Jundong Li

Jundong Li
  • Arizona State University

About

244
Publications
50,205
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,771
Citations
Introduction
Jundong Li currently works at the School of Computing, Informatics, and Decision Systems Engineering, Arizona State University. Jundong does research in Data Mining and Artificial Intelligence.
Current institution
Arizona State University

Publications

Publications (244)
Preprint
Full-text available
Data science is an interdisciplinary field that focuses on extracting knowledge from raw data using statistical analysis and machine learning techniques. However, as data continues to grow in scale and complexity, data scientists face increasing challenges in handling unstructured data, automating workflows, and scaling analytical processes. The ad...
Preprint
Graph learning models have demonstrated great prowess in learning expressive representations from large-scale graph data in a wide variety of real-world scenarios. As a prevalent strategy for training powerful graph learning models, the "pre-training, adaptation" scheme first pre-trains graph learning models on unlabeled graph data in a self-superv...
Preprint
Full-text available
In-Context Learning (ICL) empowers Large Language Models (LLMs) to tackle diverse tasks by incorporating multiple input-output examples, known as demonstrations, into the input of LLMs. More recently, advancements in the expanded context windows of LLMs have led to many-shot ICL, which uses hundreds of demonstrations and outperforms few-shot ICL, w...
Preprint
Graph-structured data pervades domains such as social networks, biological systems, knowledge graphs, and recommender systems. While foundation models have transformed natural language processing, vision, and multimodal learning through large-scale pretraining and generalization, extending these capabilities to graphs -- characterized by non-Euclid...
Preprint
Full-text available
Federated Graph Learning (FGL) empowers clients to collaboratively train Graph neural networks (GNNs) in a distributed manner while preserving data privacy. However, FGL methods usually require that the graph data owned by all clients is homophilic to ensure similar neighbor distribution patterns of nodes. Such an assumption ensures that the learne...
Article
Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (...
Article
Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models, e.g., Graph Neural Networks (GNNs), without sharing their local graph data for graph-related downstream tasks, such as graph property prediction. In the real world, however, the graph data can suffer from significant distribution shifts across c...
Article
Spatial-temporal graphs are widely used in a variety of real-world applications. Spatial-Temporal Graph Neural Networks (STGNNs) have emerged as a powerful tool to extract meaningful insights from this data. However, in real-world applications, most nodes may not possess any available temporal data during training. For example, the pandemic dynamic...
Preprint
Post-hoc explanation methods provide interpretation by attributing predictions to input features. Natural explanations are expected to interpret how the inputs lead to the predictions. Thus, a fundamental question arises: Do these explanations unintentionally reverse the natural relationship between inputs and outputs? Specifically, are the explana...
Preprint
Full-text available
The rapid advancements in large Language models (LLMs) have significantly enhanced their reasoning capabilities, driven by various strategies such as multi-agent collaboration. However, unlike the well-established performance improvements achieved through scaling data and model size, the scaling of reasoning in LLMs is more complex and can even neg...
Preprint
Full-text available
Large Language Models (LLMs) often struggle with tasks requiring external knowledge, such as knowledge-intensive Multiple Choice Question Answering (MCQA). Integrating Knowledge Graphs (KGs) can enhance reasoning; however, existing methods typically demand costly fine-tuning or retrieve noisy KG information. Recent approaches leverage Graph Neural...
Chapter
Graph representation learning has garnered significant attention due to its outstanding performance across numerous real-world applications, such as social network analysis, bioinformatics, and recommendation systems. However, supervised graph representation learning models often struggle with label sparsity, as data labeling is time-consuming and...
Preprint
Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating inp...
Preprint
Full-text available
Out-of-distribution (OOD) generalization on graphs aims at dealing with scenarios where the test graph distribution differs from the training graph distributions. Compared to i.i.d. data like images, the OOD generalization problem on graph-structured data remains challenging due to the non-i.i.d. property and complex structural information on graph...
Preprint
Full-text available
Diffusion-based recommender systems (DR) have gained increasing attention for their advanced generative and denoising capabilities. However, existing DR face two central limitations: (i) a trade-off between enhancing generative capacity via noise injection and retaining the loss of personalized information. (ii) the underutilization of rich item-si...
Preprint
Full-text available
Large Language Models (LLMs) excel in natural language processing by encoding extensive human knowledge, but their utility relies on timely updates as knowledge evolves. Updating LLMs involves two key tasks simultaneously: unlearning to remove unwanted knowledge and editing to incorporate new information. Existing methods face two major challenges:...
Preprint
Full-text available
Symmetry in the parameter space of deep neural networks (DNNs) has proven beneficial for various deep learning applications. A well-known example is the permutation symmetry in Multi-Layer Perceptrons (MLPs), where permuting the rows of weight matrices in one layer and applying the inverse permutation to adjacent layers yields a functionally equiva...
Preprint
Full-text available
Large language models (LLMs) have revolutionized scientific research with their exceptional capabilities and transformed various fields. Among their practical applications, LLMs have been playing a crucial role in mitigating threats to human life, infrastructure, and the environment. Despite growing research in disaster LLMs, there remains a lack o...
Preprint
Full-text available
To deal with distribution shifts in graph data, various graph out-of-distribution (OOD) generalization techniques have been recently proposed. These methods often employ a two-step strategy that first creates augmented environments and subsequently identifies invariant subgraphs to improve generalizability. Nevertheless, this approach could be subo...
Preprint
Full-text available
Large Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the pra...
Preprint
Full-text available
Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models, e.g., Graph Neural Networks (GNNs), without sharing their local graph data for graph-related downstream tasks, such as graph property prediction. In the real world, however, the graph data can suffer from significant distribution shifts across c...
Preprint
Full-text available
Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (...
Preprint
Full-text available
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks. While their performance is often attributed to the powerful neighborhood aggregation mechanism, recent studies suggest that other components such as non-linear layers may also significantly affecting how GNNs process the input graph data in the spec...
Preprint
Full-text available
Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where...
Preprint
Full-text available
Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual...
Preprint
In recent years, Graph Neural Networks (GNNs) have become successful in molecular property prediction tasks such as toxicity analysis. However, due to the black-box nature of GNNs, their outputs can be concerning in high-stakes decision-making scenarios, e.g., drug discovery. Facing such an issue, Graph Counterfactual Explanation (GCE) has emerged...
Article
Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedent...
Preprint
Full-text available
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distributio...
Preprint
Full-text available
Job marketplace is a heterogeneous graph composed of interactions among members (job-seekers), companies, and jobs. Understanding and modeling job marketplace can benefit both job seekers and employers, ultimately contributing to the greater good of the society. However, existing graph neural network (GNN)-based methods have shallow understandings...
Article
Semi-supervised graph learning aims to improve learning performance by leveraging unlabeled nodes. Typically, it can be approached in two different ways, including predictive representation learning (PRL) where unlabeled data provide clues on input distribution and label-dependent regularization (LDR) which smooths the output distribution with...
Preprint
Full-text available
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been propo...
Preprint
Full-text available
In the field of machine unlearning, certified unlearning has been extensively studied in convex machine learning models due to its high efficiency and strong theoretical guarantees. However, its application to deep neural networks (DNNs), known for their highly nonconvex nature, still poses challenges. To bridge the gap between certified unlearning...
Preprint
Full-text available
Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications. However, the graph data used for training may contain sensitive personal information of the involved individuals. Once trained, GNNs typically encode such information in their learnable parameters. As a consequence, privacy leakage may happen when the traine...
Preprint
Full-text available
Fairness-aware graph learning has gained increasing attention in recent years. Nevertheless, there lacks a comprehensive benchmark to evaluate and compare different fairness-aware graph learning methods, which blocks practitioners from choosing appropriate ones for broader real-world applications. In this paper, we present an extensive benchmark on...
Preprint
Causality lays the foundation for the trajectory of our world. Causal inference (CI), which aims to infer intrinsic causal relations among variables of interest, has emerged as a crucial research topic. Nevertheless, the lack of observation of important variables (e.g., confounders, mediators, exogenous variables, etc.) severely compromises the rel...
Preprint
Full-text available
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accur...
Preprint
Full-text available
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts. Since generating the prompts needs to sample from a vast pool of instances and annotate them (e.g., add labels in classification task), existing methods have proposed to select a subset of unlabeled examples for an...
Preprint
Full-text available
Graph Machine Learning (Graph ML) has witnessed substantial advancements in recent years. With their remarkable ability to process graph-structured data, Graph ML techniques have been extensively utilized across diverse applications, including critical domains like finance, healthcare, and transportation. Despite their societal benefits, recent res...
Preprint
Full-text available
Explainable AI (XAI) refers to techniques that provide human-understandable insights into the workings of AI models. Recently, the focus of XAI is being extended towards Large Language Models (LLMs) which are often criticized for their lack of transparency. This extension calls for a significant transformation in XAI methodologies because of two re...
Conference Paper
The prevalence of natural hazards and extreme climatic events highlights the critical importance of disaster recovery for communities. In this study, we examine the impact of Hurricane Harvey on private well water in Texas and explore the relationship between the contamination of well water, stewardship behavior, and demographic and social capital...
Article
Full-text available
Distilling actionable patterns from large-scale streaming data in the presence of concept drift is a challenging problem, especially when data is polluted with noisy labels. To date, various data stream mining algorithms have been proposed and extensively used in many real-world applications. Considering the functional complementation of classical...
Article
The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited lab...
Article
Graph machine learning (Graph ML) models typically require abundant labeled instances to provide sufficient supervision signals, which is commonly infeasible in real-world scenarios since labeled data for newly emerged concepts (e.g., new categorizations of nodes) on graphs is rather limited. In order to efficiently learn with a small amount of dat...
Article
Hypergraphs offer a powerful abstraction for representing multi-way group interactions, allowing hyperedges to connect any number of nodes. In contrast to prevailing approaches that focus on capturing statistical dependencies, our research explores hypergraphs from a causal perspective. Specifically, we tackle the problem of estimating individual t...
Article
Graph mining algorithms have been playing a significant role in myriad fields over the years. However, despite their promising performance on various graph analytical tasks, most of these algorithms lack fairness considerations. As a consequence, they could lead to discrimination towards certain populations when exploited in human-centered applicat...
Preprint
Full-text available
Self-supervised learning with masked autoencoders has recently gained popularity for its ability to produce effective image or textual representations, which can be applied to various downstream tasks without retraining. However, we observe that the current masked autoencoder models lack good generalization ability on graph data. To tackle this iss...
Chapter
In the era of information overload, recommender systems (RSs) have become an indispensable part of online service platforms. Traditional RSs estimate user interests and predict their future behaviors by utilizing correlations in the observational historical activities, their profiles, and the content of interacted items. However, since the inherent...
Chapter
Graph is a powerful tool for modeling complex relational information between data points. Studies on graphs have been widely applied in many high-impact fields, such as social network analysis, bioinformatics, crime forecasting, economics, and recommender systems. Different from most traditional causal inference studies, which focus on independent...
Conference Paper
Hypergraphs provide an effective abstraction for modeling multi-way group interactions among nodes, where each hyperedge can connect any number of nodes. Different from most existing studies which leverage statistical dependencies, we study hypergraphs from the perspective of causality. Specifically, we focus on the problem of individual treatment...
Preprint
Methicillin-resistant Staphylococcus aureus (MRSA) is a type of bacteria resistant to certain antibiotics, making it difficult to prevent MRSA infections. Among decades of efforts to conquer infectious diseases caused by MRSA, many studies have been proposed to estimate the causal effects of close contact (treatment) on MRSA infection (outcome) fro...
Preprint
Full-text available
Few-shot node classification, which aims to predict labels for nodes on graphs with only limited labeled nodes as references, is of great significance in real-world graph mining tasks. Particularly, in this paper, we refer to the task of classifying nodes in classes with a few labeled nodes as the few-shot node classification problem. To tackle suc...
Article
Full-text available
Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mecha...
Preprint
Full-text available
Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various f...
Preprint
Full-text available
An antibiogram is a periodic summary of antibiotic resistance results of organisms from infected patients to selected antimicrobial drugs. Antibiograms help clinicians to understand regional resistance rates and select appropriate antibiotics in prescriptions. In practice, significant combinations of antibiotic resistance may appear in different an...
Preprint
Full-text available
In recent years, neural models have been repeatedly touted to exhibit state-of-the-art performance in recommendation. Nevertheless, multiple recent studies have revealed that the reported state-of-the-art results of many neural recommendation models cannot be reliably replicated. A primary reason is that existing evaluations are performed under var...
Article
An antibiogram is a periodic summary of antibiotic resistance results of organisms from infected patients to selected antimicrobial drugs. Antibiograms help clinicians to understand regional resistance rates and select appropriate antibiotics in prescriptions. In practice, significant combinations of antibiotic resistance may appear in different an...
Preprint
Full-text available
Few-shot node classification aims at classifying nodes with limited labeled nodes as references. Recent few-shot node classification methods typically learn from classes with abundant labeled nodes (i.e., meta-training classes) and then generalize to classes with limited labeled nodes (i.e., meta-test classes). Nevertheless, on real-world graphs, i...
Preprint
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones...
Article
Full-text available
In recent years, neural architecture-based recommender systems have achieved tremendous success, but they still fall short of expectation when dealing with highly sparse data. Self-supervised learning (SSL), as an emerging technique for learning from unlabeled data, has attracted considerable attention as a potential solution to this issue. This su...
Article
Recent studies have revealed that GNNs are vulnerable to adversarial attacks. Most existing robust graph learning methods measure model robustness based on label information, rendering them infeasible when label information is not available. A straightforward direction is to employ the widely used Infomax technique from typical Unsupervised Graph R...
Preprint
Full-text available
Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarc...

Network

Cited By