K. G. Arun

K. G. Arun
Breakthrough Prize Laureate
Chennai Mathematical Institute · Physics

Ph D

About

368
Publications
242,246
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
82,547
Citations

Publications

Publications (368)
Preprint
Asymmetric emission of gravitational waves during a compact binary coalescence results in the loss of linear momentum and a corresponding `kick' or recoil on the binary's center of mass. This leads to a direction-dependent Doppler shift of the ringdown gravitational waveform. We quantify the measurability of the kick imparted to the remnant black h...
Preprint
Full-text available
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availabil...
Preprint
Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have...
Preprint
Gravitational-wave astronomy has revolutionized humanity's view of the universe, a revolution driven by observations that no other field can make. This white paper describes an observatory that builds on decades of investment by the National Science Foundation and that will drive discovery for decades to come: Cosmic Explorer. Major discoveries in...
Article
Full-text available
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron st...
Preprint
Full-text available
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five mo...
Article
The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of...
Preprint
Full-text available
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false a...
Article
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Article
The planned Laser Interferometric Space Antenna (LISA) will be able to detect gravitational waves (GWs) from intermediate mass binary black holes (IMBBHs) in the mass range ∼102–104 M⊙ up to a redshift z∼20. Modulation effects due to LISA’s orbital motion around the Sun facilitate precise premerger localization of the sources, which in turn would h...
Article
Gravitational-wave observations provide a unique opportunity to test general relativity (GR) in the strong-field and highly dynamical regime of the theory. Parametrized tests of GR are one well-known approach for quantifying violations of GR. This approach constrains deviations in the coefficients of the post-Newtonian phasing formula, which descri...
Preprint
Hierarchical mergers in bound gravitational environments can explain the presence of black holes with masses greater than $\sim 100 M_{\odot}$. Evidence for this process is found in the third LIGO-Virgo-KAGRA gravitational-wave transient catalog (GWTC-3). We study the efficiency with which hierarchical mergers can produce higher and higher masses u...
Preprint
Principal Component Analysis (PCA) is an efficient tool to optimize the multiparameter tests of general relativity (GR) where one tests for simultaneous deviations in multiple post-Newtonian (PN) phasing coefficients by introducing fractional deformation parameters. We use PCA to construct the `best-measured' linear combinations of the PN deformati...
Article
Full-text available
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
Article
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for...
Preprint
Full-text available
The planned Laser Interferometric Space Antenna (LISA) will be able to detect gravitational waves (GWs) from intermediate mass binary black holes (IMBBHs) in the mass range $\sim 10^{2} \mbox{-} 10^{4} M_{\odot}$ up to a redshift $z\sim20$. Modulation effects due to LISA orbital motion around the Sun facilitate precise premerger localization of the...
Article
Full-text available
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more u...
Preprint
Full-text available
The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of...
Article
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Article
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
Article
Full-text available
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
Article
Full-text available
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
Article
Gravitational wave (GW) measurements of physical effects such as spin-induced quadrupole moments can distinguish binaries consisting of black holes from nonblack hole binaries. While these effects may be poorly constrained for single-event inferences with the second-generation detectors, combining information from multiple detections can help uncov...
Article
This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use...
Preprint
Full-text available
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Article
Full-text available
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British–German laser interferometer with 600m arms, and located near Hannover, Germa...
Article
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the WEAVE semicoherent method, which sums matched-filter detection-...
Article
Full-text available
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
Preprint
Full-text available
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
Article
Full-text available
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
Article
Full-text available
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in th...
Preprint
Gravitational-wave observations provide a unique opportunity to test General Relativity (GR) in the strong-field and highly-dynamical regime of the theory. Parameterized tests of GR are one well-known approach for quantifying violations of GR. This approach constrains deviations in the coefficients of the post-Newtonian (PN) phasing formula, which...
Preprint
Full-text available
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Ger...
Article
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilit...
Article
The detection of ∼50 coalescing compact binaries with the Advanced LIGO and Virgo detectors has allowed us to test general relativity, constrain merger rates, and look for evidence of tidal effects, compact object spins, higher waveform modes, and black hole ringdowns. An effect that has not yet been confidently detected is binary eccentricity, whi...
Article
Full-text available
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
Article
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal...
Preprint
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
Preprint
Full-text available
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
Article
Full-text available
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
Article
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity an...
Preprint
Full-text available
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and...
Article
Full-text available
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 Hz to 610 Hz, over a small frequency derivative range around zero, and...
Preprint
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statist...
Preprint
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) a...
Article
Full-text available
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l=m=2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and...
Preprint
Full-text available
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
Article
Full-text available
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
Article
Full-text available
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signal...
Article
Full-text available
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signal...
Preprint
Full-text available
Gravitational-wave (GW) measurements of physical effects such as spin-induced quadrupole moments can distinguish binaries consisting of black holes from non-black hole binaries. While these effects may be poorly constrained for single-event inferences with the second-generation detectors, combining information from multiple detections can help unco...
Preprint
Full-text available
We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze...
Preprint
Full-text available
The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019...
Article
Full-text available
The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019...
Article
Full-text available
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are...
Article
We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due...
Article
Full-text available
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are...
Article
Detection of higher order modes of gravitational waves in third-generation (3G) ground-based detectors such as Cosmic Explorer and Einstein Telescope is explored. Using the astrophysical population of binary black holes based on events reported in the second gravitational wave catalog by Laser Interferometer Gravitational Wave Observatory (LIGO) an...
Preprint
Full-text available
Searching for departures from general relativity (GR) in more than one post-Newtonian (PN) phasing coefficients, called a \emph{multi-parameter test}, is known to be ineffective given the sensitivity of the present generation of gravitational-wave (GW) detectors. Strong degeneracies in the parameter space make the outcome of the test uninformative....
Preprint
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
Preprint
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow...
Article
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_⊙ and 1.0 M_⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more une...
Preprint
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilit...
Article
When binary black holes merge in dense star clusters, their remnants can pair up with other black holes in the cluster, forming heavier and heavier black holes in a process called hierarchical merger. The most important condition for hierarchical merger to occur is that remnants formed by mergers are retained by the host star cluster. Using the pub...
Preprint
The detection of ~50 coalescing compact binaries with the Advanced LIGO and Virgo detectors has allowed us to test general relativity, constrain merger rates, and look for evidence of tidal effects, compact object spins, higher waveform modes, and black hole ringdowns. An effect that has not yet been confidently detected is binary eccentricity, whi...
Preprint
Full-text available
The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final...
Preprint
Full-text available
Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the 3rd observation Run as entitled and categorized the second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 201...