Justin Baker RiesNortheastern University | NEU · Department of Marine and Environmental Sciences
Justin Baker Ries
Doctor of Philosophy
About
114
Publications
30,846
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,115
Citations
Introduction
Publications
Publications (114)
The geochemistry of biogenic carbonates has long been used as proxies to record changing seawater parameters. However, the effect of ocean acidification on seawater chemistry and organism physiology could impact isotopic signatures and how elements are incorporated into the shell. In this study, we investigated the geochemistry of three reservoirs...
Coral reef ecosystems are delicately balanced and are thus prone to disruption by stressors such as storms, disease, climate variability and natural disasters. Most tropical coral populations worldwide are now in rapid decline owing to additional anthropogenic pressures, such as global warming, ocean acidification and a variety of local stressors....
Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical fo...
Long‐lived crustose coralline algae are important ecosystem engineers and environmental archives in regions where observations of climate variability are sparse. Clathromorphum compactum is a cold‐water alga that precipitates calcite that serve as archives of change at annual to sub‐annual resolution. Understanding how environmental variability imp...
Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symb...
Long-term, high-resolution measurements of environmental variability are sparse in the High Arctic. In the absence of such data, we turn to proxies recorded in the layered skeletons of the long-lived crustose coralline algae Clathromorphum compactum. Annual growth banding in this alga is dependent on several factors that include temperature, light...
Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to glob...
It is thought that the active physiological regulation of the chemistry of a parent fluid is an important process in the biomineralization of scleractinian corals. Biological regulation of calcification fluid pH (pHCF) and other carbonate chemistry parameters ([CO32−]CF, DICCF, and ΩCF) may be challenged by CO2 driven acidification and temperature....
Increased anthropogenic carbon dioxide (CO2) in the atmosphere can enter surface waters and depress pH. In marine systems, this phenomenon, termed ocean acidification (OA), can modify a variety of physiological, ecological, and chemical processes. Shell-forming organisms are particularly sensitive to this chemical shift, though responses vary among...
Anthropogenic CO2‐emission is causing ocean warming and acidification. Understanding how basic physiological processes of marine organisms respond to these stressors is important for predicting their responses to future global change. We examined the effects of elevated pCO2 and temperature (pCO2 = 344–2199 ppm; temperature = 6°C, 9°C, and 12°C) on...
Larvae of marine calcifying organisms are particularly vulnerable to the adverse effects of elevated pCO2 on shell formation because of their rapid calcification rates, reduced capacity to isolate calcifying fluid from seawater, and use of more soluble polymorphs of calcium carbonate. However, parental exposure to elevated pCO2 could benefit larval...
It is well known that the increasing partial pressure of atmospheric CO2 (pCO2) is reducing surface ocean pH, a process known as ocean acidification (OA) [...]
Ocean acidification and warming are expected to disproportionately affect high‐latitude calcifying species, such as crustose coralline algae. Clathromorphum nereostratum and Clathromorphum compactum are the primary builders of carbonate‐hardgrounds in the Aleutians Islands of Alaska and North Atlantic shelf, respectively, providing habitat and sett...
Host‐associated microbial communities are fundamental to host physiology, yet it is unclear how these communities will respond to environmental disturbances. Here, we disentangle the environment‐linked and host‐linked effects of ocean acidification on oyster‐associated microbial communities. We exposed adult oysters (Crassostrea virginica) to CO2‐i...
Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal endosymbionts ise particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of the coral holobiont (animal host + algal s...
Global change, including rising temperatures and acidification, threatens corals globally. Although bleaching events reveal fine‐scale patterns of resilience, traits enabling persistence under global change remain elusive. We conducted a 95‐d controlled‐laboratory experiment investigating how duration of exposure to warming (~28, 31°C), acidificati...
Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy...
Reef-dwelling calcifiers face numerous environmental stresses associated with anthropogenic carbon dioxide emissions, including ocean acidification and warming. Photosymbiont-bearing calcifiers, such as large benthic foraminifera, are particularly sensitive to climate change. To gain insight into their responses to near-future conditions, Amphisteg...
Reef-dwelling calcifiers face numerous environmental stresses associated with anthropo-genic carbon dioxide emissions, including ocean acidification and warming. Photosymbiont-bearing calcifiers, such as large benthic foraminifera, are particularly sensitive to climate change. To gain insight into their responses to near-future conditions, Amphiste...
Ocean acidification is predicted to impair marine calcifiers' abilities to produce shells and skeletons. We conducted laboratory experiments investigating the impacts of CO2‐induced ocean acidification (pCO2 = 478–519, 734–835, 8,980–9,567; Ωcalcite = 7.3–5.7, 5.6–4.3, 0.6–0.7) on calcification rates of two estuarine calcifiers involved in a classi...
Crustose coralline algae (CCA) function as foundation species by creating marine carbonate hardground habitats. High‐latitude species may be vulnerable to regional warming and acidification. Here, we report the results of an experiment investigating the impacts of CO 2 ‐induced acidification (pCO 2 ∼350, 490, 890, 3,200 µatm) and temperature (∼6.5°...
The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pH cf ) and carbonate chemistry of the corals Pocill...
Early evidence suggests that DNA methylation can mediate phenotypic responses of marine calcifying species to ocean acidification (OA). Few studies, however, have explicitly studied DNA methylation in calcifying tissues through time. Here, we examined the phenotypic and molecular responses in the extrapallial fluid and mantle (fluid and tissue at t...
Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structur...
Global change is threatening coral reefs, with rising temperatures leading to repeat bleaching events (dysbiosis of coral hosts and their symbiotic algae) and ocean acidification reducing net coral calcification. Although global-scale mass bleaching events are revealing fine-scale patterns of coral resistance and resilience, traits that lead to per...
Early evidence suggests that DNA methylation can mediate phenotypic responses of marine calcifying species to ocean acidification (OA). Few studies, however, have explicitly studied DNA methylation in calcifying tissues through time. Here, we examined the phenotypic and molecular responses in the extrapallial fluid and mantle (fluid and tissue at t...
Epigenetic modification, specifically DNA methylation, is one possible mechanism for intergenerational plasticity. Before inheritance of methylation patterns can be characterized, we need a better understanding of how environmental change modifies the parental epigenome. To examine the influence of experimental ocean acidification on eastern oyster...
The response of marine-calcifying organisms to ocean acidification (OA) is highly variable, although the mechanisms behind this variability are not well understood. Here, we use the boron isotopic composition (δ ¹¹ B) of biogenic calcium carbonate to investigate the extent to which organisms’ ability to regulate pH at their site of calcification (p...
Epigenetic modification, specifically DNA methylation, is one possible mechanism for intergenerational plasticity. Before inheritance of methylation patterns can be characterized, we need a better understanding of how environmental change modifies the parental epigenome. To examine the influence of experimental ocean acidification on eastern oyster...
Increasing anthropogenic carbon dioxide is predicted to cause declines in ocean pH and calcium carbonate saturation state over the coming centuries, making it potentially harder for marine calcifiers to build their shells and skeletons. One mechanism of resilience to ocean acidification is an organism's ability to regulate pH and, thus, calcium car...
Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize M...
We conducted a 93-day experiment investigating the independent and combined effects of acidification (280 - 3300 matm pCO2) and warming (28C and 31C) on calcification and linear extension rates of four key Caribbean coral species (Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, Undaria tenuifolia) from inshore and offshore reefs o...
A solid understanding of global oceanic change throughout Holocene time is needed to contextualize and interpret recent observations of rapid warming (Moore, 2016), ocean acidification (Popova et al., 2014; Qi et al., 2017), increasing meltwater input (Halfar et al., 2013; Notz and Stroeve, 2016) and circulation changes (Liu et al., 2017; Rahmstorf...
Little is known about the fractionation of Li isotopes during formation of biogenic carbonates, which form the most promising geological archives of past seawater composition. Here we investigated the Li isotope composition (δ7Li) and Li/Ca ratios of organisms that are abundant in the Phanerozoic record, mollusks (mostly bivalves), echinoderms, and...
Ocean acidification will potentially inhibit calcification by marine organisms; however, the response of the most prolific ocean calcifiers, coccolithophores, to this perturbation remains under characterized. Here we report novel chemical constraints on the response of the widespread coccolithophore species Ochrosphaera neapolitana (O. neapolitana) to...
Coral bleaching events are increasing in frequency, demanding examination of the physiological and molecular responses of scleractinian corals and their algal symbionts (Symbiodinium sp.) to stressors associated with bleaching. Here, we quantify the effects of long-term (95-day) thermal and CO2-acidification stress on photochemical efficiency of in...
Anthropogenic global change and local anthropogenic stressors are decreasing coral growth and survival globally, thus altering the structure and function of coral reef ecosystems. We show that skeletal extension rates of nearshore colonies of Siderastrea siderea and Pseudodiploria strigosa across the Belize Mesoamerican Barrier Reef System (MBRS) h...
Coral reefs are important ecosystems that are increasingly negatively impacted by human activities. Understanding which anthropogenic stressors play the most significant role in their decline is vital for the accurate prediction of future trends in coral reef health and for effective mitigation of these threats. Here we present annually resolved bo...
The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. I...
Coral bleaching episodes are increasing in frequency, demanding examination of the physiological and molecular responses of corals and their Symbiodinium to climate change. Here we quantify bleaching and Symbiodinium photosynthetic performance of Siderastrea siderea from two reef zones after long-term exposure to thermal and CO 2 -acidification str...
The increase in atmospheric carbon dioxide (CO2) observed since the industrial revolution has reduced surface ocean pH by ∼0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the...
The isotope composition of boron (B) in marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. In order to derive seawater pH from boron isotope ratio data, a number of assumptions related to chemical kinetics and themodynamic isotope exchange reactions are necessary....
The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidificat...
Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971; a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcificat...
Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1–4 °C and pH to decrease by 0.1–0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424–426, 888–940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skel...
Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase—trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers’ ability to build prot...
The oceans are becoming warmer and more acidic as a result of rising atmospheric pCO2. Transcriptome plasticity may facilitate marine organisms' acclimation to thermal and acidification stress by tailoring gene expression to mitigate the impacts of these stressors. Here, we produce the first transcriptome of the abundant, ubiquitous, and resilient...
There are concerns about the future of coral reefs in the face of ocean acidification and warming, and although studies of
these phenomena have advanced quickly, efforts have focused on pieces of the puzzle rather than integrating them to evaluate
ecosystem-level effects. The field is now poised to begin this task, but there are information gaps th...
The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced durin...
Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2=424-426, 888-940 ppm-v) and warming (T=28, 32 °C) on calcification rate and skeletal...
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting i...
“Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of ^(13)C and ^(18)O isotopes bound to each other within carbonate minerals in ^(13)C^(18)O^(16)O_2^(2−) groups (heavy isotope “clumps”). Although most clumped isotope geothermometry impli...
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting i...
The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced durin...
Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warmin...
Here, we report on experiments designed to test calcification responses in phylogenetically distant echinoid species (Eucidaris tribuloides, Echinometra lucunter) reared under various combinations of seawater temperature (21.5, 28.5 °C), pCO 2 (400, 750, 2850 μatm), Mg/Ca ratio (1.7, 5.2) and presence/absence of predators (crabs). The following tre...
The shells of marine mollusks are widely used
archives of past climate and ocean chemistry. Whilst the measurement
of mollusk �18O to develop records of past climate
change is a commonly used approach, it has proven challenging
to develop reliable independent paleothermometers that
can be used to deconvolve the contributions of temperature
and flui...
The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and flui...
Atmospheric carbon dioxide (pCO(2)) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been show...
The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and...
Atmospheric carbon dioxide (pCO2) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been shown...