About
112
Publications
61,241
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,117
Citations
Introduction
Roboticist / coFounder at LYRO #Robotics, #ComputerVision & #ArtificialIntelligence. Former Research Lead at Australian Centre for Robotic Vision (ACRV) Before that I worked at the IDSIA Robotics Lab & received a PhD from the Università della Svizzera Italiana (USI) in robotic learning for vision and actions on the iCub humanoid. Previously I worked at the Advanced Concepts Team of the European Space Agency. I studied Space Robotics in a Joint European Master Programme (SpaceMaster).
Additional affiliations
Education
February 2011 - September 2014
January 2009 - April 2009
August 2008 - August 2009
Publications
Publications (112)
This paper introduces a machine learning based system for controlling a
robotic manipulator with visual perception only. The capability to autonomously
learn robot controllers solely from raw-pixel images and without any prior
knowledge of configuration is shown for the first time. We build upon the
success of recent deep reinforcement learning and...
We describe our software system enabling a tight integration between vision and control modules on complex, high-DOF humanoid robots. This is demonstrated with the iCub humanoid robot performing visual object detection, reaching and grasping actions. A key capability of this system is reactive avoidance of obstacle objects detected from the video s...
Combining domain knowledge about both imaging processing and machine learning techniques can expand the abilities of Genetic Programming when used for image processing. We successfully demonstrate our new approach on several different problem domains. We show that the approach is fast, scalable and robust. In addition, by virtue of using off-the-sh...
Curiosity is an essential driving force for science as well as technology, and has led mankind to explore its surroundings, all the way to our current understanding of the universe. Space science and exploration is at the pinnacle of each of these developments, in that it requires the most advanced technology, explores our world and outer space, an...
We describe a hopping science payload solution designed to exploit the Moon's lower gravity to leap up to 20 m above the surface. The entire solar-powered robot is compact enough to fit within a $10$cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop.
The LunaRoo concept is a proposed payload to...
Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed rapid progress in robotic object grasping. In this systematic review, we surveyed the publications over the last decade, with a particular interest in grasping an object using all six degrees of...
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpre...
Dynamic platforms that operate over many unique terrain conditions typically require many behaviours. To transition safely, there must be an overlap of states between adjacent controllers. We develop a novel method for training setup policies that bridge the trajectories between pre-trained Deep Reinforcement Learning (DRL) policies. We demonstrate...
Grasping is the process of picking an object by applying forces and torques at a set of contacts. Recent advances in deep-learning methods have allowed rapid progress in robotic object grasping. We systematically surveyed the publications over the last decade, with a particular interest in grasping an object using all 6 degrees of freedom of the en...
We investigate how high-resolution tactile sensors can be utilized in combination with vision and depth sensing, to improve grasp stability prediction. Recent advances in simulating high-resolution tactile sensing, in particular the TACTO simulator, enabled us to evaluate how neural networks can be trained with a combination of sensing modalities....
This paper is concerned with perception challenges for robust grasping in the presence of clutter and unpredictable relative motion between robot and object. Traditional perception systems developed for static grasping are unable to provide feedback during the final phase of a grasp due to sensor minimum range, occlusion, and a limited field of vie...
We propose a novel iterative approach for crossing the reality gap that utilises live robot rollouts and differentiable physics. Our method, RealityGrad, demonstrates for the first time, an efficient sim2real transfer in combination with a real2sim model optimisation for closing the reality gap. Differentiable physics has become an alluring alterna...
The DARPA subterranean challenge requires teams of robots to traverse difficult and diverse underground environments. Traversing small gaps is one of the challenging scenarios that robots encounter. Imperfect sensor information makes it difficult for classical navigation methods, where behaviours require significant manual fine tuning. In this pape...
Dynamic platforms that operate over manyunique terrain conditions typically require multiple controllers.To transition safely between controllers, there must be anoverlap of states between adjacent controllers. We developa novel method for training Setup Policies that bridge thetrajectories between pre-trained Deep Reinforcement Learning(DRL) polic...
Legged robots often use separate control policies that are highly engineered for traversing difficult terrain such as stairs, gaps, and steps, where switching between policies is only possible when the robot is in a region that is common to adjacent controllers. Deep Reinforcement Learning (DRL) is a promising alternative to hand-crafted control de...
Manipulating deformable objects, such as fabric, is a long standing problem in robotics, with state estimation and control posing a significant challenge for traditional methods. In this paper, we show that it is possible to learn fabric folding skills in only an hour of self-supervised real robot experience, without human supervision or simulation...
The Amazon Robotics Challenge enlisted sixteen teams to each design a pick-and-place robot for autonomous warehousing of everyday household items. Herein we present the design of our custom-built, Cartesian robot Cartman, which won the first place in the competition finals. We highlight our integrated, experience-centred design methodology and the...
We present the Evolved Grasping Analysis Dataset (EGAD), comprising over 2000 generated objects aimed at training and evaluating robotic visual grasp detection algorithms. The objects in EGAD are geometrically diverse, filling a space ranging from simple to complex shapes and from easy to difficult to grasp, compared to other datasets for robotic g...
The large demand for simulated data has made the reality gap a problem on the forefront of robotics. We propose a method to traverse the gap by tuning available simulation parameters. Through the optimisation of physics engine parameters, we show that we are able to narrow the gap between simulated solutions and a real world dataset, and thus allow...
We present the Evolved Grasping Analysis Dataset (EGAD), comprising over 2000 generated objects aimed at training and evaluating robotic visual grasp detection algorithms. The objects in EGAD are geometrically diverse, filling a space ranging from simple to complex shapes and from easy to difficult to grasp, compared to other datasets for robotic g...
Deep reinforcement learning has been shown to solve challenging tasks where large amounts of training experience is available, usually obtained online while learning the task. Robotics is a significant potential application domain for many of these algorithms, but generating robot experience in the real world is expensive, especially when each task...
We present a benchmark to facilitate simulated manipulation; an attempt to overcome the obstacles of physical benchmarks through the distribution of a real world, ground truth dataset. Users are given various simulated manipulation tasks with assigned protocols having the objective of replicating the real world results of a recorded dataset. The be...
We present a benchmark to facilitate simulated manipulation; an attempt to overcome the obstacles of physical benchmarks through the distribution of a real world, ground truth dataset. Users are given various simulated manipulation tasks with assigned protocols having the objective of replicating the real world results of a recorded dataset. The be...
This contribution comprises the interplay between a multi-modal variational autoencoder and an environment to a perceived environment, on which an agent can act. Furthermore, we conclude our work with a comparison to curiosity-driven learning.
When learning behavior, training data is often generated by the learner itself; this can result in unstable training dynamics, and this problem has particularly important applications in safety-sensitive real-world control tasks such as robotics. In this work, we propose a principled and model-agnostic approach to mitigate the issue of unstable lea...
Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labeling process is often expensive or even impractical in many robotic...
Humans perform object manipulation in order to execute a specific task. Seldom is such action started with no goal in mind. In contrast, traditional robotic grasping (first stage for object manipulation) seems to focus purely on getting hold of the object—neglecting the goal of the manipulation. Most metrics used in robotic grasping do not account...
We present a novel approach to perform object-independent grasp synthesis from depth images via deep neural networks. Our generative grasping convolutional neural network (GG-CNN) predicts a pixel-wise grasp quality that can be deployed in closed-loop grasping scenarios. GG-CNN overcomes shortcomings in existing techniques, namely discrete sampling...
Juxi Leitner recounts how he and his team took part in — and won — the 2017 Amazon Robotics Challenge and reflects on the importance of solving big picture problems in robotics.
We quantify the accuracy of various simulators compared to a real world robotic reaching and interaction task. Simulators are used in robotics to design solutions for real world hardware without the need for physical access. The `reality gap' prevents solutions developed or learnt in simulation from performing well, or at at all, when transferred t...
Automated grasping has a long history of research that is increasing due to interest from industry. One grand challenge for robotics is Universal Picking: the ability to robustly grasp a broad variety of objects in diverse environments for applications from warehouses to assembly lines to homes. Although many researchers now openly share code and d...
Camera viewpoint selection is an important aspect of visual grasp detection, especially in clutter where many occlusions are present. Where other approaches use a static camera position or fixed data collection routines, our Multi-View Picking (MVP) controller uses an active perception approach to choose informative viewpoints based directly on a d...
Current end-to-end Reinforcement Learning (RL) approaches are severely limited by restrictively large search spaces and are prone to overfitting to their training environment. This is because in end-to-end RL perception, decision-making and low-level control are all being learned jointly from very sparse reward signals, with little capability of in...
We investigate a reinforcement approach for distributed sensing based on the latent space derived from multi-modal deep generative models. Our contribution provides insights to the following benefits: Detections can be exchanged effectively between robots equipped with uni-modal sensors due to a shared latent representation of information that is t...
This paper represents a step towards vision-based manipulation of plastic materials. Manipulating deformable objects is made challenging by: 1) the absence of a model for the object deformation, 2) the inherent difficulty of visual tracking of deformable objects, 3) the difficulty in defining a visual error and 4) the difficulty in generating contr...
Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labelling process is often expensive or even impractical in many robotic...
The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluati...
The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluati...
This paper presents a real-time, object-independent grasp synthesis method which can be used for closed-loop grasping. Our proposed Generative Grasping Convolutional Neural Network (GG-CNN) predicts the quality of grasps at every pixel. This one-to-one mapping from a depth image overcomes limitations of current deep learning grasping techniques, sp...
The International Joint Conference on Neural Networks (IJCNN) was held in Anchorage (Alaska) in May 2017. This top conference in the field of neural networks included many tracks and special sessions. In particular, a special session on Machine Learning Methods Neural Networks applied to Vision and Robotics (MLMVR) was organized by the authors rece...
While deep learning has had significant successes in computer vision thanks to the abundance of visual data, collecting sufficiently large real-world datasets for robot learning can be costly. To increase the practicality of these techniques on real robots, we propose a modular deep reinforcement learning method capable of transferring models train...
We present the grasping system and design approach behind $\textit{Cartman}$, the winning entrant in the 2017 Amazon Robotics Challenge. We investigate the design processes leading up to the final iteration of the system and describe the emergent solution by comparing it with key robotics design aspects. Following our experience, we propose a new d...
Robotic manipulation and grasping in cluttered and unstructured environments is a current challenge for robotics. Enabling robots to operate in these challenging environments have direct applications from automating warehouses to harvesting fruit in agriculture. One of the main challenges associated with these difficult robotic manipulation tasks i...
We present our approach for robotic perception in cluttered scenes that led to winning the recent Amazon Robotics Challenge (ARC) 2017. Next to small objects with shiny and transparent surfaces, the biggest challenge of the 2017 competition was the introduction of unseen categories. In contrast to traditional approaches which require large collecti...
The Amazon Robotics Challenge enlisted sixteen teams to each design a pick-and-place robot for autonomous warehousing, addressing development in robotic vision and manipulation. This paper presents the design of our custom-built. cost-effective robot system Cartman, which won first place in the competition finals by stowing 14 (out of 16) and picki...
A modular method is proposed to learn and transfer visuo-motor policies from simulation to the real world in an efficient manner by combining domain randomization and adaptation. The feasibility of the approach is demonstrated in a table-top object reaching task where a 7 DoF arm is controlled in velocity mode to reach a blue cuboid in clutter thro...
A modular method is proposed to learn and transfer visuo-motor policies from simulation to the real world in an efficient manner by combining domain randomization and adaptation. The feasibility of the approach is demonstrated in a table-top object reaching task where a 7 DoF arm is controlled in velocity mode to reach a blue cuboid in clutter thro...