K. Altwegg

K. Altwegg
Universität Bern | UniBe · Space Research & Planetary Sciences Division

About

193
Publications
21,112
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,407
Citations
Citations since 2016
70 Research Items
4699 Citations
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
20162017201820192020202120220200400600800
Introduction
Skills and Expertise

Publications

Publications (193)
Preprint
Full-text available
Ammonium hydrosulphide has long since been postulated to exist at least in certain layers of the giant planets. Its radiation products may be the reason for the red colour seen on Jupiter. Several ammonium salts, the products of NH3 and an acid, have previously been detected at comet 67P/Churyumov-Gerasimenko. The acid H2S is the fifth most abundan...
Article
Full-text available
On 6–8 June 2015, the Ion and Electron Sensor on board Rosetta observed keV‐range water‐group pickup ions arriving from the solar direction. Based on magnetic field intensification and variations, the appearance of the ions was likely to have been caused by a coronal mass ejection. During the 3‐day period when Rosetta was 200 km from the comet, pea...
Article
Context. Isotopic abundances in comets are key to understanding and reconstructing the history and origin of material in the Solar System. Data for deuterium-to-hydrogen (D/H) ratios in water are available for several comets. However, no long-term studies of the D/H ratio in water of a comet during its passage around the Sun have been reported thus...
Article
Context. Gas-phase sodium, silicon, potassium, and calcium were previously identified in mass spectra recorded in the coma of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s Rosetta mission. The major release process for these atoms was identified as sputtering by the solar wind. More recently, remote observations of nume...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41550-021-01373-5.
Article
Context. In an earlier study, we reported that the ram gauge of the COmet Pressure Sensor (COPS), one of the three instruments of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), could be used to obtain information about the sublimating content of icy particles, made up of volatiles and conceivably refractories coming from co...
Preprint
Full-text available
The cyano radical (CN) is one of the most frequently remotely observed species in space, also in comets. Data from the high-resolution Double Focusing Mass Spectrometer (DFMS) on board the Rosetta orbiter, collected in the inner coma of comet 67P/Churyumov-Gerasimenko, revealed an unexpected chemical complexity, and, recently, also more CN than exp...
Article
The cyano radical (CN) is one of the most frequently remotely observed species in space, and is also often observed in comets. Data for the inner coma of comet 67P/Churyumov-Gerasimenko collected by the high-resolution Double Focusing Mass Spectrometer (DFMS) on board the Rosetta orbiter revealed an unexpected chemical complexity, and, recently, al...
Preprint
The ratios of the three stable oxygen isotopes 16O, 17O and 18O on Earth and, as far as we know in the solar system, show variations on the order of a few percent at most, with a few outliers in meteorites. However, in the interstellar medium there are some highly fractionated oxygen isotopic ratios in some specific molecules. The goal of this work...
Article
Context. The ESA Rosetta mission has allowed for an extensive in situ study of the comet 67P/Churyumov-Gerasimenko. In measurements performed by the ram gauge of the COmet Pressure Sensor (COPS), observed features are seen to deviate from the nominal ram gauge signal. This effect is attributable to the sublimation of the volatile fraction of cometa...
Article
The ratios of the three stable oxygen isotopes 16O, 17O, and 18O on the Earth and, as far as we know in the Solar system, show variations on the order of a few per cent at most, with a few outliers in meteorites. However, in the interstellar medium there are some highly fractionated oxygen isotopic ratios in some specific molecules. The goal of thi...
Preprint
Full-text available
The Rosetta spacecraft escorted Comet 67P/Churyumov-Gerasimenko for 2 years along its journey through the Solar System between 3.8 and 1.24~au. Thanks to the high resolution mass spectrometer on board Rosetta, the detailed ion composition within a coma has been accurately assessed in situ for the very first time. Previous cometary missions, such as...
Article
Full-text available
Context. The Rosetta spacecraft escorted Comet 67P/Churyumov-Gerasimenko for 2 yr along its journey through the Solar System between 3.8 and 1.24 au. Thanks to the high resolution mass spectrometer on board Rosetta, the detailed ion composition within a coma has been accurately assessed in situ for the very first time. Aims. Previous cometary missi...
Article
Full-text available
Context. Cometary outgassing is induced by the sublimation of ices and the ejection of dust originating from the nucleus. Therefore measuring the composition and dynamics of the cometary gas provides information concerning the interior composition of the body. Nevertheless, the bulk composition differs from the coma composition, and numerical model...
Article
To understand how phosphorus (P)-bearing molecules are formed in star-forming regions, we have analysed the Atacama Large Millimeter/Submillimeter Array (ALMA) observations of PN and PO towards the massive star-forming region AFGL 5142, combined with a new analysis of the data of the comet 67P/Churyumov–Gerasimenko taken with the Rosetta Orbiter Sp...
Preprint
Full-text available
Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids like e.g. HCN, HNCO, HCOOH, etc. encountered in the interstellar medium as well as in cometary ice to form ammonium salts (NH4+X-) at low temperatures. Ammonium salts, which...
Article
Full-text available
The Double Focusing Mass Spectrometer DFMS embarked on the European Space Agency’s Rosetta mission as part of the ROSINA instrument suite. It boasts a high mass resolution and a high sensitivity, which have guaranteed spectacular discoveries during Rosetta’s rendez-vous with comet 67P/Churyumov-Gerasimenko. This paper describes the DFMS data calibr...
Conference Paper
Numerical models are powerful tools for understanding the connection between the emitted gas and dust from the surface of comets and the subsequent expansion into space where remote sensing instruments can perform measurements. We will present such a predictive model which can provide synthetic measurements for multiple instruments (ROSINA, MIRO, V...
Article
Full-text available
Mass spectrometers that rely on microchannel plate (MCP) detectors age when they are used intensively. The ageing process is due to a reduction of the MCP gain as ions repeatedly bombard the MCP, leading to a reduction of the secondary electron yield of an impacting ion and to a reduction of the electron amplification within the MCP pores. MCP gain...
Preprint
This white paper proposes that AMBITION, a Comet Nucleus Sample Return mission, be a cornerstone of ESA's Voyage 2050 programme. We summarise some of the most important questions still open in cometary science after the successes of the Rosetta mission, many of which require sample analysis using techniques that are only possible in laboratories on...
Article
Context. Unlike all previous cometary space missions, the Rosetta spacecraft accompanied its target, comet 67P/Churyumov-Gerasimenko, for more than two years on its way around the Sun. Thereby, an unexpected diversity and complexity of the chemical composition was revealed. Aims. Our first step of decrypting the exact chemical composition of the ga...
Article
Full-text available
Context. The ESA Rosetta mission investigated the environment of comet 67P/Churyumov-Gerasimenko (hereafter 67P) from August 2014 to September 2016. One of the experiments on board the spacecraft, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) included a COmet Pressure Sensor (COPS) and two mass spectrometers to analyze the...
Article
Full-text available
We have used the latest available shape model for gas and dust simulations of the inner coma of comet 67P/Churyumov-Gerasimenko for the period around May 2015 (equinox). We compare results from a purely insolation-driven model with a complementary set of observations made by ROSINA, VIRTIS, MIRO, and OSIRIS within the same period. The observations...
Article
Context. Pre-equinox measurements of comet 67P/Churyumov-Gerasimenko with the mass spectrometer ROSINA/DFMS on board the Rosetta spacecraft revealed a strongly heterogeneous coma. The abundances of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time vari...
Article
The European Space Agency (ESA) spacecraft Rosetta accompanied the Jupiter-family comet (JFC) 67P / Churyumov-Gerasimenko for over two years along its trajectory through the inner solar system. Between 2014 and 2016, it performed almost continuous in-situ measurements of the comet's gaseous atmosphere in close proximity to its nucleus. In this stud...
Article
Context. The Rosetta spacecraft provided us with a unique opportunity to study comet 67P/Churyumov–Gerasimenko (67P) from a close perspective and over a 2-yr time period. Comet 67P is a weakly active comet. It was therefore unexpected to find an active and dynamic ionosphere where the cometary ions were largely dominant over the solar wind ions, ev...
Article
Full-text available
Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and...
Article
We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at ∼1000 UT on 19 February 2016, characterized by an increase in the coma surface brightn...
Article
We present the ion composition in the coma of comet 67P with newly detected ion species over the 28 to 37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place...
Article
Context. Measurements of isotopic abundances in cometary ices are key to understanding and reconstructing the history and origin of material in the solar system. Comets are considered the most pristine material in the solar system. Isotopic fractionation (enrichment of an isotope in a molecule compared to the initial abundance) is sensitive to envi...
Article
The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov–Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Ros...
Article
Full-text available
Context. This paper describes the modelling of gas and dust data acquired in the period August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. With our 3D gas and dust comae models this work attempts to test the hypothesis that cliff activity...
Article
Full-text available
We present a detailed study of the cometary ionospheric response to a cometary brightness outburst using in situ measurements for the first time. The comet 67P/Churyumov-Gerasimenko (67P) at a heliocentric distance of 2.4 AU from the Sun, exhibited an outburst at ~1000 UT on 19 February 2016, characterized by an increase in the coma surface brightn...
Book
Full-text available
Approaches from the sciences, philosophy and theology, including the emerging field of astrobiology, can provide fresh perspectives to the age-old question 'What is Life?'. Has the secret of life been unveiled and is it nothing more than physical chemistry? Modern philosophers will ask if we can even define life at all, as we still don't know much...
Article
Full-text available
Comets contributed to Earth's atmosphere Models of xenon's origin in Earth's atmosphere require an additional, unknown source that has been a mystery for several decades. Marty et al. measured isotopic ratios of xenon released from comet 67P/Churyumov-Gerasimenko and found that they match the heretofore unknown source. The xenon appears to have bee...
Article
The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detec...
Article
Context. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) was designed to measure the composition of the gas in the coma of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency's Rosetta mission. In addition to the volatiles, ROSINA measured refractories sputtered off the comet by the interaction of solar w...
Article
Full-text available
Because of the high fraction of refractory material present in comets, the heat produced by the radiogenic decay of elements such as aluminium and iron can be high enough to induce the loss of ultravolatile species such as nitrogen, argon or carbon monoxide during their accretion phase in the protosolar nebula. Here, we investigate how heat generat...
Article
Full-text available
Context. The ESA Rosetta mission has been investigating the environment of comet 67P/Churyumov-Gerasimenko (67P) since August 2014. Among the experiments on board the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers to analyse the composition of neutrals and ions and a COm...
Article
Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in...
Article
Full-text available
In this paper, we report the first in-situ detection of the ammonium ion NH$_4^{+}$ at 67P/Churyumov-Gerasimenko (67P/C-G) in a cometary coma, using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Double Focusing Mass Spectrometer (DFMS). Unlike neutral and ion spectrometers onboard previous cometary missions, the ROSINA/DF...
Article
Full-text available
the paper describes the modelling of gas and dust data acquired in August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko
Article
The plasma environment near comet 67P/Churyumov-Gerasimenko (67P/CG) is dynamically affected by various factors, including the incident solar wind and outgassing from the nucleus. The Rosetta spacecraft MAGnetometer (MAG) instrument observations near perihelion showed crossing events into a magnetic field-free region at about 170 km from the nucleu...
Article
On 19 Feb. 2016 nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in-situ gas, dust and plasma instruments, and one dust collector. At 9:40 a dust cloud develo...
Article
The Rosetta Plasma Consortium MAGnetometer (RPC-MAG) has detected signatures of diamagnetic regions associated with comet 67P/Churyumov-Gerasimenko at distances from 30 to 400 km at different heliocentric distances, which is larger than what has been predicted by numerical simulations of the cometary plasam environment. The physical mechanism behin...
Article
We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov-Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (<20 km) and large heliocentric distances (>3 au). The ionospheric model proposed is used as an organiz...
Article
Several sulphur-bearing species have already been observed in different families of comets. However, the knowledge on the minor sulphur species is still limited. The comet's sulphur inventory is closely linked to the presolar cloud and holds important clues to the degree of reprocessing of the material in the solar nebula and during comet accretion...
Conference Paper
Mass spectrometers are valuable tools for the in situ characterization of gaseous exo-and atmospheres and have been operated at various bodies in space. Typical measurements derive the elemental composition, relative abundances, and isotopic ratios of the examined environment. To sample tenuous gas environments around comets, icy moons, and the exo...
Article
We examine the evolution of the water production of comet 67P/Churyumov-Gerasimenko during the Rosetta mission (June 2014 to May 2016) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the...
Article
We analyze the ROSINA-DFMS data between August 2014 and February 2016 to examine the effect of seasonal variations on the four major species within the coma of 67P/Churyumov-Gerasimenko (H2O, CO2, CO, and O2), resulting from the tilt in the orientation of the comet's spin axis. Using a numerical data inversion, we derive the nonuniform activity dis...
Article
Full-text available
The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left...
Article
The coma and the comet-solar wind interaction of comet 67P/Churyumov-Gerasimenko changed dramatically from the initial Rosetta spacecraft encounter in August 2014 through perihelion in August 2015. Just before equinox (at 1.6 AU from the Sun), the solar wind signal disappeared and two regions of different cometary ion characteristics were observed....
Article
During 2015 January 9–11, at a heliocentric distance of ~2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ~28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure...
Article
Full-text available
The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust...
Article
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1--10\% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We...
Article
Full-text available
Context. This paper describes the initial modelling of gas and dust data acquired in August and September 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. A