
Junwei Liang- Doctor of Philosophy
- Professor (Assistant) at Hong Kong University of Science and Technology
Junwei Liang
- Doctor of Philosophy
- Professor (Assistant) at Hong Kong University of Science and Technology
Tenure-Track Assistant Profess at HKUST (GZ) in the AI Thrust.
About
65
Publications
6,683
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,514
Citations
Introduction
I am an assistant professor at The Hong Kong University of Science and Technology (Guangzhou campus) in the AI Thrust. I am interested in building AI systems that can understand and predict human behaviors. My mission: develop AI technologies for social good. More on my academic website: https://junweiliang.github.io/
Current institution
Publications
Publications (65)
Estimating physical properties for visual data is a crucial task in computer vision, graphics, and robotics, underpinning applications such as augmented reality, physical simulation, and robotic grasping. However, this area remains under-explored due to the inherent ambiguities in physical property estimation. To address these challenges, we introd...
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, which is essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGroun...
Decision-making and planning in autonomous driving critically reflect the safety of the system, making effective planning imperative. Current imitation learning-based planning algorithms often merge historical trajectories with present observations to predict future candidate paths. However, these algorithms typically assess the current and histori...
Inferring affordable (i.e., graspable) parts of arbitrary objects based on human specifications is essential for robots advancing toward open-vocabulary manipulation. Current grasp planners, however, are hindered by limited vision-language comprehension and time-consuming 3D radiance modeling, restricting real-time, open-vocabulary interactions wit...
To navigate safely and efficiently in crowded spaces, robots should not only perceive the current state of the environment but also anticipate future human movements. In this paper, we propose a reinforcement learning architecture, namely Falcon, to tackle socially-aware navigation by explicitly predicting human trajectories and penalizing actions...
The rapid advancements in Large Vision Models (LVMs), such as Vision Transformers (ViTs) and diffusion models, have led to an increasing demand for computational resources, resulting in substantial financial and environmental costs. This growing challenge highlights the necessity of developing efficient training methods for LVMs. Progressive learni...
In this paper, we investigate the use of diffusion models which are pre-trained on large-scale image-caption pairs for open-vocabulary 3D semantic understanding. We propose a novel method, namely Diff2Scene, which leverages frozen representations from text-image generative models, along with salient-aware and geometric-aware masks, for open-vocabul...
Open-Vocabulary Mobile Manipulation (OVMM) is a crucial capability for autonomous robots, especially when faced with the challenges posed by unknown and dynamic environments. This task requires robots to explore and build a semantic understanding of their surroundings, generate feasible plans to achieve manipulation goals, adapt to environmental ch...
Learning generalizable visual dynamic representation across different embodied environments is crucial for real-world robotic manipulation. As the scale and diversity of robot demonstration data are limited, recent works have turned to large-scale pre-training using human data. However, the morphological differences between humans and robots introd...
Developing robots capable of executing various manipulation tasks, guided by natural language instructions and visual observations of intricate real-world environments, remains a significant challenge in robotics. Such robot agents need to understand linguistic commands and distinguish between the requirements of different tasks. In this work, we p...
Real-time detection and prediction of extreme weather protect human lives and infrastructure. Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS), which can be slow and error-prone. Our research redefines Extreme Weather Events Detection (EWED) by framing it...
Gloss-free sign language translation (SLT) aims to develop well-performing SLT systems with no requirement for the costly gloss annotations, but currently still lags behind gloss-based approaches significantly. In this paper, we identify a representation density problem that could be a bottleneck in restricting the performance of gloss-free SLT. Sp...
Accurate evaluation of financial question answering (QA) systems necessitates a comprehensive dataset encompassing diverse question types and contexts. However, current financial QA datasets lack scope diversity and question complexity. This work introduces FinTextQA, a novel dataset for long-form question answering (LFQA) in finance. FinTextQA com...
With the success of Large Language Models (LLMs), a surge of Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning. The tuning recipe substantially deviates from the common contrastive vision-language learning. However, the performance of GVLMs in multimodal compositional reasoning remains largely unexplo...
This paper studies introducing viewpoint invariant feature representations in existing action recognition architecture. Despite significant progress in action recognition, efficiently handling geometric variations in large-scale datasets remains challenging. To tackle this problem, we propose a novel Spatial-Temporal Alignment Network (STAN), which...
We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences. The model uses a hierarchical transforme...
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in...
Cross-modal retrieval between videos and texts has gained increasing research interest due to the rapid emergence of videos on the web. Generally, a video contains rich instance and event information and the query text only describes a part of the information. Thus, a video can correspond to multiple different text descriptions and queries. We call...
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition. We build our method on Transformers for its efficacy. Although we have witnessed great progress for video action recognition in the past decade, it remains challenging yet valuable how to train a single model that can perform...
We propose a novel weakly supervised approach for 3D semantic segmentation on volumetric images. Unlike most existing methods that require voxel-wise densely labeled training data, our weakly-supervised CIVA-Net is the first model that only needs image-level class labels as guidance to learn accurate volumetric segmentation. Our model learns from c...
This paper studies how to introduce viewpoint-invariant feature representations that can help action recognition and detection. Although we have witnessed great progress of action recognition in the past decade, it remains challenging yet interesting how to efficiently model the geometric variations in large scale datasets. This paper proposes a no...
This paper studies the problem of predicting future trajectories of people in unseen cameras of novel scenarios and views. We approach this problem through the real-data-free setting in which the model is trained only on 3D simulation data and applied out-of-the-box to a wide variety of real cameras. We propose a novel approach to learn robust repr...
With the advancement in computer vision deep learning, systems now are able to analyze an unprecedented amount of rich visual information from videos to enable applications such as autonomous driving, socially-aware robot assistant and public safety monitoring. Deciphering human behaviors to predict their future paths/trajectories and what they wou...
In this paper, we study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires, through aerial video analysis. We make two main contributions. The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage...
This paper focuses on the problem of predicting future trajectories of people in unseen scenarios and camera views. We propose a method to efficiently utilize multi-view 3D simulation data for training. Our approach finds the hardest camera view to mix up with adversarial data from the original camera view in training, thus enabling the model to le...
This paper studies the problem of predicting the distribution over multiple possible future paths of people as they move through various visual scenes. We make two main contributions. The first contribution is a new dataset, created in a realistic 3D simulator, which is based on real world trajectory data, and then extrapolated by human annotators...
Nowadays a huge number of user-generated videos are uploaded to social media every second, capturing glimpses of events all over the world. These videos provide important and useful information for reconstructing events like the Las Vegas Shooting in 2017. In this paper, we describe a system that can localize the shooter location only based on a co...
Nowadays a huge number of user-generated videosare uploaded to social media every second, capturing glimpsesof events all over the world. These videos in the wild provideimportant and useful information for reconstructing events likethe Las Vegas Shooting in 2017. In this paper, we describe asystem that can localize the shooter location only based...
Nowadays a huge number of user-generated videos are uploaded to social media every second, capturing glimpses of events all over the world. These videos provide important and useful information for reconstructing the events. In this paper, we describe the DAISY system, enabled by established machine learning techniques and physics models, that can...
Deciphering human behaviors to predict their future paths/trajectories and what they would do from videos is important in many applications. Motivated by this idea, this paper studies predicting a pedestrian's future path jointly with future activities. We propose an end-to-end, multi-task learning system utilizing rich visual features about the hu...
Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photo albums, we have to look at whole collections with sequences of photos. This paper proposes a new multim...
Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photos, we have to look at whole collections with sequences of photos or videos. When answering questions fro...
Developing an efficient and effective social media monitoring system has become one of the important steps towards improved public safety. With the explosive availability of user-generated content documenting most conflicts and human rights abuses around the world, analysts and first-responders increasingly find themselves overwhelmed with massive...
We tackle the problem of learning concept classifiers from videos on the web without using manually labeled data. Although metadata attached to videos (e.g., video titles, descriptions) can be of help collecting training data for the target concept, the collected data is often very noisy. The main challenge is therefore how to select good examples...
This paper proposes a new task, MemexQA: given a collection of photos or videos from a user, the goal is to automatically answer questions that help users recover their memory about events captured in the collection. Towards solving the task, we 1) present the MemexQA dataset, a large, realistic multimodal dataset consisting of real personal photos...
Learning video concept detectors automatically from the big but noisy web data with no additional manual annotations is a novel but challenging area in the multimedia and the machine learning community. A considerable amount of videos on the web are associated with rich but noisy contextual information, such as the title, which provides weak annota...
Learning video concept detectors automatically from the big but noisy web data with no additional manual annotations is a novel but challenging area in the multimedia and the machine learning community. A considerable amount of videos on the web is associated with rich but noisy contextual information, such as the title and other multi-modal inform...
What happened during the Boston Marathon in 2013? Nowadays, at any major event, lots of people take videos and share them on social media. To fully understand exactly what happened in these major events, researchers and analysts often have to examine thousands of these videos manually. To reduce this manual effort, we present an investigative syste...
Given any complicated or specialized video content search query, e.g. ”Batkid (a kid in batman costume)” or ”destroyed buildings”, existing methods require manually labeled data to build detectors for searching. We present a demonstration of an artificial intelligence application, Webly-labeled Learning (WELL) that enables learning of ad-hoc concep...
The recent advances in image captioning stimulate the research in generating natural language description for visual content, which can be widely applied in many applications such as assisting blind people. Video description generation is a more complex task than image caption. Most works of video description generation focus on visual information...
In this paper we summarize our experiments in the ImageCLEF 2015 Scalable Concept Image Annotation challenge. The RUC-Tencent team participated in all subtasks: concept detection and localization, and image sentence generation. For concept detection, we experiments with automated approaches to gather high-quality training examples from the Web, in...
With the increasing use of audio sensors in user generated content (UGC) collections, semantic concept annotation from video soundtracks has become an important research problem. In this paper, we investigate reducing the semantic gap of the traditional data-driven bag-of-audio-words based audio annotation approach by utilizing the large-amount of...
With the increasing use of audio sensors in user generated content (UGC) collection, semantic concept annotation using audio streams has become an important research problem. Huawei initiates a grand challenge in the International Conference on Multimedia & Expo (ICME) 2014: Huawei Accurate and Fast Mobile Video Annotation Challenge. In this paper,...