K. S. Rock

K. S. Rock
The University of Warwick · Warwick Mathematics Institute

PhD

About

74
Publications
20,442
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,249
Citations
Introduction
I am a mathematical epidemiologist with a particular interest in developing models of vector-borne disease. My current research focuses on modelling gambiense human African trypanosomiasis (gHAT) and I lead the HAT modelling and economic predictions for policy (HAT MEPP) project. I have previously worked on visceral leishmaniasis and avian malaria and have developed more generic modelling frameworks for examining the effect of age and biting patterns of vectors upon disease in host populations.

Publications

Publications (74)
Preprint
Full-text available
Neglected tropical diseases are responsible for considerable morbidity and mortality in low- income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. We develop a generic mathematical modelling framework for analysing the d...
Preprint
Full-text available
The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to h...
Article
Full-text available
Background: Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) is being achieved. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and th...
Article
Full-text available
Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. W...
Preprint
Full-text available
Background: Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) is being achieved. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and thi...
Article
Full-text available
Background In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data bet...
Article
Full-text available
Background In line with movement restrictions and physical distancing essential for the control of the COVID-19 pandemic, WHO recommended postponement of all neglected tropical disease (NTD) control activities that involve community-based surveys, active case finding, and mass drug administration in April, 2020. Following revised guidance later in...
Article
Full-text available
Mathematical models of vector-borne infections, including malaria, often assume age-independent mortality rates of vectors, despite evidence that many insects senesce. In this study we present survival data on insecticide-resistant Anopheles gambiae s.l . from experiments in Côte d’Ivoire. We fit a constant mortality function and two age-dependent...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving elimin...
Preprint
Full-text available
Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners from around the world have stepped up efforts to eliminate the disease, and the Chadian government have had a particular focus on the previously high-prevalence setting of Mandoul. In this stu...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In t...
Article
Full-text available
Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including activ...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT) is marked for elimination of transmission by 2030, but the disease persists in several low-income countries. We couple transmission and health outcomes models to examine the cost-effectiveness of four gHAT elimination strategies in five settings – spanning low- to high-risk – of the Democratic Republic...
Article
Full-text available
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the in...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In t...
Article
Full-text available
Significance While the health economic implications of disease elimination have been discussed before, the combination of uncertainty, cost effectiveness, and elimination has not been tackled before. We propose a modification to the net-benefit framework to explicitly consider the implications of switching from an optimal strategy, in terms of cost...
Preprint
Full-text available
Mathematical models of vector-borne infections, including malaria, often assume age-independent mortality rates of vectors, despite evidence that many insects senesce. In this study we present survival data on insecticide-resistant Anopheles gambiae s.l. from field experiments in Côte d’Ivoire. We fit a constant mortality function and two age-depen...
Article
Full-text available
Stochastic methods for modelling disease dynamics enable the direct computation of the probability of elimination of transmission. For the low-prevalence disease of human African trypanosomiasis (gHAT), we develop a new mechanistic model for gHAT infection that determines the full probability distribution of the gHAT infection using Kolmogorov forw...
Preprint
Full-text available
Background:In recent years, an integrated programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections has led to a rapid decline in cases in the Mandoul disease focus of Chad. In this study, we assess whether elimination of transmission has already been achieved in the region despite low-level c...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elim...
Article
Full-text available
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the in...
Preprint
Full-text available
Stochastic methods for modelling disease dynamics enables the direct computation of the probability of elimination of transmission (EOT). For the low-prevalence disease of human African trypanosomiasis (gHAT), we develop a new mechanistic model for gHAT infection that determines the full probability distribution of the gHAT infection using Kolmogor...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elim...
Article
Full-text available
Background: The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s. Methods: We use mathematical models fit...
Article
Full-text available
Background Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes...
Article
Full-text available
Many control programmes against neglected tropical diseases have been interrupted due to the coronavirus disease 2019 (COVID-19) pandemic, including those that rely on active case finding. In this study we focus on gambiense human African trypanosomiasis (gHAT), where active screening was suspended in the Democratic Republic of Congo (DRC) due to t...
Preprint
Full-text available
The global health community has earmarked a number of diseases for elimination or eradication, and these goals have often been praised on the premise of long-run cost-savings. However, decision-makers must contend with a multitude of demands on health budgets in the short- or medium-term, and costs-per-case often rise as the burden of a disease fal...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of...
Chapter
Accurate models are crucial for predicting the spread of vector-borne diseases, and for developing appropriate control policies. Simple models often ignore finer details of vector biology, commonly due to lack of pertinent field data. However, for tsetse ( Glossina spp), vectors of the parasites causing debilitating human and livestock trypanosomia...
Article
Full-text available
A key challenge for many infectious diseases is to predict the time to extinction under specific interventions. In general, this question requires the use of stochastic models which recognize the inherent individual-based, chance-driven nature of the dynamics; yet stochastic models are inherently computationally expensive, especially when parameter...
Preprint
Full-text available
Many control programmes against neglected tropical diseases have been interrupted due to COVID-19 pandemic, including those that rely on active case finding. In this study we focus on gambiense human African trypanosomiasis (gHAT), where active screening was suspended in the Democratic Republic of Congo (DRC) due to the pandemic. We use two indepen...
Article
Full-text available
Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitt...
Preprint
Full-text available
Background: Gambiense human African trypanosomiasis (gHAT) is marked for elimination of transmission (EOT) by 2030, but the disease persists in several low-income countries. We examine the cost-effectiveness of four gHAT elimination strategies in Democratic Republic of Congo (DRC), which has the highest burden of gHAT. Methods: We compared four str...
Article
Full-text available
Background: The World Health Organization targeted Trypanosoma brucei gambiense human African trypanosomiasis (gHAT) for elimination as a public health problem and for elimination of transmission. To measure gHAT elimination success with prevalences close to zero, highly specific diagnostics are necessary. Such a test exists in the form of an anti...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the eve of elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes can be efficient...
Preprint
Full-text available
A key challenge for many infectious diseases is to predict the time to extinction under specific interventions. In general this question requires the use of stochastic models which recognise the inherent individual-based, chance-driven nature of the dynamics; yet stochastic models are inherently computationally expensive, especially when parameter...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) is a disease targeted for elimination of transmission (EOT) by 2030, however the likelihood of achieving it is unknown. We utilised modelling to study the impact of currently-available intervention methods on transmission across the Democratic Republic of Congo (DRC) - which accounts for ∼ 70% of globa...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of...
Preprint
Full-text available
Background The first COVID-19 case in Kenya was confirmed on March 13th, 2020. Here, we provide forecasts for the potential incidence rate, and magnitude, of a COVID-19 epidemic in Kenya based on the observed growth rate and age distribution of confirmed COVID-19 cases observed in China, whilst accounting for the demographic and geographic dissimil...
Article
Full-text available
Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill rem...
Article
Full-text available
Background: Gambiense human African trypanosomiasis ([gHAT] sleeping sickness) is a vector-borne disease that is typically fatal without treatment. Intensified, mainly medical-based, interventions in endemic areas have reduced the occurrence of gHAT to historically low levels. However, persistent regions, primarily in the Democratic Republic of Co...
Article
Full-text available
Gambiense human African trypanosomiasis (gHAT) is one of several neglected tropical diseases that is targeted for elimination by the World Health Organization. Recent years have seen a substantial decline in the number of globally reported cases, largely driven by an intensive process of screening and treatment. However, this infection is highly fo...
Preprint
Full-text available
Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill rem...
Preprint
Full-text available
Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill rem...
Preprint
Full-text available
Gambiense human African trypanosomiasis (gHAT) is one of several neglected tropical diseases that is targeted for elimination by the World Health Organization. Recent years have seen a substantial decline in the number of globally reported cases, largely driven by an intensive process of screening and treatment. However, this infection is highly fo...
Article
Full-text available
Background: Control of gambiense sleeping sickness relies predominantly on passive and active screening of people, followed by treatment. Methods: Mathematical modeling explores the potential of 3 complementary interventions in high- and low-transmission settings. Results: Intervention strategies that included vector control are predicted to h...
Article
Full-text available
Highlights gambiense-HAT is targeted for elimination with zero transmission in humans. Innovative tools may contribute to the achievement of elimination; these tools include rapid diagnostic tests, improved tsetse-control tools, and an oral drug to treat both stages of disease. Research is revealing associations between infection outcome, including...
Article
Full-text available
Background: Gambian sleeping sickness or HAT (human African trypanosomiasis) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by riverine species of tsetse. A global programme aims to eliminate the disease as a public health problem by 2020 and stop transmission by 2030. In the South of Chad, the Mandoul area is a...
Data
Additional information on statistical and mathematical modelling methodology. (PDF)
Data
Portion of the Mandoul River where tsetse flies were caught. (TIF)
Data
MATLAB code used to generate mathematical model outputs. (M)
Article
Full-text available
Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem − defined as <1 new case per 10,000 inhabitants in...
Article
Full-text available
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater conce...
Data
Model code. MATLAB code used for the forward projections of HAT infection. (M)
Data
Model formulation and analysis. Detailed model description and equations for vector control and HAT infection dynamics are given. Additional results are presented. (PDF)
Chapter
Full-text available
The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the...
Article
The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the...
Article
The leishmaniases comprise a complex of diseases characterised by clinical outcomes that range from self-limiting to chronic, dis guring and stigmatising, to life-threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the pop...
Article
Full-text available
Author The basic reproductive ratio (R0) is a crucial measure of transmission intensity, lying at the interface between mathematical modelling and policy decision making. If control measures can induce a situation where R0 ≤ 1 for a sustained period of time then the pathogen must be eradicated. For diseases spread by short-lived insect vectors a m...
Data
Mathematical details on the biting renewal process and the expected number of potentially infectious bites by a vector after its inoculating bite. This gives further results on renewal processes as well as further discussion on the approximate form for the expected number of infectious bites per inoculated vector (BI). Also included is a numerical...
Data
Relative error of the generalised critical excess mortality to its analytic approximation. The classical reproductive ratio estimate given is R0c=2. For a large portion of parameter space the critical excess mortality relative to its analytic approximation is reasonably accurate (μe*/μ˜e*≈1). As with the approximation R˜0g, when the EIP distributio...
Article
Full-text available
Objectives: There has been a growing concern over Zika virus (ZIKV) infection, particularly since a probable link between ZIKV infection during pregnancy and microcephaly in the baby was identified. The present study aimed to estimate a theoretical risk of microcephaly during pregnancy with ZIKV infection in Northeastern Brazil in 2015. Methods:...
Article
Full-text available
Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim...