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A model of the COVID-19 epidemic is proposed, based on a separate consideration of symptomat-
ically and asymptomatic infected. It is assumed that the main contribution to the spread of infection
is due to asymptomatic superspreaders. Comparison with epidemic data shows that the vast ma-
jority of the world population is involved in cyclical asymptomatic reinfection, which maintains a
slowly developing plateau of the symptomatic morbidity. In this sense, the COVID-19 epidemic is
an iceberg, the main asymptomatic part of which has no external manifestations. In addition to the
average plateau, the model explains the existence of non-seasonal epidemic waves. They arise as a
result of biological correlations in the population and are described by the 3D Lotka-Volterra equa-
tions. The model allows determining the direction of viral mutations and calculating the effect of
vaccination on the course of the epidemic. In the case of a stable non-pathogenic strain, the epidemic
becomes completely asymptomatic. We believe that the spread of such a non-pathogenic strain and
its subsequent dominance is responsible for ending the epidemic after the single wave of incidence in
China. A way to stop the epidemic in the rest of the world may consist in displacing the circulating
pathogenic virus with its stable non-pathogenic strain. In this approach the non-pathogenic strain
plays the role of universal vaccine, which is insensitive to mutations of the pathogenic strains.

I. MOTIVATION AND INTRODUCTION

The COVID-19 epidemic has divided the world into
two unequal parts - China and the rest of the world.

In China, the epidemic developed in the usual way: an
exponential increase in the incidence, then a pronounced
maximum, then a decline and the end of the epidemic.
The whole cycle took about two and a half months.

In the rest of the world, the epidemic was completely
different. After a stage of exponential growth in daily
morbidity in many countries, an inexplicable plateau has
entered. Then the second and third waves emerged, the
epidemic is currently ongoing, and it is unclear how many
more waves may follow. Nothing of the kind is observed
in China.

In previous works [1–3], it was shown that the asym-
metric course of the epidemic with a long plateau can
be explained by the presence of asymptomatic carriers
of infection - superspreaders. However, this model did
not explain the emergence of repeated waves of the epi-
demic. In addition, the nature of the asymptomatic state
remained unclear. Finally, the question of the difference
in the courses of the epidemic in China and in the rest of
the world was not raised in any way. Later, these issues
were raised and considered in the paper [4].
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In this work, the division of the infected into asymp-
tomatic and symptomatic is substantiated. We associate
this with two types of immunity - innate and adaptive.
If the innate immunity is sufficient to limit and subse-
quently eliminate the virus, then the person becomes the
asymptomatic carrier of the virus. If the innate immu-
nity is not enough for this, then the person becomes ill,
and adaptive immunity comes into play. The choice of
the type of reaction is determined by the probability p
with which an infected person will get sick. This proba-
bility gives an idea of the degree of pathogenicity of the
virus.

With a probability (1−p) innate immunity is sufficient,
and the infected person remains practically healthy.
Then the adaptive immunity is not activated. In this
case, the infection remains in the body for a long time,
which turns the carriers of the infection into superspread-
ers. In the proposed model, it is these carriers that make
the main contribution to the spread of the virus.

The article is structured as follows.

In the next part, we look at the symptomatic and
asymptomatic states as two modes of immune response
to the virus. Response factors relevant to the two-
component model are discussed here. In the third part,
on the basis of these factors, the two-component model
and its dynamic equations are built, the dependence of
the course of the epidemic on the parameters of the model
is investigated. In the fourth and fifth parts, we compare
the solution with the observed course of the epidemic in
the world and separately in China and determine val-
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ues of the parameters. In the sixth part the factor of
strong biological correlations is considered, which leads
to a sequence of incidence waves. This makes it possi-
ble to interpret the incidence waves observed during the
pandemic in all countries except China. The case of sta-
ble non-pathogenic virus, which results in the simplest
one-wave solution, is considered in the seventh section of
the paper. We assume this case describes the epidemic in
China. In the next section we consider the role of viral
mutations and drift of parameters in the epidemic. In
the final part, we discuss the results obtained and con-
sider an alternative approach to ending the epidemic, not
associated with mass vaccination.

II. SYMPTOMATIC AND ASYMPTOMATIC
STATES OF INFECTED

The biological characteristics of viruses and their in-
teraction with multicellular organisms, despite numerous
studies, remain poorly understood. The complexity of
the problem is determined by the huge number of viruses,
their constant variability, and the transition from one
species of organisms to another, as happened with the
virus that causes COVID-19.

To create a model for the pandemic, we used the fol-
lowing provisions on the interaction of the virus and the
human body, which, in our opinion, do not contradict
existing ideas.

1. After entering the body, the virus begins to multi-
ply.

2. Innate/nonspecific immunity triggers nonspecific
defence agents.

3. Under certain conditions, this turns out to be suf-
ficient and equilibrium occurs at a safe level, which does
not lead to the development of symptoms of infection,
i.e., diseases. Since this is an equilibrium state, the sys-
tem organism + virus can stay in it for a time interval
T without any external manifestations. It is this state
that we call asymptomatic. In the asymptomatic state,
the person is infected but not sick.

4. The number of viruses in the asymptomatic state
gradually decreases. At first, for some time Tω = 1/ω
this is enough to spread the infection. Further, during
the rest time Tσ = 1/σ it is not enough, and the persons
do not spread. However, all the time T = Tω + Tσ they
remain protected from the illness by their own innate
immunity, which is properly tuned by the very presence
of the virus in the organism. This protection lasts as long
as the virus remains in the body.

5. If the innate immunity turns out to be insufficient to
establish the balance at a safe level the person becomes
ill. It is this state that we call symptomatic. Then the
adaptive immune response is activated. In this state, the
main role is no longer played by the innate immunity,
but by the adaptive immunity and corresponding specific
antibodies.

6. The type of immune response is determined at some

time point in the development of the infection, which we
will call the bifurcation point. After it, either a symp-
tomatic state develops (with a certain probability p), or
an asymptomatic state (with a probability (1 − p)). In
what follows, we call this probability p the pathogenicity
factor.

In our work, we assume that the hidden infection is
much more likely than the symptomatic one. Compari-
son of the results obtained in the model with the course
of the COVID-19 pandemic fully confirms this assump-
tion a posteriori. The transition to the latent phase is
three or more orders of magnitude more probable than
to the symptomatic phase, i.e. p ∼ 10−3. Therefore, we
can neglect the contribution from the symptomatically
infected to the spread of infection.

III. THE TWO-COMPONENT MODEL

For a model description of the epidemic, taking into
account both symptomatic and asymptomatic infected,
we will introduce, along with the initial susceptible state
S, two more pairs of states.

Asymptomatically infected people undergo states I
(active, superspreader) and R (passive, temporarily un-
susceptible). In these two states, the asymptomatic in-
fected person stays for a limited time periods - respec-
tively, Tω and Tσ. Then they again return to their origi-
nal susceptible state S.

Symptomatically infected persons pass the states
Is(sick) and Rs (recovered). After that, they acquire
long-term immunity and remain in the final Rs state for-
ever.

FIG. 1. Flowchart of the two-component epidemic model.
Here S is the share of susceptible, I is the share of ac-
tive asymptomatic infected, R is the share of passive asymp-
tomatic infected, Is is the share of symptomatically infected,
Rs is the share of those who recovered after the illness and
got the long-term immunity. The model parameters: Tω is
the time of deactivation, Tσ is the time of elimination, p is
the probability of visible infection, (1 − p) is the probability
of hidden infection. The bifurcation point is shown with red
circle.
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The asymptomatic infection has no external manifes-
tations and therefore is hidden whereas the symptomatic
infection causes decease and therefore is visible. Thereby
the epidemic has two levels - visible and hidden. Corre-
sponding epidemic pattern represents Fig.1. The choice
between two considered pathways (asymptomatic and
symptomatic) occurs immediately after infection at the
bifurcation point shown in Fig.1 with a red circle. In-
troduced epidemic variables S, I,R, Is and Rs mean the
proportions of the corresponding states in the population.
Further, since symptomatic states do not contribute to
the epidemic process, we can without loss of generality
consider only the Is variable and omit the Rs variable.

Now, one can reformulate the description of the epi-
demic process in terms of the pattern as follows.

1. Depending on the effectiveness of the nonspecific
immune response, the level of infection exceeds the safety
threshold and becomes dangerous (with probability p) or
does not exceed it and remains safe (with probability1−
p). In the first case (Is state), adaptive/specific immunity
turns in play and symptoms of the disease appear. In the
second case (I state), this does not happen, the infected
person is outwardly healthy, but the infection remains in
the body in the hidden form.

2. When symptoms appear, the infected persons (Is
state) become isolated and cannot spread the infection.
If they recover, they acquire ideal long-term immunity
and cannot be infected anymore (Rs state).

3. The asymptomatic infected persons do not become
isolated and can spread the infection ( I state). They do
it during certain time period Tω, while the level of infec-
tion in the body is sufficiently high. After that during
certain time period Tσ the level of infection is insuffi-
cient for spread but sufficient to hold the innate immu-
nity turned on ( R state). All the time T = Tω + Tσ the
asymptomatic infected persons (in both I and R states)
remain protected from the symptomatic illness. After
removing the virus from the body, they return to the in-
intial susceptible state S. They do not acquire long-term
immunity and can be reinfected.

4. Due to the appearance of long-term immunity, the
transition to the symptomatic state Is is irreversible. On
the contrary, due to the absence of the appearance of
long-term immunity, the transition to the asymptomatic
state I is reversible. This means that after the asymp-
tomatic infection I the infected persons can return to
their original susceptible state S whereas after the symp-
tomatic state Is can not.

A distinctive feature of the two-component model is
the bifurcation point, at which it is possible to choose be-
tween the symptomatic state Is (visible infection) and the
asymptomatic state I (hidden infection). Another fea-
ture is the presence of a closed SIRS cycle of re-infection
in the asymptomatic sector of the epidemic. The reason
for the cycle is the absence of long-term immunity after
the asymptomatic infection. Neither of these two fea-
tures are present in the conventional SIR model, which
ignores the asymptomatic infection.

The dynamic equations of the two-component model
directly follow from the diagramm and have the form

dS
dt = σR− IS

dI
dt = (1− p)IS − ωI

dR
dt = ωI − σR

(1)

dIs
dt

= pIS (2)

Here, ω = 1/Tω is deactivaion rate and σ = 1/Tσ is elim-
ination rate. During transition from the symptomatic
disease state Is to the recovered state Rs, people are iso-
lated and do not spread the virus. Consequently, they
do not contribute to the epidemic process, and the Rs
variable do not enter the equations at all.

The hidden (asymptomatic) sector of the epidemic de-
scribed by system of equations (1) is close to the conven-
tional SIRS model, the spread rate of the virus in these
equations is taken as a unit. The only difference is factor
(1 − p ) in the second equation of the system which is
absent in the SIRS model.

The visible (symptomatic) sector of the epidemic is de-
scribed by the single equation (2). This relation expresses
the simple fact that in each act of infection described by
the term IS, the probability of symptomatic infection is
p.

The system (1) describing the asymptomatic sector of
the epidemic is completely autonomous and does not de-
pend on the symptomatic sector represented by equa-
tion (2). Therefore, for a complete description of the
epidemic, it is sufficient to obtain a solution to system
(1) and use equation (2) only for direct calculation of
the daily incidence. Particularly, in the limit of low
pathogenicity p � 1 one can take p = 0 in system (1)
and solve it separately. Then the found solution can be
inserted into the right-hand side of equation (2), which
directly gives the symptomatic daily incidence dIs/dt.
In what follows, we will act in this way. Comparing the
results of the model with the data on the COVID-19 epi-
demic will show that the pathogenicity parameter p is
indeed small.

In the zero approximation case p = 0 the system (1) is
reduced to the conventional SIRS model which has two
equilibrium points. When the epidemic condition ω < 1
is fulfilled, these two points are one unstable node (1, 0, 0)
and one stable focus

O

(
ω,

1− ω
σ + ω

σ,
1− ω
σ + ω

ω

)
. (3)

This focus determines asimptotics of the solution at t→
∞ and then from (2) gives the limit value of the daily
incidence dIs/dt:

lim
t→∞

(
dIs
dt

)
= pσω

1− ω
σ + ω

. (4)
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FIG. 2. Phase portrait and epidemic dependence of the symp-
tomatic incidence dIs/dt in the low-pathogenicity limit p→ 0.

.

This means that in the low-pathogenic limit p � 1 the
daily incidence has plateau. The phase portrait of the
system (1) for p = 0 and corresponding course of the
daily incidence in the limiting case p → 0 is shown in
Fig.2.

In the zero approximation p = 0 due to identity

dS

dt
+
dI

dt
+
dR

dt
= 0, (5)

the phase portrait of the system (1) is in plane

S + I +R = 1. (6)

Accounting for p > 0 leads to slow overflow of the popu-
lation through the symptomatically infected state Is into
the recovered state Rs with permanent immunity. Then
conservation law (6) ceases to hold, and it should be re-
placed by a more general relation

S + I +R+ Is = 1 (7)

which is valid for the total system (1,2). After switching
on small 0 < p � 1, stable focus (3) moves to the end

FIG. 3. Phase portrait and epidemic dependence of the symp-
tomatic incidence dIs/dt for finite 0 < p� 1. The rectilinear
section OE of the phase portrait at the top corresponds to the
slowly decreasing plateau of daily incidence at the bottom.
The plateau decreases with characteristic time Ttot = 1/(pω).

.

position E(ω, 0, 0). In this point

Is = 1− ω, S = ω, (8)

that is in the end of the epidemic the total population is
divided into two parts. One part of the population has
already passed the symptomatic stage Is and acquires
long-term immunity. The rest of the population avoids
symptomatic infection and eventually returns to the sus-
ceptible state S. The phase portrait of the system (1)
for 0 < p � 1 and corresponding course of the daily in-
cidence is shown in Fig.3. Then in contrast to the case
p = 0, due to nonconservation of the norm (6), the phase
trajectories cease to lie in one plane.

In this case, the previous focus O lying in the S + I +
R = 1 plane becomes an entrance to a funnel. All trajec-
tories entering the funnel asymptotically converge to the
straight line segment OE, see Fig. 4. As follows from (8)
in this segment S = ω. Then the second equation of the
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system (1) takes the form

dI

dt
= −pωI, (9)

that is I ∝ exp(−pωt) . In accordance with (2), the daily
incidence also has the same time dependence dIs/dt =
pωI ∝ exp(−pωt). Therefore, the characteristic transit
time of the OE segment is

Ttot =
1

pω
=
Tω
p
. (10)

This value has the meaning of the duration of the plateau,
i.e. the characteristic duration of the decay of the epi-
demic. In words this means:

Duration of Epidemic =
Time of Deactivation

Pathogenicity Factor
(11)

In accordance with relations (8) at the end of the epi-
demic, the proportion of people who got long-term im-
munity after the symptomatic illness is (1−ω). The rest
of the population (ω) remains susceptible.

IV. FITTING THE WORLD PANDEMIC DATA

Now we can compare the results obtained with the ob-
served course of the COVID-19 pandemic. Since disease
criteria change over time, the most accurate picture is
given by daily mortality values. At the same time, the
true incidence is obtained from mortality by dividing it
by the fatality rate which is currently 2.2% [4].

Fitting based on first eight months of the pandemic is
shown in Fig.4. This results in following values of the
parameters:

p = 6 · 10−3, ω = 0.40, σ = 0.35. (12)

Thus, the pandemic data directly confirm the above as-
sumption about the smallness of the pathogenicity pa-
rameter p, the value of which indeed is about 10−4.

The smallness of the pathogenicity parameter p means
that the overwhelming part of the COVID-19 epidemic is
in the asymptomatic sector, i.e. is invisible. This allows
the two-component COVID-19 model to be called the ice-
berg model (see Fig. 5). Here, the asymptomatic sector
of the epidemic corresponds to the invisible underwater
part of the iceberg, and the symptomatic sector corre-
sponds to its visible above-water part.

In accordance with the model and its phase portrait
shown in the upper part of Fig.3, the current state of the
pandemic roughly corresponds to point O, that is, the
entrance to the funnel. This corresponds to the initial
portion of the plateau of the diurnal incidence, shown at
the bottom of Fig.3.

According to relation (3), the current state of the world
pandemic is (0.39, 0.28, 0.31), that is the total population

FIG. 4. Daily deaths in the COVID-19 pandemic versus time
(dots) and model dependence (solid line).

of the world is approximately symmetrically divided into
three very slowly changing components: susceptible S,
asymptomatic spreaders I and temporarily immunized
R. The proportion of recovered known from the data of
the pandemic is small, Is = 0.02.

FIG. 5. Iceberg as an image of the 2-component model. The
asymptomatic sector of the COVID-19 epidemic corresponds
to the invisible underwater part of the iceberg whereas the
symptomatic sector corresponds to its visible above-water
part.

V. FITTING THE CHINA EPIDEMIC DATA

As the course of the epidemic in China and in the rest
of the world differ significantly, we fit data of the China
epidemic separately. Fitting based on first four months
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FIG. 6. Daily deaths in the COVID-19 epidemic in China
versus time (dots) and model dependence (solid line).

of the epidemic in China is shown in Fig.6. This results
in following values of the parameters:

p = 6 · 10−5, ω = 0.10, σ < 0.01. (13)

In the case of China the extremely small value of the
pathogenicity parameter p ∼ 10−5 is noteworthy. In ad-
dition, the virus deactivation rate ω = 0.10 and the virus
elimination rate σ < 0.01 are also abnormally small. All
the parameters are 1-2 orders of magnitude lower than
in the rest of the world.

According to relation (3), the stationary state of the
China epidemic is (0.10, 0.00, 0.90), that is the absolute
majority of the population is temporarily immunized,
R = 0.90. The rest of the population is mostly sus-
ceptible, S = 0.10. The share of the superspreaders is
negligible, I < 0.01.

Further course of the epidemic in Chine shows stable
zero deaths rate. This indicates zero symptomatic inci-
dence and therefore zero pathogenicity factor p = 0. Ap-
parently, this may indicate mutation of the initial virus
into completely non-pathogenic strain. In terms of phase
diagrams, this kind of epidemic is described not by the
iceberg model (Fig. 3), but by the conventional SIRS
model (Fig. 2). This means that the epidemic reaches
the equilibrium point O but does not enter the funnel
OE, and the phase portrait remains flat.

This difference in the parameters in China and
in the rest of the world suggests that a differ-
ent virus strain became dominant as the epidemic
spread across China compared to the rest of the
world. According to the parameters found, this
strain should be non-pathogenic and long-lived in
the human body.

The paper [5] already considered the hypothesis of the
existence of a low pathogenic virus in the prehistory of
the COVID-19 epidemic as the cause of an abnormally
low incidence in China. However, there it was assumed
only as a temporary factor that led to the activation of

adaptive immunity in the population. On the other hand,
the existence of non-pathogenic strains of coronavirus in
itself is a well-known fact [6, 7], and it can be expected
among the mutations of the original SARS-CoV-2 virus.

VI. EPIDEMIC WAVES

Thus, the iceberg model (1,2) reasonably describes
both the course of the epidemic in China and the time-
averaged course of the pandemic in the world. In both
cases, there is a plateau of daily morbidity, which is ex-
tremely low in China due to the extremely low value of
the pathogenicity parameter p in China.

However, this model in itself does not explain the pro-
nounced non-seasonal waves of incidence which are ob-
served both in each of the countries (except China) and
in the world as a whole.

To explain the origin of the epidemic waves, it is nec-
essary to remember that in the absence of long-term im-
munity, the disease becomes cyclical for each member of
the population. The reason for this is cyclical re-infection
which could cause also periodic course of the epidemic.
Nevertheless, this does not necessarily happens, since
there is a statistical averaging of the individual infection
phase across the entire population.

In the previously considered iceberg model based on
the SIRS-like system (1), the courses of infection in in-
dividual members of the population are statistically in-
dependent. Consequently, even if their initial states co-
incide, the synchronization of the epidemic process in
the population is rapidly disrupted, and, therefore, the
resulting fluctuations fade. For this reason, while we pro-
ceed from the SIRS-like system (1), the epidemic waves
are attenuated and practically absent. This can be seen
from both Fig.2 and Fig.3.

However, taking into account the strong biological cor-
relation between the course of infection in a single indi-
vidual and in the entire population as a whole completely
changes the state of affairs. This leads to the stabiliza-
tion of epidemic waves and makes them persistent. As
it was shown in [8] account for the strong biological cor-
relations in the population results in the change of the
SIRS system (1) to the 3D Lotka-Volterra system [9, 10]


dS
dt = bSR− cIS

dI
dt = (1− p)cIS − aIR

dR
dt = aIR− bSR

(14)

with

a =
σ + ω

1− ω
, b =

σ

ω
, c = 1. (15)

In general case p > 0 the system (14) together with
(2) has single equilibrium point S = I = R = 0, Is = 1.
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FIG. 7. Phase portrait and sustained waves of the symp-
tomatic incidence dIs/dt with account for strong biologi-
cal correlations, described by the 3D Lotka-Volterra system
(14,2) taken in the low-pathogenicity limit p→ 0.

In the limiting case p → 0 the 3D Lotka-Volterra sys-
tem (14) and the SIRS-like system (1) have the same
equilibrium point O from Eq.(3). Thereby the SIRS-
like system (1) ignoring the correlations and the the 3D
Lotka-Volterra system (14) accounting for the correla-
tions describe the same statics of the epidemic. But their
dynamics in the vicinity of the equilibrium point are dif-
ferent.

The phase portrait of the system (14) in the limiting
case p→ 0 is shown in Fig.7. Unlike the SIRS-like system
(1), the same equilibrium point O of the system (14) is
not a focus as shown in Fig.2, but a center. All phase
trajectories are closed. The reason for this is that in this
limiting case the system (14) has, in addition to S + I +
R = const, one more integral of motion

SaIbRc = const. (16)

Therefore, this system is not dissipative. It is due to
this property of a strongly correlated system (14) that
epidemic waves in this system do not damp - in contrast
to the uncorrelated SIRS-like system (1).

Since the cyclical course of the epidemic in the popu-
lation mimics the cyclical course of the infection in the

FIG. 8. One of the phase trajectories and corresponding epi-
demic waves in strongly correlated population described by
the 3D Lotka-Volterra system (14,2) with finite pathogenicity
parameter 0 < p � 1. The dashed line shows the same for
uncorrelated population described by the SIRS system (1,2).

asymptomatically infected people, it can be said that
strong biological correlations transform the population
into a single organism.

With a nonzero pathogenicity parameter p, each closed
trajectory turns into a helical spiral, asymptotically tend-
ing to the equilibrium point, i.e. to the origin of the co-
ordinate system, Fig.8. It has the same meaning as the
funnel in the phase portrait of the model without corre-
lations (1,2) shown in Fig.4. The amplitude of this spiral
corresponds to the amplitude of the epidemic wave. This
amplitude gradually decreases as the population passes
through symptomatic disease and thereby acquires long-
term immunity. In the uncorrelated SIRS system (1,2),
instead of the spiral, there is a thin linear funnel OE
of zero radius, which corresponds to a monotonically de-
creasing plateau without epidemic waves (dashed line in
Fig.8).

Thus, taking into account strong biological correlations
can explain persistent epidemic waves against the back-
ground of a monotonic plateau. In the paper [8], we
showed that this factor should manifest itself precisely in
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asymptomatic infections.
There is also alternative approach to explaining persis-

tent epidemic waves, based on a fundamental and sharp
limitation of the duration of the incubation period and
the duration of the action of immunity [4, 11]. This factor
acts in the same direction as correlations, and apparently
can be considered together with them.

VII. ONE WAVE EPIDEMIC IN CHINA

In our previous work [8], we showed that period of the
epidemic waves tends to infinity when the elimination
rate tends to zero, σ → 0. Then the whole epidemic
comes down to one wave, as happened in China. This
corresponds to the extremely low elimination rate σ <
0.01 obtained from the China data, Eq. (13).

Along with small value of ω = 0.1 � 1 in China, this
allows us to consider the special case ω = σ = 0. Then
the asymptomatic sectors of the iceberg model both for
the SIRS-like system (1) and for the 3D Lotka-Volterra
system (14) have the same form

dS
dt = −IS

dI
dt = (1− p)IS

(17)

with elementary kink solution

S =
1

1 + exp[(1− p)(t− t0)]
, (18)

I = (1− p)(1− S). (19)

In accordance with Eq.(2) then there is only one wave of
the symptomatic incidence:

dIs
dt

=
p(1− p)

4 cosh2 [(1− p)(t− t0)/2]
. (20)

In our opinion, this one-wave solution shown in Fig.9
is the most important in the whole family of the wave
solutions presented by Fig.8 of the previous section. We
assume that this solution describes the epidemic situation
in China (compare with Fig.6). The absence of repeated
waves indicates a high degree of stability of the virus
(ω, σ → 0), and an extremely low morbidity means its
non-pathogenicity (p→ 0).

The question of the nature of such a non-
pathogenic strain requires virological research.
If detected, it seems reasonable to provide its
spread to displace the less stable and more
pathogenic strains that are shaping the current
course of the global pandemic.

VIII. DRIFT OF PARAMETERS

So far, we have assumed the parameters of the ice-
berg model to be constant. However, over time, epidemic

FIG. 9. Daily incidence dIs/dt in the one-wave solution
(18,19) which corresponds to absolutely stable strain, ω =
σ = 0. This solution is supposed to describe the COVID-19
epidemic in China.

factors change, which leads to a change in the parame-
ters. If this change is sufficiently slow, then the same
solutions nevertheless can be used, simply by replacing
constant parameters with the corresponding functions
of time, considering the drift of epidemic factors. The
values of the parameters (12,13) found above should be
interpreted as averages over a certain period and may
change in the future.

The factors influencing the course of the epidemic are
1)viral mutations, 2)lockdown and 3)vaccination. Below
we consider all them sequentially.

1. Viral mutations that inevitably occur during the
COVID-19 epidemic are an evolutionary mechanism that
ensures the survival of coronaviruses as a species. Over
time, those strains that provide the largest proportion
of those infected will replicate most successfully. Since
the overwhelming majority of those infected by the coro-
navirus are asymptomatic, this corresponds to the max-
imum value of the proportion of asymptomatic infected
I.

In accordance with Eq.(3), the equilibrium value of this
proportion at t→∞ is

I =
1− ω
σ + ω

σ (21)

and tends to its maximal value I = 1 for ω → 0 regardless
of the two other parameters p and σ. This corresponds to
a stable strain that remains active and can spread for a
long time Tω = 1/ω →∞. Therefore, the viral mutations
should lead to the gradual decrease in the deactivation
rate ω and, accordingly, in the increase in the proportion
of the asymptomatic infected I.

Corresponding evolution of the equilibrium symp-
tomatic daily incidence dIs/dt due to the mutations, as
a function of parameter ω , follows from Eq.(4). This
dependence is shown in Fig.10 and has maximum at
ω =

√
σ2 + σ − σ. In this graph, the Greek letters

from α to δ shematically show successive mutations of
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FIG. 10. Viral mutations lead to the maximal proportion
of the asymptomatic spreaders I and after maximum to zero
value of the symptomatic daily incidence dIs/dt. The two
curves are described by Eqs.(4) and (21). Notations α, β, γ
and δ mean subsequent viral mutations with decreasing deac-
tivation rates ω.

the COVID-19 strain.
In accordance with Fig.10 we assume that recent vi-

ral mutations from the Britain α strain to the Indian
δ strain are responsible for the increasing in the symp-
tomatic incidence, which was reported in fall 2020 and
winter 2021 year. Based on these two graphs, we expect
the symptomatic incidence to drop to zero due to sub-
sequent mutations. At the same time, the proportion of
asymptomatic infected should increase.

2. Lockdown like other quarantine measures, leads to
a temporary decrease in the spread rate. The reduction
can be described by the factor Q(t) < 1, which is equiv-
alent to replacing the usual time t with the ”epidemic
time” τ according to the relationship dτ = Q(t)dt.

In this way, the time scale is locally stretched, and
the incidence decreases with the same factor Q(t). The
purpose of the lockdown is to temporarily reduce the inci-
dence. This is necessary in the context of a rapid increase
in morbidity and a shortage of medical resources. The
lockdown does not stop the development of the epidemic,
but only stretches it over time [2].

3. Vaccination in the ideal case provides the emer-
gence of adaptive immunity and transfers each vaccinated
from the group S to the group Rs bypassing the stage of
symptomatic disease Is, see Fig.1. In accordance with
phase portrait in Fig.3 bulk vaccination leads to acceler-
ated progress along the same rectilinear phase trajectory
OE towards the same end point E(ω, 0, 0).

Let the vaccinated rate be v. Then this part of the pop-
ulation leaves the asymptomatic sector of the epidemic,
and instead of the previous norm (6), the sum of the vari-
ables is S + I + R = 1 − v. As a result, the equilibrium
point O moves to a new position

O

(
ω,

1− v − ω
σ + ω

σ,
1− v − ω
σ + ω

ω

)
(22)

FIG. 11. Dependence of the symptomatic daily incidence on
the viral mutations for different vaccination rates.

and the equilibrium symptomatic incidence (4) at t→∞
becomes a form

dIs
dt

= pσω
1− v − ω
σ + ω

. (23)

This dependence of the daily incidence on the ω that is
on the viral mutations for different vaccination rates v is
shown in Fig.11. Depending on the deactivation rate of
the virus (ω) the minimal required level of vaccination to
stop the epidemic is v = 1 − ω. On the other hand, re-
gardless of the vaccination rate the daily incidence tends
to zero when ω → 0. This is due to the increased protec-
tion from the innate immunity, supported by the long-
term presence of the virus in the asymptomatic R state.

Being considered as a function of the ω and σ parame-
ters this incidence has a maximum at ω = (1−v)/2, σ →
∞. The value of this maximum is(

dIs
dt

)
max

=
p

4
(1− v)2. (24)

Its meaning is the absolute maximum of the symptomatic
daily incidence for any mutations of the virus at given
pathogenicity factor p and vaccination rate v. This
parabolic dependence on v for the world pandemic is
shown in Fig.12. The curve describes the dependence
of the average symptomatic incidence on the level of vac-
cination v and does not take into account the fluctuation
effect of epidemic waves.

IX. CONCLUSIONS

Thus, the iceberg model, considering separately
asymptomatic and symptomatic infected, is able to de-
scribe both the average course of the epidemic and the
epidemic waves. The model based on the conventional
SIRS equations for the asymptomatic sector describes a
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FIG. 12. Absolute maximum of the symptomatic daily inci-
dence in the world as a function of the vaccination rate v in
accordance with Eq.(24). Corresponds to the total population
of the world 7.8 · 109, the pathogenicity factor p = 3 · 10−4

found by fitting with the pandemic data, Eq.(12)

plateau, while accounting for strong biological correla-
tions based on the 3D Lotka-Volterra equations results
in persistent epidemic waves.

At its core, the iceberg model is phenomenological. It
is based on the well-known fact that a significant propor-
tion of those infected are asymptomatic and appear to
be the main contributor to the spread of infection.

The iceberg model describes each individual infection
as a fundamentally random process. The character of this
process is determined soon after infection, at the point of
bifurcation. After passing this point, the infected person
either gets sick or becomes an asymptomatic carrier.

It is worth to note that virus infection plays a twofold
role in the asymptomatic state. On the one hand, it can
be transmitted further, which contributes to the develop-
ment of the epidemic. On the other hand, it protects the
asymptomatic infected from an immediate symptomatic
infection, that is, from disease, since the innate immunity
is already in a mode that keeps the infection at a safe
level. During the latent period nonspecific innate im-
munity guarantees the same effective protection against
disease as antibodies. However, after re-infection, the
process may go differently and the person may get sick.
Unlike protection by antibodies, the duration of which is
determined by the time of their preservation, in this case
the duration of protection is determined by the lifetime
of the virus in the body.

In papers [13, 14] the idea of temporary protection
by a virus was considered in the case of two alternat-
ing epidemics with two different viruses. In the iceberg
model, there are not two different viruses, but two types
of immune response to the same coronavirus. Unlike the
regular flu epidemic, in which the same people carry the
virus and get sick, in the current COVID-19 epidemic,
some people carry the virus and others get sick.

Apparently, a unique feature of the COVID-19
epidemic is that the level of infection that is safe
for absolute majority of humans is nevertheless
unsafe for the human society as a whole and leads

to an epidemic spread of the symptomatic disease.
The reason for this is, on the one hand, an exceptionally
low likelihood of a symptomatic course, and on the other
hand, a high degree of infectiousness. The iceberg model
assumes that the vast majority of infected are latent and
spread the infection. However, any of them, having come
out of this state and re-infected, can get sick.

Based on the presented iceberg model of the COVID-
19 epidemic, we can draw the following conclusions.

1. During the COVID-19 epidemic, the vast majority
of the population is infected and is in a latent asymp-
tomatic phase. A small proportion of those infected be-
come ill and go through the symptomatic phase.

2. The COVID-19 virus is permanently circulating in
the population, which manifests itself both in the form
of a plateau of incidence and in the form of waves. After
elimination of the virus from the asymptomatic infected
persons, they may become ill as a result of subsequent
re-infection.

3. Without taking any measures, the natural duration
of the epidemic can be decades. Bulk vaccinations can
shorten this time, but the required vaccination rate is
increased due to viral mutations. On the other hand,
the mutations themselves lead to gradual decreasing the
symptomatic incidence (see Fig.10) and thus suppress the
epidemic.

4. The almost complete cessation of the
COVID-19 epidemic in China indirectly indi-
cates the widespread in China of a stable, non-
pathogenic strain that arose at the early stage of
the epidemic due to mutation. Its presence could
provide effective protection against infection by
the original pathogenic virus. If such a strain
were found, it would be wise to use the targeted
spread of this strain to effectively end the epi-
demic, as has already happened in China.

This approach is symmetric to the vaccination of hu-
mans, where there is an accelerated replacement of hu-
man immunity, which is usually carried out through dis-
ease. In this approach, there is an accelerated replace-
ment of the virus with its non-pathogenic strain, which
is usually carried out through slow mutations. Here, the
non-pathogenic strain plays the role of universal vac-
cine, which is based on innate immunity and therefore
insensitive to mutations of the pathogenic strains.

Since now new pathogenic strains appear and vaccina-
tion is faced with a number of problems, the proposed
method may turn out to be relevant. Therefore, viro-
logical research aimed at identifying the non-pathogenic
strain is advisable right now.
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