problems for which the extent of the region and boundary conditions are fixed, 
a time-asymptotic(steady) solution is approached at large values of the timelike variable. 

Fundamental to finite-difference( and finite element) techniques is the concept of 
discretization: A physical domain is divided into a sequence of sub domains known as a 
nodal mesh, and approximations to a continuous solutions are defined at the nodal 
points. 

Development of the approximations is generally done using either interpolating 
polynomials or Tayler series expansions. The Tayler series expansion is the most 
commonly used method since it provides error estimates. A discussion on the use of both 
interpolating polynomials and Tayler series expansion can be found in Pinder and 
Gray[I]. 

Suppose an approximation for the second derivative of a scalar quantity is 
developed using only the three nodal points i-I,i, and i+ 1. The use ofTayler series 
expansions allows the higher-order terms to term to be examined in order to ascertain the 

J 
] error of the approximation, which is not evident when using interpolating polynomials. 

Table. 1 lists the most commonly used difference expressions and their leading 
truncation terms, where the nth derivative of cp(x) and k,l are integers depending on nand 
the degree of accuracy of the approximation. 

For physical problems, the term" boundary" literally means on the physical 
] boundary of the region in a space which the solution is sought. The three most common 

boundary conditions are: 

] 

] TABLE 1 ':. Finite-Difference Discretizations 
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(a) Value of dependent variable specified on the boundary. This boundary condition is 
also known as a Dirichlet condition or a boundary condition of the first kind. 
(b) Normal derivative specified on the boundary. This condition is known as a Neumann 
condition or a boundary condition of the second kind. 
© A linear combination ofconditions (a) and (b), convective boundary conditions in heat 
transfer are of this type. This condition is known as a Robbins condition, a mixed 
condition, or a boundary condition of the third kind. 

2-1 Difference Representation By Control Volume Analysis 
One of the simplest PDEs having important physical applications is the parabolic 

one-dimensional heat diffusion equation 

aT o2T 
-=0.- (1) 
at Ox2 

In identifying the conservation principle represented by Eq. (1), it is helpful to represent ] the thermal diffusivity a as a = k/pC, where k is the thermal conductivity, p the 

density and C the specific heat. These properties will be assumed to be constant in this 
example. The heat diffusion equation can be rearranged into the form ] 

aT 
~~=~ m 

J where q is the heat flux vector, which is nearly - k(aT/ax) for a one-dimensi­

onal problem. Choosing time level n for evaluation of the heat flow into the control 
volume gives

] n+l n 
~ Tj - Tj AxA =kA~n _ kA~n (3)

At Ox· 1 ax' 1

J J+- J­
2 2 

An internal control volume (left hand-side ofEq. (3)) will be considered using a forward 

T.n+l -T!1 ] difference in time pC J J AxA where A is a unit area perpendicular to the x 
At 

coordinate. While right hand-side ofEq. (3) is included using a central difference. 

J 
J 

2-2 Simple Explicit Method 
The simple explicit finite-difference representation of the heat equation (1) has 

been given as [2] 

J (4) 

~J 2-3 Simple Implicit Method 
The simple implicit scheme for the heat diffusion equation can be developed from 

..~ the Taylor series or control-volume methods by simply evaluating the heat diffusion term 
at the n+ 1 time level: 

3 

, 1 



(5) 


2-4 A Combined Implicit-Explicit Representation 
The simple explicit. simple implicit and Crank-Nicolson methods are special 

cases of a general algorithm [3] given by 

] 

] (6) 

where e is a weighting factor (0::; e::; 1). The simple explicit method corresponds ] to e=O. the Crank-Nicolson methods corresponds e=1/2 and the simple implicit 
method corresponds to e= 1 . 

] 

] 
2-5 Crank-Nicolson Method 

When the fully explicit and implicit representations of the heat diffusion term are 
averaged, the scheme suggested by Crank-Nicolson [4] is 

J (7) 

2-6 Dufort-Frankel Method ] It was suggested to avoid unstable algorithm of simple explicit scheme 

(Richardson method) by replacing T!l in the diffusion term with the time-average 

] J 

expression (T!1+1 + T!1-1)/2. The resulting is three-time-Ievel scheme [5]
J J 

J 
J 

(8) 

2-7 Barakat-Clark Method

J This method is known as alternating direction explicit (ADE) method [6]. The 

J 
two-step scheme involves the simultaneous matching of two approximate solutions 

p~+l and q~+l. The two solutions are advanced separately. and at each time level, the 
J J 

solution to the difference equation is considered to be the average. For the heat diffusion 
equation, the algorithm is given by 

4 



(9a) 

q~+l_q~ q~ _q~ _q~+l +q~+l
J J =<X J-l J J J+l (9b) 

At (Ax)2 

(9c) 

2-8 Alternative Direction Implicit Method 
ADI procedures discussed by [7, 8, and 9] avoids disadvantages of the previous 

methods and yet still mange to use a system of equations with a tridiagonal coefficient 

1 matrix for which the algorithm affords a straight forward solution. Essentially, the 

] 
principle is to employ two difference equations which are used in turn over successive 
time-steps each of duration Ilt/2. The usefulness of Taylor series expansions in 

] 
developing and evaluating finite-difference representations for partial derivatives has 
been demonstrated. Several other techniques can also be used to develop difference 
expressions. Among these are polynomial fitting, the integral method, and control volume 
(alternatively called finite volume) analysis. 

] 3-CONSISTENCY, STABILITY, AND CONVERGENCE 
The first requirement that any scheme should meet is that of consistency. That is, 

it should be clear that limmesh-+O (PDE - FDE) = O. This deals with the difference 
] 	 representation. It must also be possible to solve the difference equations in a manner that 

prevents the grows of errors. The numerical solution is invariably" rounded" to a finite 
number of digits in the 8rlthmetic operations. This creates errors known as roundoff 

] 

] errors. Some solution algorithms contain a large number of dependent arithmetic 
operations. Even though a single roundoff error may be very small, certain algorithms 
permit the errors to grow to the point where they dominate the numerical solution. This 

J 
must be avioded. 

For marching problems, the errors will not grow if the solution scheme is stable. 
A stable scheme is thus defined as one for which errors from any source are not 
permitted to grow in the sequence ofnumerical procedures as the calculation proceeds 
from one marching step to the next. Thus, it is seen that an acceptable finite-difference 

J representation for a marching problem must meet the conditions of consistency and 
stability. A scheme meeting these requirements for a marching problem is generally 
found to be convergent. Convergence here means that the solution to the finite-difference 

J equation approaches the true solution to the PDE having the same initial and boundary 
conditions as the mesh is refined. Perhaps a more descriptive terminology for this type 
of convergence is" truncated convergence," since the word convergence is used in other 

J contexts, as in "iteration convergence ." Lax was able to prove that given a properly 
posed initial value problem (governed by a linear PDE) and a finite-difference 

5 
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J 
] 
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] 

] 

J 

J 

J 
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approximation to it that satisfies the consistency condition, stability is the necessary and 
sufficient condition for convergence. This important result is as Lax's equivalence 
theorem. Although the theorem has been proved only for linear PDEs, computational 
work generally proceeds as though it where applicable also to nonlinear PDEs. 

Although it is important to use a convergent algorithm in solving a PDE 
numerically, it is never possible to refine the mesh size to zero. Thus, calculations must 
be made on a finite grid, and there are errors in the numerical solution. These errors in the 
solution are referred to as discretization errors. More specifically, discretization error is 
the error in the solution to PDE caused by replacing the continuous problem by a discrete 
one and is defined as the difference between the exact solution of the PDE (roundoff­
free) and the exact solution of the finite-difference equations(roundoff-free). Thus, the 
difference between the exact solution of the PDE and the computer solution is equal to 
the sum of the discretization error and the roundoff error associated with the finite­
difference calculations. It can also be observed that the discretization error is the error in 
the solution caused by the truncation error in the difference representation of the PDE 
plus any error included by treatment of the boundary conditions 

The influence of grid structure was detennined by examining the limiting case 
(enclosure heating and cooling at vertical sides as well as perfectly insulated at horizontal 
sides) [10] with different grid spaces. Figure (1) shows the predicted stream functions for 
three different grid spaces at the mid-plane of the enclosure. The overall errors are 52.2 
%, 18.6 %, and 6.0 % at the mid-plane of the cavity for the three different grid spaces. 
The results clearly indicate that the grid spacing must be sufficiently fine to allow the 
model to represent a physically meaningful situation. The temperature profiles at the mid­
plane of the cavity for the same problem are shown in Figure (2)~ The results for 17 x 17 
grid are not plotted for the sake ofclearity. The overall errors are 4.4 %, 2.9 %, and 0.9 % 
for the three different grid spaces. The 9 x 9 spacing is more satisfactory for predicting 
the temperature than the stream function. The stream function indicates large errors when 
the node sizes are large, whereas the temperature shows relatively small errors even for a 
crude mesh as shown in Figures (1) and (2). This means that the temperature fields are 
relatively weak functions in the flow field and is one of the reasons why good results can 
be obtained for the average Nusselt numbers using relatively coarse grid. 

Although the coordinate transformation decreases the overall numerical error, it 
increases the computational time by approximately 30 %. The boundary layer region is 
calculated more accurately by increasing the deformation parameter E, but the central 
region of the cavity suffers some additional error. For the present problem there exists an 
optimal value of the parameter s (approximately 0.7< s < 0.8) [I 0] 

The choice of the form of coordinate transformation may depend on the nature of 
the particular problems to be solved. Several useful transformations have been discussed 
(Roache, 1972; and Chenoweth and Paolucci, 1981) [11] & [12]. For natural convection 
in a cavity, the relation 

1tE 1tE 
r(l;) = [1 + tan[- (2E -1)] 1tan(-)] 12 (10)

2 2 
has been recommended by KUblbeck et. al. [13]. Figure (3) shows a graph of this equation 
for several values of the deformation parameter E • 
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4- FINITE-ELEMENT METHODS FOR PARTIAL DIFFERENTIAL 
EQUATIONS 

The basic idea in the finite element method is to find the solution of a complicated 
problem by replacing it by a simple one. Since the actual problem is replaced by a simple 
one in finding the solution, this is due to find only an approximate solution rather than the 
exact solution. The. existing mathematical tools will not be sufficient to find the exact 
solution (and sometimes, even an approximate solution) of most of the practical 
problems. Thus in the absence of any other convenient method to find even the 
approximate solution of a given problem, the finite element method is preferred. 
Moreover, in the finite element method, it will often be possible to improve or refine the 
approximate solution by spending more computational effort. In the finite element 
method, the solution region is considered as built up of many small, interconnected 
subregions called finite elements. 

The underlying principle of the FEM is its ability to easily solve problems 
described by complex boundary shapes . the FEM was initially developed to calculate 
stress in irregular shaped objects and analyze structural problems in aircraft. Since its 
inception, theFEM has been found to be equally effective in nonstructural problems, 
particularly those in heat transfer and fluid dynamics. 

Conventional FDMs are based on the assumption that truncated Tayler series 
expansions of the spatial derivatives yields adequate approximations to differential 
equations. Finite-difference algorithms display good accuracy in the limit as ~~ 0 . 
No such assumption is implied in the FEM; finite -element algorithms are based on fmite 
~. This conceptual difference helps to explain the general superiority of the FEM over 
FDM on coarse grids; however, as ~~ 0, the FEM also becomes more accurate 
(which is due to its convergent and consistent approximations). 

Like, any analytical methods, the FEM is based on the series expansion of the 
functions themselves. In a typical series expansion, an infinite number ofglobal basis 
functions (sines, cosines, etc.)span the entire domain. However, in the FEM, only a fmite 
number of basis functions that are local in the nature (nonzero over only a small segment 
of the domain) are employed. 

With the use of the local basis functions, the coefficient matrices that result from 
the approximation procedure of the governing equation became banded and sparse. FDM 
also procedure banded sparse matrices. However, the coefficients in the FEM vary from 
node to node, since nodal locations are arbitrary ;hence the resulting matrices become 
considerably fuller due to greater degree of coupling among nodes. For example, the 
Laplacian operator generates 3-,5-and 7-nodal point coupling for one- two-, and three­
dimensional domains in a second -order FDM. In the FEM, the simplest basis function 
generates a 3-,9-, or 27-point coupling. In the addition, time derivative terms are coupled 
in the FEM, whereas they are not in most FD Ms. 

In the FEM a partial differential equation is reduced to a finite system of ordinary 
differential equations, which is then solved by a matrix solution techniques. Reduction of 
the governing equation is typically performed using either (1) the Rayleigh-Ritz method 
or (2) the method of weighted residuals (MWR). In the Rayleigh-Ritz method, 
variational calculus is used to formulate a variational statements of the problem. In 
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I 
) order to use the variational method, an appropriat integral over the problem domain must 

possess an extremum. In most instances, this extremum is based on energy concepts, that, 
is Lagragian multipliers. For simple problems, such as potential flow or conduction heat 

I transfer, the variational formulation is easily established. However, for most practical 
problems, particularly when advection terms are present, variational principles cannot be 
developed. In the MWR, the governing equation is multiplied by a weighting function 

I Wi, and the producUs integrated over space(hence the term weighted residual) the MWR 

~ 
is a more general approach that permits a functional form of the dependent variables to be 
obtained for any transport equation regardless of its complexity. The method generates 
the same number of equations as unknowns. For N unknowns(numbers of node points), 

IJ 
the domain is subdivided into N intervals of integration. 

There several variations of the MWR. In the Galerkin procedure, the 

] 

1 
approximating function, Ni, for dependent variable is chosen to be the same as the 
weighting Wi. When the weighting function is not equal to the approximating function, 
other weighted residual methods are obtained- for example, least squares, collocation and 
spectral methods. The Galerkin approach is the most popular, and we will employ it in 
this comparison study. A discussion of other methods employed in the MWR can be 
found in Refs. [14], [15] & [16]. The development of spectral and pseudospectral 

] 
methods( a combination ofcollocation and spectral) is discussed through Refs. [17], [18], 
[19]& [20] 

A finite element analysis ofany physical or engineering problem leads to a system 
of matrix equations. After incorporating the boundary conditions in the assembled system 
of equations, the final matrix equations are obtained. If the problem is nonlinear, the 

] resulting matrix equations will also be nonlinear irrespective of the type of problem 
(equilibrium, eigenvalue or propagation problem). If the problem is nonlinear, some sort 
of an iterative procedure has to be used for fmding the solution. For example, the matrix 

] 	 equations that result from the finite element analysis ofa nonlinear eqUilibrium (or steady 
state) problem can be solved by using any of the following schemes [21,22]: 

] 	 1. Newton-Raphson method 

2. Continuation methods 

] 3. Minimization methods 

4. Perturbation methods 

J 
5-FINITE DIFFERENCE VERSUS FINITE ELEMENTS 

J 	 5-1 Introduction 

J 
In the preceding sections of this paper, the applicability and effectiveness of both 

finite-difference and finite-element techniques in solving heat transfer and related 

J 
transport problems have been demonstrated. The choice of which particular technique to 
use ultimately lies with the user. In general, one uses a simple technique to solve a 
simple problem and complex( or more sophisticated) technique to solve a difficult 
problem. There is no one best method for all problems. However, there are methods that 
have a wide degree of applicability for a general class of problems. 

~ 
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There are currently two major approaches used to numerically solve the partial 
differential equations associated with heat transfer problems-the finite difference method 
(FDM) and finite element method (FEM). An extensive amount ofliterature exists that 
delves into the intricate details ofnumerous algorithms associated with both methods. It 
is our intent in this section to illustrate the basic differences and similarities between the 
FDM and the FEM. More in-depth analysis can be found in the cited references. 

The FDM h~ been used for many years in numerous applications. Examples of 
finite-difference applications can even be found in the works ofNewton, Gauss, and 
Laplace. The study of such methods, particularly over the last 40 years, has resulted in a 
fast expansions of knowledge. The FEM, a relatively recent development in comparison, 
is becoming increasingly popular. Interestingly, the FEM is linked to fmite-difference 
theory through its development of approximation schemes. Since it is impossible to] 	 cover all aspects of both finite -difference and finite element theory within a short 
paper, we shall limit our discussion to finite-difference and finite -element techniques 
commonly found in the literature. 

] 
1 A Tayler weak-statement (TWS) algorithm is used in conjunction with the FEM 

to examine errors common to FDM and FEM. A generalized mathematical statement is 
developed that shows the various terms associated with a particular technique that lead to 
error and lor damping ofthe true solution. The TWS algorithm provides a mathematical 
basis for establishing common error analyses in a wide variety of numerical methods. 

] 
5-2 One-Dimensional and Two-Dimensional Elements 

To illustrate the differences in methodology and equation form between the FDM 

J 

] and the FEM, the finite -difference equivalent of the one-dimensional finite-element 
algorithm derived for both linear and quadratic basis functions. The quadrilateral element 
is a four-sided figure that contains four nodes located at the vertices in a linear

] configuration, eight or nine nodes in a quadratic element, and 12 nodes in a cubic 
element. In the its simplest form, the quadrilateral becomes a rectangular element with 
boundaries of the element' parallel to 'a coordinate system. Further extension of the] element, using the local natural coordinate system, results in a generalized quadrilateral of 
which the rectangle is a subset. 

Analysis of the finite-element approximation on a two-dimensional rectangular ] grid is summarized in Table 2, following procedures discussed in Pinder and Gray [1]. 
Grouping elements of coefficient matrices allows the equivalent finite- difference 
approximation to be generated. The coefficient multiplying each derivative is written J as an integration formula; the finite-element technique can be interpreted as a finite 
difference discretization in one spatial direction integrated over the other direction. The 
truncation error associated with the FEM is of higher order for advection term but J equivalent to the FDM for the diffusion term. 

For irregular grids, the error associated with linear basis functions is of the same 
order as the finite-difference truncation error on the same mesh. The use of quadraticJ basis functions leads to improve accuracy. In most fmite-difference procedures the 
accuracy of the solution is the same at all nodes within the solution domain. In a two­
dimensional finite-element solution using eight noded quadratic elements, accuracy is 

9 
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I 
 TABLE '.2. Rectangular Grid - FEM and FDM Comparison~ 
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improved at the corner nodes. The use of nine-nodded elements improves solution 
accuracy slightly more. 

5-3 The Control-Volume Method 
A numerical approach that tends to fit between the conventional FDM and FEM is the 

control-volume method. In some instances, this method is more accurate than the FDM, 
but it does not have the flexibility of the FEM. In this particular scheme, the differential 
equation is integrated over the interval [ x. 1,x. 1], where Xi is the node-location 

1-- 1+­~ 2 2 
(grid center). as in the FEM, the integration reduces the differential equation by one 

J order. 

5-4 Stability Analysis-Computational Dispersion and Diffusion 

J There are two principle types of errors that occur as a result if the discretization 

J 

processes:(1) computational dispersion and (2) computational diffusion. Computational 
dispersion arises from the numerical approximation of a steep gradient, usually 

] associated with a large advection term. Computational diffusion, also known as artificial 
diffusion or damping, occurs as a result of the spatial truncation error of a method. 
Dispersion errors appear as waves, or oscillations, ofnegative and positive values that ] propagate as numerical solution is calculated. For example, most numerical methods 
cannot accurately calculate the advection ofa square step (or shock front). An example 
of computational diffusion is the amount ofdamping inherent in upwind differencing ] techniques. In this instance, upwind methods eliminate dispersion errors but develop 
excessive diffusion errors (even though the solution is "stable" and smooth). Recall that 
in the one-dimensional, numerical instability occurs in the central-difference method but 

] 

is improved in the upwind scheme. Using asymmetric weighting functions, a fonn of 
upwinding can also be applied to the FEM. 

The following equation is commonly called the advection equation. 

OtP+uOtP=o (11)
at Ox 

J 
 where cp is the transport variable, u is the velocity. 

A one -dimensional cosine hill distribution is advected over a specified distance 

as shown in Fig. (4). A constant velocity is imposed on the distribution. The solution 

J domain consists of 33 nodes; the initial distribution is spanned over nodes (Fig.(4». The 
solution is stopped before it reaches the right-hand boundary, i.e., before it is advected 

J out of the domain (0tP = 0.) The exact solution is shown by the dashed line; the Crank-
Ox 

J 
Nicolson centered FDM and both the linear and quadratic FEMs are displayed. The 
Courant number C, varies from 004 to 1.6. The FEM yields excellent agreement for 
C=Oo4 ; the FDM shows a sizable trailing wake(dispersion error =12%), slight damping 
of the peak value, and lagging of solution, At C ~ 0.8, the effect of the increased velocity 
is evident in both the FDM and FEM; however, the FDM result are markedly worse. 
An understanding of the reason for the difference in results requires a closer examination 
of both methods. 

11 



The equivalent difference relation for the advection equation using linear finite 
element is 

~(~i -1 +4~i + ~+1) + u( ~i+ ;~i -1 ) =0 (12)J 
] 

which is the familiar chapeau function for constant mesh interval ~ and constant 
velocity u=U. Performing a Tayler series expansion about x = xi on Eq.12 produces the 

relation 

oq, + u acp - U(~)4 855~ +.... = 0 (13)
at Ox 180 Ox 

The truncation error shows the finite-element approximation to be fourth-order-accurate 
in space. In comparison, the FDM is written as 

~i + u( ~i+;~i -1 ) =0 (14) 

] and yields a truncation error of second order accuracy in space, 

] 
oq, + U acp - U(~)2 a33~ +.... :: 0 (15) 
at Ox 12 Ox 

The higher loss in peak value of the traveling distribution in the ( Crank-Nicolson) FDM 

is partially attributable to its lower order spatial accuracy. 


J Table 3 lists Courant stability limits and phase-velocity ratios for both the FDM and FEM 

using various time differentiation schemes[23] 


J 5.5 Comparison Between FEM and FDM 
The answer to which method should be employed ultimately lies with the user. 

Which method is best depends upon the problem to be solved; weather there are

J singularities or discontinuities; regular or irregular boundaries; the necessity for mesh 
refinement; and so on. A very expedient method for one-dimensional problems may not 
be appropriate for two or three-dimensional problems. For example, three-dimensional ] FEMs become very costly and storage intensive compared to FDMs; however, for one 
or two-dimensional problems, FEMs are competitive with and usually superior to 
conventional FDMs . Low-order methods, such as linear finite elements or simple finite ] differences, are best for singularity problems; high order methods, e.g., quadratic finite 
elements, are better suited to problems with smooth solutions. Once the mesh, or nodal 
discretization of the problem domain, is established, the manner in which the equivalent J algebraic equations are solved (iteratively versus direct) also influences the choice ofa 
method. 

In summary, FDMs are simple to formulate, can easily be extended to two or 

J 
J three-dimensions, and require considerably less computational work than finite elements 

( for equivalent nodes). The recent introduction ofboundary-fitted coordinates, coupled 
with finite-differencing, yields fairly reasonable solutions for domains with irregular 
boundaries. 

In Galerkin method, irregular geometries are easily handled; small mesh sizes 

J can be used in those regions where the solution changes significantly. Derivative or flux­
type boundary conditions are automatically incorporated in Garlerkin methods without 

- ~ 
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] TABLE 3 : Group Velocity Comparisons for Solving a./a, + u(a.j(Jx) - 0 

(NumericaljTheoretical) 
Numerical Scheme Equation Form Stability· Group Velocity Ratiob,< R 
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FDM 
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FEM 

(1 - C)cosr + C 
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[1 - 2(Csin r/2)1]cosr + (C sin r)2 


(1 - 2(Csinrj2)2]2 + (Csinr)2 
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tt(4cosr- cos2r) 

±3(1+2cosr) 
• 2]ln(cosr + 2) [(cosr + 2)" - (3Csin r) 

cosr 
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3(1 + 2cosr) 
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"Group v.locily - <lA/<I.." .\ ....:>.1 compon.:nl or angular Crequ<:ncy; R - (J.\.....I<I..,I/( J.\""",/<I..,) 
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diminishing the accuracy of the overall solution. In the FDM, boundary conditions are 
generally resolved following solution of the domain interior, often using simple one sided 
approximations of lower-order accuracy. In some flow situations, lower-order boundary 
approximations must be used with the FDM to achieve stable solutions. Higher order 
approximations for the overall solution are more easily generated in the FEM and do 
not require special treatment near the boundaries. Finally, the FEM generates numerical 
approximations that satisfy certain global conservation laws, independent of the] 

1 
boundary conditionS and geometry, which lead to computationally well-behaved results. 

The biggest drawback to the FEM is that it is inherently an implicit method (since 
the time derivatives are coupled in the mass matrix ). Inversion of the mass matrix, if an 
explicit scheme is used, is not practical except for small problems. Hence, the 
trapezoidal rule is usually employed to advance over one time step; banded Gaussian 

] 	 elimination or iterative techniques are generally used to solve the linear system of 
algebraic equations. Although the mass matrix terms can be lumped to permit explicit 
integration, loss of accuracy can become significant. 

] Large FEM codes cannot be totally contained in the CPU memory ofeven the 
largest computers. Hence, peripheral storage on tapes and disks, which also leads to large 
I/O times, is necessary. In addition, solution ofnonlinear problems normally requires 

J 
.J that many of the Garlerkin integrals (matrices) be recalculated at each time step; in linear 

problems, they can be calculated once and stored for later use. Table 4 shows the amount 
of computational work and storage associated with the implicit central FDM using 
alternating direction procedures and the FEM using linear and quadratic elements for a 30 
x 30 element two-dimensional mesh Ref.[24]. In the final analysis, the numerical modeler 
should be knowledgeable about several methods. However, modelers who attempt to ] 

J 
learn all the available methods and techniques currently discussed in the literature may 
never get back to solving their problems. The FDM is easy to leam and implement and 
provides good results for simple geometries. It is a powerful technique that can be 
applied to a wide variety of problems with simple or complex geometries. 

J 
TABl.E 4. . Work Comparisons for an Ne x Ne Grid-

j 	 Operation 
Local Count 
Nodes Estimate Estimate II xlO- 6 Matrix Storage 

J 
 Work/or Equit'lliellt Numbero/Nodes,lI" Ne] .. 1Ne} 


J 
FDM.ADI 3 6iNer 6;11 2 30 0.11 3Nel-90 
FEM.linear 4 Net 114 30 0.81 2 Ne: .. 1.6 x 106 

FEM. quadratic 8 27 Ne~ 1.7114 15 1.4 18 Nei .. 0.061 x 106 

FEM. quadratic 9 64 Ne~ 4114 15 3.2 32 Nei .. 0.11 x 106 

J 
Work/or Equivalelll Accuracy. 11 .. Ne]. Ne; .. Nel 

FDM.ADI 3 6; ~e; 6i1l2 10 0.012 3 Net" 30 
FEM.linear 4 Ne: 114 10 0.010 2Nei" 20000 

3FE-"\{. quadratic 	 8 27 Ne~ 27111/ 4.64 0.013 18Ne~ - 1800 
FE~f. quadratic 	 9 64Ne~ 6411'/1 4.64 0.030 32Nei" 3200 

ai - no. of ilerations - 20; Ne
J 

- Dumber of elemeDts in ODe directiOD; j - 1 (liDear). j .. 2 (quadratic). 

Work is !be Dumber of multiplications for a Lt..: decompositioD; for the ADI me!bod. the ,",on:. estimale 

is for a fore-and-a11 s"·eep. 

SOUTCt': Finlaysoo.C1~J 
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6. FINITE ANALYTICAL METHOD 
The basic idea of the finite analytic method is the incorporation of a local analytic 

solution in the numerical solution of ordinary or partial differential equations. The finite 
analytic method decomposes the total region of a problem governed by differential 
equations into a number of small elements in which local analytic solutions are obtained 
due to locally simple geometry, equations, and boundary conditions. When the local 
analytic solution is evaluated at an interior node, it gives an algebraic equation relating 
the evaluated interior nodal value to its neighboring nodal values. The discrete model of 
the total problem is obtained by assembling and overlapping all local analytic solutions. 
The finite analytic numerical solution is then achieved by solving the system of algebraic 
equations assembled from these analytic solutions derived for each element. In the case of 
nonlinear problems the governing differential equation can be locally linearized and 
solved analytically. In this fashion the overall nonlinear effect can still be approximately 
preserved by the assembly of locally analytic-solutions. 

The finite analytic (FA) method thus differs from the finite-difference (FD) and 
fmite-element (FE) methods in that the approximate algebraic analogy of the governing 
differential equation is obtained from an analytic solution. To illustrate the basic 
principles one can consider a two-dimensional elliptic partial differential equation (PDE), 
e.g., L(q,) = g, where L is a linear or nonlinear partial differential operator and g is an 
inhomogeneous term that depends only on the independent variables, taken to be x and y. 
The PDE is to be solved in the region D shown in Fig. 5. Let the boundary conditions be 
specified so that the problem is well-posed. The region D is subdivided into small 
rectangles. The intersections from the nodal points 1,2,3, ... , i-I, i, i + 1,... , I and 

1,2,3, ... , j -1, j, j +1,... , J. A typical subregion of the problem with node point P(i, j)may 
be surrounded by the neighboring node points EC (east center), WC (west center), SC 

(south center), NC (north center), NE (northeast), NW (northwest), SE (southeast), and 

SW (southwest), which correspond to points (i + 1, j), (i -1, j), (i, j -1), (i,j + 1), 

(i + 1, j + 1), (i + 1, j + 1), (i -'-1, j + 1), (i + 1, j -1), 


and (i -1, j -1), respectively. 

One D has been subdivided into simple rectangular subregions, an analytic 

solution in each subregion may be obtained. Let the linear or linearized governing 
equation in a simple subregion of 2h x 2k be L(q,) = g, so that an analytic solution can 
be obtained for the subregion as a function of the boundary conditions, or 

q,:::: f[q,N(x),q,S(x),q,E(y),q,w(y),h,k,x,y,g] (16) 

where q, N ,q, S ' q, E ,and q, ware, respectively, the northern, southern, eastern, 
and western boundary conditions of the subregion, and 2h and 2k are, respectively. the x 
and y lengths of the subregion. For numerical purposes, the boundary functions q,S,q,E, 

and q,wmay be approximately expressed in terms of the nodal values along the boundary, 

e.g., q,S =q,S(q,SE,q,SC,q,SW,x)as shown. Substituting such boundary conditions 
into Eq. (16), including all four boundary surfaces, one has 
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Equation (17) represents the analytic solution and contains a dependence on the local 
boundary values, 4> EC ,4> wc , ...,etc. Extracting this dependence explicitly, one can 

obtain the nine-point FA formula for 4>p when Eq. (17) is evaluated at point P. This can 

be written in the form 

1 $p =CEC$EC +CWC$WC +CNC$NC + ... +cSW$SW +CSE$SE +Cpgp (18) 

] Here the C's are known analytic coefficients multiplying the corresponding neighboring 

nodal values 4> EC , 4> wc ,etc. [25] 

In general, Eq. (18) may be derived for each unknown nodal point (i, j) in internal 

] 

J subregions to form a set of algebraic equations relating the interior node to its 
neighboring nodes. The system ofalgebraic equations can be solved in conjunction with 
the boundary conditions of the problem to provide the FA numerical solution of the 

] 

problem, the complex boundary conditions can be converted into an algebraic form with a 
finite-difference approximation relating the boundary node to the interior nodes. This is 
the essence of the FA method. 

J 
Convective, conductive, and radiative heat transfer problems, in general, are 

described by a set of partial differential equations that are a mathematical formulation of 
the laws of conservation ofmass, momentum, and energy. 

6.1 Comparison of Finite Analytic And Finite-Difference Coefficients 

J For Heat Equation 

Figure 6 shows the comparison of the FA coefficients with various FD 

J 
J coefficients as a function of A. for A. =0.01-10. It should first be remarked that the FA 

formula is obtained without approximating the derivatives of partial differential 
equations. In Fig. (6) the coefficient Csc, CSE , and Csw are shown as dashed lines for the 

J 
FD explicit method and as a solid line for the FA method. CEC and Cwc are zero from the 
definition of the FD explicit formula Comparison of the values of the coefficients in the 
FD explicit and F A solutions shows that the corresponding coefficients behave 

2 

J 
J 

qualitatively the same for A= !:l.t/.rue < 0.5, while they disagree for A. > 0.5, since as A. 

increases the coefficient Csc of the FD (9 = 0) solution becomes negative and the FD 
coefficients CSE and Csw become infinite. The existence of negative and infinite values 
explains why the numerical instability occurs for the FD explicit method when A. > 0.5. 
On the other hand, as the A. value approaches zero, the coefficient of the FD (9 0) 
explicit method approaches the FA value, thus providing an agreeable, accurate numerical 
solution. 

Now consider the FD (9 = 1) implicit method. The coefficients in this case can be 
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I obtained with a backward difference in the time derivative (A and a central difference in 

the spatial derivative ¢:xx. Figure (6) provides the variation of the FD coefficients Csc, 

l CEC ,and Cwc as a function of A. Although these FD coefficients agree qualitatively with 
the corresponding FA coefficients, there are large differences even at moderate values of 
A. This means that the FD implicit scheme is stable but is not accurate. Indeed, ignoring 

~ 	 the influence of initial nodal values tPSE and tPsw (Le., Csw = CSE = 0 ) on the nodal value 

tPpis understandably undesirable. On the contrary, each of the finite analytic coefficients 

is never identically zero for all ranges of A.~ Other improved finite difference formulas such as the Crank-Nicolson (8 = 

112) and Forsythe-Wasow (9 = (6A.-1)112A.] formulas behave much better than the explicit 

J 	 or implicit FD methods, because they include the influence of the nodal values ¢SE and 

¢sw in the FD formula. That is, the FD coefficients Csw and CSE are never identically ] 

] 

zero as in the implicit FD form and never become infinite at the large value of A. as in the 
explicit FD form. The comparison of Csw and CSE is shown in Fig. (6). The FD 
coefficients Csw and CSE qualitatively agree with the FA value up to A. =2; beyond that 
there is a discrepancy between the FD and FA values. The other FD coefficients, Csc , 
CEc , and Cwe , for 9 = (6A-l)/12A. are shown in Fig. (6). Figure (6) shows that the CEc 

] and Cwe coefficients for both cases agree well with corresponding FA coefficients except 
where A. < 0.2, where the coefficients for Forsythe-Wasow method fall below zero, which 
is contrary to all other cases. On the other hand, the FD coefficient Csc agrees well with 

J the FA Csc only for A. < 1; beyond that the coefficient for both the Crank-Nicolson and 

J 
Forsythe-Wasow methods becomes negative, which disagrees with the FA coefficient. 
Further comparison shows that for the Crank-Nicolson formula, if A. is approximately 0.7, 
the FD solution agrees best with the present FA solutions, and that for the Forsythe­

] 

Wasow formula, if A is set to 1/50, it provides the best agreement with the present FA 

] solution. Indeed it has been shown [26] that for the Forsythe-Wasow formula if A is set to 

1/50 the error is reduced to O(ilx6). From the above comparison the finite analytic 

solution is shown to be the best for all ranges of A. values, while the Crank-Nicolson and 

J 
Forsythe-Wasow formula do improve the accuracy of the FD formula but only for some 
particular value of A.. The FA solution can be used to examine or to explain the instability 
behavior and the accuracy of various finite-difference approximations. 

6.2 Applications of Finite Analytic Solutions 

J 6.2.1 Ordinary Differential Problems 
One can apply to linear and nonlinear ordinary differential equations. This was 

J studied by Li and Chen [27] and by Chen, Sheikholeslami and Bhiladvala [28] 
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6.2.2 Natural Convection Problems 
The finite analytic solution was applied by Chen and Talaie [29,30] to study 

steady and unsteady natural convection in rectangular enclosures. 

6.2.3 Flow and Heat Transfer Problem 
The finite analytic method was used by Chen and Yoon [31] and Chen and Chang 

[32] to solve turb~ent separated flow and heat transfer in rectangular and cylindrical 
cavities and flow behind steps. Further applications of the finite analytic method in flow 
problems are given in references [33-37]. 

6.2.4 Supersonic Flow and Shock Wave Problems 
The finite analytic solution for the hyperbolic equation in supersonic flow was 

obtained by Chen and Chen [38] using the analytic solution obtained from the theory of 
characteristics. The shock wave in an arbitrary convergent and divergent channel was 
predicted by the finite analytic method. 

6.3 Summary 
One can introduce the finite analytic method and apply to the solution of heat] 

] 
transfer problems. The finite analytic method differs from other methods in that it utilizes 
the analytic solution of the governing equation for an element in constructing an algebraic 
representation of the partial or ordinary differential equation. Consequently, because of 
the analytic nature of the solution for the well-posed problem, the numerical solution is 
stable and relatively accurate. 

] The finite analytic coefficients in the finite analytic algebraic equation are 
obtained from the analytic solution. They at first appear to be complicated and time­
consuming to evaluate. However, in practice, the time consumed in tabulating these finite 

] 	 analytic coefficients is a small portion of the total computation time. The stability and 
accuracy of the finite analytic method provides an attractive alternative means of 
obtaining numerical solutions in heat tranSfer problems. 

] 
7. METHODS OF MONTE CARLO 

Monte Carlo, a branch of experimental mathematics, is a method of directly] 	 simulating mathematical relations by random processes. In physics, the Monte Carlo 
method has been used to solve numerous types ofdiffusion problems and has enjoyed a 
great deal ofattention [39]. J In heat transfer, interest has been relatively small. Radiation and conduction have 
dominated the use of the Monte Carlo method, while its application to convective 
problems has been insignificant, despite the fact that, for instance, the transport of energyJ in a turbulent flow depends on random processes. Future research in this area appears to 
be promising. 

J . The Monte Carlo method, as stated earlier, is a statistical approach to the solution 
of multiple integrals of the type 

J 
') 	
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111 
I(~l, ~2 ,.."~k) = JJ.. Jw(~1,1;2,···,I;k)dPJ. (1;1)dP2(1;2)···dPk (I;k) (19a) 

00 0 
where ;1.;2 •..·,;k are related to random variables and PI (;1), P2 (;1), .. " 

Pk (;k), are the corresponding cwnulative distribution or probability distribution 

functions, If 11 k is a random variable, then 

Pk (;k) = probability (11k <;k) (19b) 

The main criticism of the Mote Carlo method concerns its inefficiency in dealing 
competitively with mathematical problems whenever there is an alternative solution. 
Understandably, this is true for a great many problems. However, the Monte Carlo 
method is extremely useful when (1) there is no other convenient method, (2) a simple 
procedure is needed to check the validity of a new method, and (3) in some instances, a 
computationally faster procedure is needed. Indeed, it is refreshing to see that the Monte 
Carlo procedure, for some problems, can result in a much faster solution than, for] 
example, the finite-difference method. 

J 	 7.1 Definite Integrals 
The Monte Carlo method provides a vehicle to numerically evaluate multiple integrals. 
Extensive details are available in Refs. [40] and [41]. Monte Carlo becomes 

J 

] indispensable whenever multiple integrals have many variables and cannot be evaluated 
efficiently by standard numerical techniques. This condition exists in many radiation 
problems. 

7.2 Transient Conduction 
The solution for transient heat conduction problems requires the assignment ofa] time increment to each step ofa random walk. However, the Monte Carlo procedure for a 

floating random walk is different from ,that for the random walk with a fixed step size. 
The incremental time assigned to a random walk with a fixed step size is constant ] 
everywhere in a homogenous domain. The floating random walk procedure described 
earlier uses a combination of large radial steps, ri> rmin' and small incremental steps, 

J 
] ri < r min' with the duration ofa step depending on the size of the step. Zinsmeister and 

Pan [42] suggested a hybrid Monte Carlo method to calculate temperature in the entire 
field. First, calculation of temperature is carried out, using Monte Carlo on the boundary 
of an inscribed regular domain, and then the internal temperature is computed 
analytically. 

An important feature of Monte Carlo is its simplicity. It uses very little computer J memory and requires minimal computer programming effort. Despite common belief, a 
Monte Carlo method can produce solutions to a class of thermal conduction problems 

J faster than any conventional numerical method. Let us consider a situation for which the 
temperature should be determined repeatedly at a few internal points in a region for 
different boundary temperatures. Only a small portion of computer memory is needed to 
keep, and to store for subsequent use, a record of the number of random walks terminated 
at any given boundary point. 
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7.3 Convection 
Generally, the Monte Carlo solution of convection problems is similar to that 

described earlier for conduction applications. All discussions concerning the Monte Carlo 
method with a fixed step size, and in some instances with a variable step size, apply 
equally to convection problems. The class of convection problems suitable for Monte 
Carlo are linear, are decoupled from the momentum equations, and have a known velocity 
field. Information cOljcerning nonlinear and/or coupled problems are rare. 

7.4 Radiation 
Radiation problems posses a form ideally suited for Monte Carlo application, 

since it provides a vehicle to numerically evaluate multiple integrals. The integral that 
governs the emission of radiant energy depends on various parameters such as 
wavelength, angle of emission, and the nature of the medium [43-46].Also, different 
integrals govern the reflection and scattering processes. Preliminary attention is directed 
to the study of radiant exchange between surfaces in the absence of a participating, 
medium. 

7.5 Application to Absorbing and Emitting Media 
The procedure described for radiation exchange between different surfaces in the 

presence of a nonparticipating medium applies equally to participating media with some 
modification. Indeed, Monte Carlo can accommodate generalized radiation problems with 
a few approximations. Unlike analytical schemes, Monte Carlo does not require 
numerous assumptions concerning the surface properties (e.g., black or gray, specular or 
diffuse) and gas properties (opaque or transparent, gray, isothermal, thick or thin, etc.) to 
achieve a solution. 

7.6 Summary 
The Monte Carlo method plays two distinctly different roles in conduction and in 

radiation. In conduction, an abstraction using particles or random walks is used to 
simulate a solution of a partial differential equation, whereas in radiation a physical 
phenomenon, the transfer of photons, is simulated. The usefulness of the Monte Carlo 
method in thermal radiation has been fully established; it is one of the most important 
tools for dealing with radiation in absorbing, emitting, and scattering media. However, 
when dealing with the Laplace and diffusion equations, it has been used-only in practical 
applications where the number of coordinates in large. Since the maximum number of 
coordinates in thermal conduction problems is three, the need for Monte Carlo solutions 
has been limited. The development of new engineering materials has created numerous 
situations where the size and shape of the geometries may require incorporation of the 
Monte Carlo method with other numerical techniques to reduce the size of a problem to a 
manageable level. 

8. AVERGAE MAGNITUDE ANALYSIS METHOD 
The method of Average Magnitude Analysis is a mixture of the Integral Method 

and the Order of Magnitude Analysis. In this method the governing differential equations 
are converted to a system of algebraic equations, where the result is a sum of the order of 
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I 
I magnitude of each term, multiplied by a weight coefficient. These coefficients are 

determined from integrals containing the assumed velocity and temperature profiles. The 
method is used in the case of natural convection over an infinite flat plate with and 
without the presence of a horizontal magnetic field, and subsequently to enclosures of] 
aspect ratios of one or higher [47]. The Average Magnitude Method (AMA) was first 
introduced by solving the problem of drag and heat transfer over an infinitely long flat 
plate. It was shown ¢.at it is equivalent to the familiar integral method. ~ When the problem of natural convection over an infinitely long vertical flat plate 
was solved, it was shown that the AMA method had an advantage of clarity and 
simplicity over the integral method in terms of the role and meaning of the non­~ 

J 
dimensional numbers Ra, Bo, and Pr. The same problem was solved in the presence of a 
horizontal magnetic field. 

Finally the AMA method was applied to the solution of the natural convection 
problem in enclosures and because of the complexity of the geometry and boundary 
conditions it was not possible to calculate the three weight coefficients. The problem was ] 	 handled by carrying these coefficients as unknowns. They were subsequently determined 
from a mixture of theoretiCal, numerical, and experimental information. 

] 9. ILLUSTRATIVE APPLICATIONS 
In this paper, a few applications of the numerical methods will be illustrated. The 

methods have been extensively tested and applied to a variety of practical situations. A ] 

J 
review paper ( Patankar [48]) written the SIMPLE procedure contains a number of 
examples that were available at that time. Since, many more applications have appeared 
in the literature. A partial list of the published applications of the method now follows. 

Two-dimensional elliptic situations involving fluid flow and heat transfer have 
been computed by Abdel-Wahed, Patankar, and Sparrow [49], Majumdar and Spalding 

] 	 [50], Patankar, Liu, and Sparrow [51], Sparrow, Patankar, and Ramadhyani [52], 
Patankar, Ramadhyani, and Sparrow [53], Ganesan, Spalding, and Murthly [54], 
Patankar, Sparrow, and Ivanovic [55], and Patankar, Ivanovic, and Sparrow [56]. 

] Among the examples presented in this paper, a special version of the mixing­
length model is employed in section (9-1). Conduction, convection, and radiation through 
a rectangular enclosure having cavity heated and cooled at horizontal sides while kept 

J 

] insulated at vertical sides as indicated in section (9-2). Finite element versus finite­
difference in the case of integral and integro-differential systems through plates as 
indicated in section (9-3). 

J 
9.1 Turbulent Flow and Heat Transfer in Internally Finned-Tubes 

A circular tube with longitudinal internal fins is considered to be an effective 

J 
device for heat transfer enhancement. The fully developed flow and heat transfer in such a 
tube were computed by the use of a mixing-length model formulated for the cross­
sectional geometry shown in Fig. (7). Complete details of the model and the resulting 
solutions are given in Patankar, Ivanovic, and Sparrow [56]. It is sufficient to note that 
the model calculates the local mixing length based on the distances of a point from both 
the fin surface and the tube wall, and that the turbulent viscosity is influenced by the j 
velocity gradients in both the radial and circumferential directions. The model 

~ 
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incorporates 	 a single adjustable constant, which was chosen to give good agreement with ] the experimental data for air flow reported by Carnavos (1977). 
Figure (8) shows the comparison of the predicted values of the Nusselt number 

J and the friction factor with experimental data. In away, the satisfactory agreement shown 
is not surprising, because the adjustable constant in the model was derived from the same 
experimental data. On the other hand, that the adjustment of a single constant is able to 

] 	 give good predictio~s for both Nu and f over a range of Reynolds numbers and for 
different numbers and heights of fins is a significant achievement of the model. 

] 9.2 Heating of a Rectangular Solid from Below 
Figure (9) shows a comparison between the measured and the predicted 

temperatures for AT = 34 °C. The symbols denote the data points and the solid line 

J 
J 
] indicate numerical predictions in the wall. The agreement between the data and 

predictions is excellent. This may be in part due to small temperature difference between 
the horizontal walls and the fact that the solid temperatures are more "forgiving" and 
provide less critical measure ofcomparison. 

Figures (10) and' (11) present comparisons of the measured and predicted 
temperatures in the cavity for AT = 52 °C and 68 °C, respectively. The symbols denote the 

1 
data points, and the solid and dashed lines represent the numerical predictions without 
radiation and with radiation included in the model, respectively. In the absence of 
radiation exchange, the model under-predicts the data at point 3 (15.8 % and 16.0 %) and 
4 (8.5 % and 11 %), but over-predicts the temperature little at point 1 (2.4 % and 4.9 %) 
for AT = 52 °c and 68 °c, respectively. In the presence of radiation, the model over­

J predicts the temperatures at points 3 (11.6 % and 7.4 %) and 4 (11.8 % and 15.3 %), but 

J 

under-predicts the temperatures at point 1 (4.9 % and 1.7 %) for AT = 52 °c and 68 °c, 
respectively. It should be noted that the deviation appears to be quite large at the points 3 

] and 4 since the error was calculated on the percentage basis, but the disagreement 
between the data and predictions is less than a couple of degree Celsius. It is difficult to 
conclude which model yields better ovenill agreement with the data, since the predictions 
of the two models agree quite well with the measurements. The model with radiation 
included shows better agreement at the higher modified Rayleigh number (Figure (11)). 

J 	 9.3 Integral and Integro-Differential Systems 

J 
The governing equations for radiative heat transfer are of integral and/ or integro­

differential systems. Integral equations arise in the process of summing the radiation 

J 
intensity over the optical depths between surfaces or in enclosures, whereas integro­
differential equations occur in combined mode radiation with conduction and/or 
convection through participating gases[57-60]. 

Finite-element methods are in a similar category in which differential equation 
are converted into integral forms[61-66].The finite-element method offers easy modeling 
of geometries and integration through optical depths in three dimensions as well as in the 

J finite-element domain [67]. The finite-element equations are generated by variational 
methods or weighted residual methods. The variational methods require the existence of 
variational principle corresponding to the governing equation, whereas the weighted 
residual methods are independent of variational principles. 
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J 
] For illustration, one can choose simple geometries, as shown in Figs. (12) and 

(13). The results based on linear isoparametric elements and two-point Gaussian 
quadrature, are given in Table (5). It is shown that the most accurate results are obtained 

1 for parallel surfaces. In the case of intersecting surfaces with smaller angles, more refined 
grids and an additional number of Gaussian points are required for convergence (Figs. 
(12-14)). The reader is reminded that the power of the finite-element method is its ability 

I to handle irregular geometries rather than a simple case, as shown in this example. If 
convergence is guaranteed from the basic mathematical viewpoint, the accuracy of the 
solution for irregular geometries can be guaranteed. The numerical results shown here are 
based on linear interpolation functions and a rather small number of Gaussian points (2~ 
and 4). Although higher-order finite-element interpolation functions and/or an additional 
number of Gaussian points may be used for further improvement in accuracy, it has been ] demonstrated that such attempts are not necessary in the examples shown in the present 
study. 

For example, consider an emitting, absorbing, and scattering medium between ] two infinitely large parallel plates. Solutions of this problem were presented by Viskanta 
[68] and Fernandes and Francis [69]. The boundary conditions are: 

] 

] 9=1 at.=O 
9 ='f2/11 =92 =112 at • ='0 

where e is the dimensionless temperature, 't is the optical depth. 
The results of the Galerkin finite-element solution of are given in Fig. (15) (N =1, 

where N is the ratio of radiation over convection) for temperature distributions (N 1)

J and in Table (6) (N = 1) and Table (7) (N = 10) for temperature gradient and heat fluxes. 
A total of 20 one-dimensional elements are used in this analysis. The dimensionless 
radiative heat flux lJ' is calculated from the expression 

] 1\ 

~=4N·+~ 9~ 

] 
d. 

Note that the increase in the albedo (tJo for single scattering results in a decrease 

of temperature and the radiation function (Fig. (15)). A similar trend exists for the 
temperature gradients and heat fluxes (Tables (6) and (7)). It is seen that the heat flux 

J increases with an increase in emissivity, whereas the temperature gradients are slightly 
decreased when emissivity is increased. The finite-element results are in good agreement 
with Viskanta [68] and with Fernandes and Francis [69]. 

J The results obtained using 20 linear elements are compared in Table (8) and Fig. 

(16). Here, the effects of N and the optical thickness To on temperature gradients, 

J radiation heat flux, the total heat flux, and the Nusselt number 

J 
[Nu =2!}l' /4N(1- Bb )] are shown. It is noted that for a large value ofN (less convection 

and radiation dominating), the agreement is close; for a small value of N (more 
convection and radiation dominating) and for a large optical thickness, however, we seem 

J 
to have poor agreement compared with Viskanta [70], who used Taylor series expansions 
for the variables. 
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 Table 5. View factors FA•B for two square planes, Two-Point Gaussian Quadrature. 


Geometries 

I 
Two 

Two Intersecting Planes Solution Parallel 

Schemes Planes 30" 60" 90" 120" ISO" 


Analytic solution 0.19983 0.62020 0.37120 0.20004 0.08700 0.021510 
Finite Elements 3 x 3 0.19980 1.53905 0.51115 0.23359 0.09541 0.02299 

~ 1.09247" 0.45421" 
5 x 5 0.19982 1.17043 0.45474 0.22015 0.09196 0.02236 
8x8 0.19982 0.96347 0.42319 0.21261 0.08998 0.02199 

I 20 x 20 
30 x 30 

0.79660a 

0.75673 
0.71082 

0.40214" 
0.391TI 
0.38481 

0.20506 
0.20339 

0.08797 
0.08751 

0.02160 
0.02152 

4Ox4O 0.68786 0.38133 0.20255 0.08729 0.02147 

] • R~5UltS for six· point Gaussian quadrature 

TABLE 6. Combined Conduction-Radiation Heat Transfer, Effect 01 Emissivity for 
N .. 1, 9 .. 1, 92 - i, TO - 1, on Temperature Gradients and Heat Flux 

] d91 +(0) it 
d-r .-0 

] [68] [69) [25) [68) [69) [25] [68) [69] [25]
'-'0 el t:'=r 

0.0 1.0 - 0.5019 - 0.5020 - 0.498 0.5656 0.5650 0.5650 0.6433 0.6430 0.6400 
0.5 -0.5240 -0.5240 -0.5170 0.2676 0.2670 0.2670 0.5909 0.5900 0.5840 
0.1 -0.5410 -0.5430 -0.5340 0.0514 0.0520 0.0510 0.5538 0.5560 0.5470] 0.5 1.0 -0.4967 -0.4960 -0.4950 0.5626 0.5630 0.5640 0.6374 0.6370 0.6360 
0.5 0.5109 -0.5100 "':'0.5070 0.2733 0.2730 0.2730 0.5792 0.5790 0.5760 
0.1 -0.5245 -0.5250 -0.5200 0.5490 0.0550 0.0550 0.5382 0.6390 0.5340 

1.0 1.0 -0.5000 -0.5000 -0.5000 0.5251 0.5180 0.5250 0.6313 0.6290 0.6310] 0.5 - 0.5000 - 0.5000 - 0.5000 0.2505 0.2450 0.2520 0.5626 0.5610 . 0.5630 
0.1 - 0.5000 - 0.5000 - 0.5000 0.0525 0.0470 0.0550 0.5131 0.5120 0.5130 

] TABLE 7. Combined Conduction-Radiation Heat Transfer, Effect of Temperature for N ... 10. 
TO ... 1, 91 - 1. £, .. £2 - 1 on Temperature Gradients and Heat Flux 

] 'dB\ 
dT .-0 -J;(O) y, 

[68] (25) [68] [25J [68) [25]"'0 82 

J 
------_._­

0.0 0.1 0.8017 -0.7495 0.5488 0.6491 2.4237 2.3724 
0.5 -0.6415 -0.5430 0.5327 0.5381 1.9733 1.8883 

0.5 0.1 -0.7592 -0.7349 0.6412 0.6430 2.3622 2.3424 
0.5 - 0.5175 -0.4983 0.5428 0.5454 1.8745 1.8619 

] 1.0 0.1 -0.9000 -0.9000 0.5553 0.5592 2.2882 2.2981 
0.5 -0.5000 -0.5000 0.5191 0.5250 1.1977 l.81~6 

J TABLE 8.' Comb.ined COnduction-Convection-Radiation Heat Transfer without Scattering 
and V'scous Dissipation. (, .. £2 .. 1. Data at the Wall 

J 
d81 

Nusseh
d... -0 ~(Ol + Num~r 

"0 N [70J FEM [70~ FE.M [701 FEM [70) FEM 
0.1 10.0 14.290 14.327 0.1164 0.1152 571.716 573.360 7.542 7.5610.1 -14.230 -14.500 0.1164

1 
01156 5.808 5.912 7.668 7.7881.0 10.0 - 1.4246 1.4876 0.5112 05128 57.496 60.018 7.589 7.8780.1 1.1991 -1.4965 0.4880 0.5132 0.978 L111 13.352 14.582 

• Due to different definitions and signs for -i and 4> in [70) the Viskanr3 resuits are multiptied by 4. 
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9.3.1 Concluding Remarks . 
The subject 	of integral and integro-differential system as a branch of applied 

mathematics and as a method that can be used for practical applications in radiative heat 
transfer has been discussed with solution techniques based on finite-element theory. 

Simple examples of the Fredholm and Volterra equations are demonstrated,

] 	 followed by increasingly complicated radiative heat transfer problems. With only linear 
finite-element interpolation functions, a high degree of accuracy was obtained for the 
selected example problems having exact solutions. It was also shown that with Galerkin 

] 	 finite elements the solution procedure is simple, systematically general, and robust for all 
types of integral and/or integro-differential equations, with step-by step solution strategies 
being independent of the problem at hand. Gaussian quadrature integration schemes for 
both the optical depth and finite-element spaces play decisive roles in the success of 
finite-element approaches. 

] 

Difficulties resulting from the terms due to convection, however, persist, if 
combined-mode radiative. heat transfer is considered. Convergence to the true solution is 
difficult to achieve as convection becomes dominant because of the ill-conditioning of the 
convection finite-element matrices. Such ill-conditioning stems from the linearly 

J 
dependent system ofequations or the nearly singular matrix when the flow field is highly 
rotational or convective. To overcome these difficulties, mesh refinement and/or higher­
order interpolation functions are required, with a corresponding substantial increase in 

J 
computational time and storage. From the point of view of linear algebra, the mesh 
refinement serves to strengthen the diagonal and weaken the off-diagonal terms, shifting 
the matrix toward a linearly independent or strongly nonsingular system ofequations. 
Current research in this vein include an adaptive mesh program that is believed to be the 
key to the success for all ill-conditioned equation systems. [25]

] If convection is less dominant, however, the solution of integral and integro­
differential systems does not present any significant problems. For these situations, the 
finite-element theory provides a very general and robust methodology, independent of

] arbitrary and complicated geometries and boundary conditions. 

] 

J 

J 

J 
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NOMENCLATURE 

Symbol 
AR 
BO 
C 
Cp 
D 
F 
f 
F 
g 
G 
h 
H 
H 
1 

k 
k* 
LO 
n 
N 
Nu 
p 
Pr 
q 
ro 
R 
Ra 
Ra* 
T 
t 
u 
U 
v 
V 
w 
W 
x 
x 
y 
z 

Definition 
Aspect ratio of the cavty 
Boussinesq nwnber 
Courant nwnber, =u/).t / LU 
specific heat 
Diffusivity 
view factor 
friction factor 
Fourier nwnber 
amplification function 
amplification factor 
convective heat transfer coefficient 
height of the fins through tube 
height of the enclosure 
node location 
thennal conductivity 
thennal conductivity ratio 
differential operator 
outward unit vector 
No. of fins 
Nusselt nwnber 
variable in Barakat and Clark method 
Prandtl nwnber 
variable in Barakat and Clark method 
radius of the tube 

. residual, =L( rft )-f 

Rayleigh nwnber 
modified rayleigh nwnber 
temperature 
time 
horizontal velocity 
constant horizontal velocity 
laterial velocity 
velocity vector 
vertical velocity 
weighting function 
horizontal coordinate 
multidimensional 
lateral coordinate 
vertical coordinate 
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~ 
Greek Symbols ~ oc . thermal diffusivity 
oc* thermal diffusivity ratio 

I /).t time interval 
/).0 central-difference operator 

8 2 second derivative operator ~ 
8 2

/).± 	 third(upwind) derivative operator 

I () 	 weighting factor 
(}h, () c 	 dimensionless temperature 

A At/ !u2 

J 1.' optical distance 

A angular frequency, =Q + iu(i = H) 
u kinamatic viscosity 

random variables ] 
~b~2 

two-dimensional natural coordinates ~ 

] 	 random variable 

J 
11 
¢ transport variable 

$' void fraction 

angle of intersection plans ~ 

(00 albedo

J E deformation factor 

Subscripts] 	 i+l,i,i-l node locations 
j, k,l node locations 
num numerical 

J 
J t =o/Ct 

x =0/ Ox 
H heating 
C 	 cooling 

J Superscripts 
n present time 
n+l new time 

J 
Mathematical Symbols 

.0 .0 	 kO
V 	 1-+)-+ ­J 	 Ox 0t & 

I 
~ f 
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