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Abstract
Torch orientation plays an important role in welding quality control for a manual arc welding
process. The detection of the torch orientation can facilitate weld monitoring, welder training,
and may also open a door to many other interesting and useful applications. Yet, little research
has been done in measuring the torch orientation in the manual arc welding process. This
paper introduces a torch orientation measurement scheme that can be conveniently
incorporated both in a real manual arc welding process and in a welder training system. The
proposed measurement employs a miniature wireless inertial measurement unit (WIMU),
which includes a tri-axial accelerometer and a tri-axial gyroscope. A quaternion-based
unscented Kalman filter (UKF) has been designed to estimate the three-dimensional (3D) torch
orientation, in which the quaternion associated with the orientation is included in the state
vector, as is the angular rate measured by the gyroscope. In addition, an auto-nulling procedure
has been developed where the WIMU drift and measurement noise are captured and adaptively
compensated in-line to ensure the measurement accuracy. The performance of the proposed
scheme has been evaluated by simulations and welding experiments with different types of
processes and fit-ups. The simulation results show that the inclination (x- and y-axes) of the
torch has been accurately measured with a root-mean-square error (RMSE) in the order of
0.3◦. The major error obtained in the heading (z-axis) measurement has been reduced
significantly by the proposed auto-nulling procedure. Statistics from welding experiments
indicate the proposed scheme is able to provide a complete 3D orientation measurement with
the RMSE in the order of 3◦.

Keywords: welding torch orientation, auto-nulling, unscented Kalman filter, quaternion

(Some figures may appear in colour only in the online journal)

1. Introduction

Arc welding has been developed and refined for years, as
one of the most widely used material joining technologies.
High-quality welds are critical for many applications, such as
automobile manufacturing, refineries and ship building. The

torch orientation is defined as the torch posture throughout
a welding process. It is one of the most important welding
parameters, and is directly contingent upon the weld quality
and appearance. Optimal quality welds can only be guaranteed
if the torch orientation is well adjusted. Inappropriate torch
manipulations cause various weld defects and discontinuities,
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Figure 1. Torch orientations for different weld types in the GTAW process: (A) butt welds; (B) lap joint; (C) T-joint; and (D) corner joint.

such as poor penetration, undercuts, porosity and different
types of cracks [1–3]. Therefore, detailed torch orientations
for almost every welding process have been recommended
by both standardization organizations such as the American
Welding Society (AWS) [4, 5] and by different welding-related
companies [6–8].

Different welding processes may have various parameters
such as the welding current, voltage, torch traveling speed,
wire feed speed if applicable and the number of weld passes
per layer. The recommended torch orientation manipulations
can differ accordingly. Typical recommended torch postures
are shown in figures 1 and 2 for the two welding processes:
gas tungsten arc welding (GTAW) [9] and gas metal arc
welding (GMAW) [7], respectively. Four different fit-up types
for each process are illustrated in the two figures. Moreover,
four different torch swing patterns are adopted for the four fit-
up types in figure 2, besides the diversities in torch orientation.

Mastering the torch manipulation is challenging in a
manual arc welding process. To ensure weld quality, a human
welder is required to maintain a recommended torch posture
while moving the torch smoothly along the weld bead,
possibly with one particular swing pattern. Due to various
disturbances in the welding field, the torch is required to
be adjusted accordingly to guard against the effects of the
disturbances to the weld quality. The capability of proper torch
orientation manipulation depends on the welder’s skill level
and his/her physiological conditions [10]. The major problem
is that a welder cannot master the torch adjusting maneuver
without countless hours of practice through acquired rule-of-
thumb techniques, and this makes the welder training cycle
intolerably long.

Torch orientation measurement can be used to accelerate
the welding training process. A database of welding experts’

performance can be established using the torch manipulation
data combined with other critical welding parameters. With the
database, the operations of a welding trainee can be compared
with the expert’s performance throughout the practice by
detecting the torch orientation in real-time, and incorrect
or unfavorable operations from the trainee can be identified
immediately. Audio or visual indications can thus be provided
to the trainee as instant performance feedback throughout the
training practice [11, 12]. It was found that welding skills were
increased significantly with this feedback [12].

Detecting the torch manipulation may also open the door
to better understanding of the intelligent welding operations of
skilled welders. Given that a skilled welder’s torch maneuvers
are detected, the dynamics of the torch orientation related to the
weld quality control can be obtained [13]. The mathematical
formulation of the experts’ welding skills, which make an
experienced welder better than a unskilled welder in delivering
quality weld, can be further established [14]. Applying the
formulated skill to automatic welding will build the foundation
for the next generation of intelligent welding robots that
possess disturbance-resistant capabilities comparable to a
skilled human welder.

This study aims to develop an accurate three-dimensional
(3D) torch orientation measurement scheme that can be
conveniently used in a real manual arc welding process or a
welder training system. Based on a miniature wireless inertial
measurement unit (WIMU), the proposed scheme consists of
a quaternion-based unscented Kalman filter (UKF) and an
auto-nulling algorithm. The UKF is designed to estimate the
3D orientation with the rotation quaternion included in its
state vector. The innovative auto-nulling algorithm captures
and compensates the gyro drift based on the gyro’s own
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Figure 2. Torch orientations for different weld types in non- and low-alloyed steel in the GMAW process: (A) 2F/PB-horizontal–vertical
fillet; (B) 3G↑/PF-vertical up root pass and (C) fill passes; and (D) 4G/PE-overhead.

output, unlike most other drift compensation algorithms, which
require extra information from an accelerometer. The proposed
UKF incorporated with the auto-nulling algorithm provides a
complete 3D estimation with a reasonable accuracy, without
the aid of a magnetometer—a feature that is lacking in most
orientation filters the authors are aware of. Moreover, this
paper is the first of this kind to measure the 3D welding
torch orientation. The detection of human welders’ torch
manipulation is the foundation of studying their experienced
behavior during the arc welding process, which has been
extensively studied by the authors [13–16]. It is the core to
understanding the difference between skilled and unskilled
welders and can be utilized in accelerating the welder training
process and developing next generation of intelligent welding
robots. By simulations and experimental validation with torch
motion signals captured from the real arc welding process,
improvements in the accuracy of orientation estimation are
demonstrated as compared with other orientation estimation
counterparts.

2. Related works

Within the scope of the authors’ limited searching capability,
there is no literature found that studies welding torch
orientation sensing in a manual arc welding process. A number
of previous researchers focused on welding position sensing
in robotic welding [17–21]. However, those studies addressed
the spatial position of the tungsten tip (in GTAW) or the

wire tip (in GMAW) relative to a visual reference (e.g., a
laser marker), indicating the location of a weld seam. No
torch orientation detection was involved, while this study
concentrates on the 3D orientation of the torch throughout
a manual arc welding process. In [22], a speed and position
sensor was proposed based on an accelerometer for a manual
plasma pipe welding process in pulse current mode. Yet,
the comparatively rigid assumptions on the torch movement
pattern constrict its application in the other fit-ups (flat butt
joint, T-type, etc) or power modes (constant current, constant
voltage, etc).

Torch posture detection is essential in welder training
systems. However, those orientation detection technologies
constrict themselves in certain working circumstances due to
their own inherent constraints. For example, in the welding
simulator SimWelder from VRsim, Inc, the angular orientation
of the welding torch is tracked using a tri-axial measurement
gimbal at the attachment of the torch to the haptic device [23].
Yet, the hulking measurement device cannot be augmented
to a torch in a real welding process. For the RealWeld
Trainer, the torch posture is measured by detecting the spatial
position of an infrared target mounted on the torch using three
cameras augmented on the simulator stand [24]. The 2D torch
orientation was measured using a tri-axial accelerometer in
the computer-based welder training system in [12]. However,
the variation of the torch orientation in the gravitational
direction cannot be detected. There are also several virtual-
reality-based welder training systems augmented with 2D

3



Meas. Sci. Technol. 25 (2014) 035010 W Zhang et al

Figure 3. An illustration of the torch and WIMU, which is rigidly
amounted on the torch handle by a hard plastic fixture. t (XY Z) and
s(XY Z) denote the 3D Cartesian coordinate system for the torch and
the WIMU, respectively.

torch posture measurements, the accuracy of which is yet
undisclosed [11, 25].

Accurate orientation measurements have been intensively
investigated in a range of fields including avionics [26, 27],
navigation [28, 29], human motion analysis [30, 31] and
robotics [32]. Within a variety of technologies capable of
orientation measurement, inertial sensing has the advantage
of being smaller, cheaper, internally referenced and immune
to constraints in any motion or specific environment [33, 34].
An IMU (inertial measurement unit) normally consists of an
accelerometer and a gyroscope. It is capable of detecting
the acceleration and the angular velocity of a rigid body
on which the unit is attached. A tri-axial accelerometer
can be used as an inclinometer when the magnitude of
the detected acceleration can be neglected with respect to
the gravitational direction [35]. However, the accelerometer
signal does not contain information for the rotation along
the gravitational direction. Changes in orientation can be
estimated by integrating the angular velocity measured by a
gyroscope [36, 37]. The problem is that time-integrating the
gyro signals superimposed with sensor drift and noise leads to
an unbounded estimation error.

Recent research has been carried out to develop different
filters using both the gyroscope and the accelerometer to
estimate the orientation of a rigid body [38]. The orientation
error resulting from the gyro output drift can be mitigated
by additional sensors, the information from which is able
to correct the orientation errors. The traditional use of a
linear Kalman filter (KF) and its extended version (EKF) for
nonlinear models has been well established for orientation
estimation [30, 32, 35, 39] and commercial inertial orientation
sensors [40–42]. Both the gyro data and acceleration data are
applied in the KF or EKF based estimation algorithms.

For an accurate heading estimation, extra data from an
additional magnetometer was incorporated in the Kalman
filter-based algorithms [43, 44]. The adaptive EKF developed

in [43] and [45] was embedded in an IMU incorporated with
an magnetometer. The angular position was calculated mainly
by the gyro data; the accelerometer was used to estimate the
inclination; and the magnetometer was used to estimate the
heading angle. However, the use of the magnetometer could
give large errors in the vicinity of a strong magnetic field,
especially in places like the welding field where the welding
machine and the welding arc are the sources of an extremely
strong, time-varying, electromagnetic field [46]. Although a
Kalman filter was proposed in [47] with a magnetic disturbance
resistance to some extent, the designed magnetic disturbance,
caused by an iron cylinder, was much smaller compared to
the disturbance caused by a welding machine/arc [48, 49].
Therefore, the WIMU in this study precludes the employment
of an electromagnetic field for torch orientation estimation.
An auto-nulling algorithm is proposed to compensate for the
drift and measurement noise from the gyroscope, to ensure the
accuracy of the heading estimation for the welding torch.

In addition, a quaternion was employed to represent
the angular position since it requires less time complexity
and avoids the singularity problems [50]. The attitude or
orientation determination algorithm was developed in [51–53]
based on the UKF instead of the traditional KF or the EKF,
since the UKF is thought by many to be more accurate and
less time complex [54, 55].

3. Experimental system

The WIMU (a Shimmer motion sensor) used here is shown
in figure 3. The size of the WIMU is about 53 mm
×32 mm ×19 mm. It is an IMU with wireless capability
which is composed of a tri-axial accelerometer (Freescale
MMA7260Q), a tri-axial gyro sensor (InvenSense 500 series),
a microprocessor (MSP430F1611), and a Bluetooth unit.
The accelerometer is endowed with one filter capacitor in
each axis. The gyro sensor contains three vibrating elements.
The angular rate at each axis is obtained by measuring the
Coriolis acceleration of the corresponding vibrating elements.
The microprocessor captures the sensor data using a 12-
bit analogue-to-digital converter (ADC) at a pre-defined
frequency. The Bluetooth unit transmits the data from the
WIMU to a desktop. The calibration procedure for the sensors
is performed according to literature [56].

A torch for the GTAW process with the attached WIMU is
illustrated in figure 3. The WIMU is mounted rigidly at the tail
of the torch using a plastic fixture. The 3D Cartesian coordinate
frame, denoted as s(XY Z), in the WIMU is its internal frame.
It is worth noting that during the assembly process, the torch
was first held still such that its handle was perpendicular to
the gravitation direction, with aid from external calibration
tools, such as a gravimeter; the WIMU was installed such that
the gravitational acceleration direction coincided with the sZ
axis. The coordinate frame t (XY Z) is the internal frame for the
torch. It is defined in the following manner: axis tZ coincides
with the torch head direction, axis tX coincides with axissX .
By doing this, frame t (XY Z) can be obtained by rotating frame
s(XY Z) around the sX axis for an angle denoted as θst .
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4. Method

4.1. Orientation representation

The orientation of the torch is determined when the axis
orientation of the coordinate frame t (XY Z) is obtained with
respect to an absolute 3D Cartesian coordinate frame, denoted
as frame E(XY Z). The negative direction of axis EZ is defined
in coincidence with the local gravitational direction. The
directions of the other two axes depend on the specific welding
applications, which will be detailed in section 5.

The torch orientation is presented by a quaternion denoted
as s

E q̃, where the sign ˜ denotes a unit quaternion q̃ =
[q0, q1, q2, q3], i.e.,4

‖q̃‖ =
√

q2
0 + q2

1 + q2
2 + q2

3 = 1 (1)

where q0 is the scalar part and [q1, q2, q3] is the vectorial part
of the quaternion.

The tri-axial gyroscope in the WIMU measures the
angular velocity of frame s(XY Z) relative to frame E(XY Z).
The measurement (in rad s−1) can be denoted by the 1×3 row
vector shown in equation (2):

sω = [ωx, ωy, ωz]. (2)

The quaternion at instant k + 1 can be presented using the
quaternion at instant k, angular measurement (sωk), and the
time interval denoted by Ts [50]:

s
E q̃k+1 = s

E q̃k ⊗ exp

(
Ts

2
ωk

)
(3)

where ⊗ is the quaternion product, which is defined in
equation (4), where a = [a1 a2 a3 a4] and b =
[b1 b2 b3 b4]. Exp(·) denotes the quaternion exponential,
which is defined in equation (5).

a ⊗ b =

⎡
⎢⎢⎢⎣

a1b1 − a2b2 − a3b3 − a4b4

a1b2 + a2b1 + a3b4 − a4b3

a1b3 − a2b4 + a3b1 + a4b2

a1b4 + a2b3 − a3b2 + a4b1

⎤
⎥⎥⎥⎦

T

(4)

exp(v) �
[

cos(‖v‖),
v

‖v‖ sin(‖v‖)

]
(5)

where v presents a 1×3 row vector. The torch orientation, t
E q̃,

can be calculated by equation (6):
t
E q̃ = s

E q̃ ⊗ exp([θst, 0, 0]). (6)

4.2. Sensor model

The gyroscope and the accelerometer in the WIMU measure
the angular velocity and the acceleration of the sensor,
respectively. Besides the true values,sωtrue and satrue, there are
several main error sources affecting the WIMU measurement
including the bias, scale-factor instability, non-orthogonality
of axes and the measurement noise. To this regard, the WIMU
measurements are expressed in equations (7) and (8):

sω = Sω
sωtrue + Tω

sωtrue + bω + vω (7)

4 For the quaternion denotation, a leading subscript denotes the reference
frame and a leading superscript indicates the frame being described.

sa = Sa
satrue + Ta

satrue + ba + va (8)

where Sω and Sa are the scale-factor matrices; Tω and Ta

are the non-orthogonality factor matrices; bω and ba are the
bias; and vω and va are the measurement noises. Please note
this is a simplified sensor model. Some minor error sources
are not considered, such as the cross-sensitivity and gravity-
sensitivity.

Measurement noises vω and va are normally considered
as uncorrelated white Gaussian noises, with a null mean and
3×3 covariance matrices Rσ 2

ωI3×3 and Rσ 2
a I3×3, respectively.

The covariance matrix of sensor model R is

R =
[

Rσ 2
ωI3×3 0

0 Rσ 2
a I3×3

]
. (9)

The true acceleration measurement includes two
components: the sensor acceleration and the gravitation
acceleration, as expressed by equation (10):

satrue = sasensor +s g (10)

where sg is the gravitational acceleration in the sensor frame,
which can be obtained using equation (11):

sg = s
E q̃ ⊗ [0, Eg] ⊗ s

E q̃∗. (11)

The torch should be moved smoothly along the weld bead
with unnoticeable accelerations or decelerations throughout
the arc welding process, given that the skilled welder is well
motivated. Thereby, sasensor is insignificant compared with the
gravitation acceleration and thus is considered as a disturbance
in our application. Henceforth, equation (10) can be expressed
by equation (12):

sãtrue
∼= sg̃. (12)

Using normalized gravity can eliminate the measurement error
caused by localized gravity differences.

The bias and the scale factors, in equations (7) and
(8), depend on the sensors’ imperfections and the working
field. The typical gyro bias is 0.017–0.17 rad h−1 and the
acceleration bias is about 100–1000 μg for tactical grade [57].
In particular, the ambient temperature significantly affects
the gyro’s bias. In this study, the WIMU is employed near
the welding arc which is a strong heat source. Hence, the
gyro bias might not be constant throughout an arc welding
process. To this regard, an auto-nulling algorithm is proposed
to compensate the gyro’s drift in-line to guard the effect of the
drift variation over temperature to the estimation accuracy.

The influence of temperature on the accelerometer’s
bias is much less intense. The in-line calibration of an
accelerometer usually requires the accelerometer to remain in a
static or quasi-static condition for several different orientations
[58]. However, in our application, the torch should be held
in one certain orientation, as shown in figures 1 and 2,
throughout the arc welding process. Therefore, there will not
be enough orientations for in-line calibration. In this study,
the accelerometer bias is assumed to be constant, and can be
compensated for by calibration before use [56].

The scale-factor drifts of WIMU are known to affect
the measurement accuracy to a much smaller extent than
the bias drifts. The drift variation over temperature is also

5
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negligible [59]. Therefore, the scale factors can be considered
to be subjected to small variations around their average values
throughout the welding process. Their nominal values can be
determined through the sensor calibration before use [56].

4.3. Auto-nulling algorithm for gyro sensor drift

The capture of the gyro drift usually requires keeping the
gyro sensor from rotation. The basic principle is called the
zero attitude update (ZAU), also referred as auto-nulling,
i.e., when no rotation occurs to the gyro sensor, its output
can be considered as the drift caused by the bias and other
error sources. The drift can then be periodically captured and
compensated for. A ZAU algorithm was proposed in [60]
to detect the human walking pace. The static status (i.e. no
rotation) of the gyro sensor was detected by an accelerometer.
However, that ZAU algorithm is only valid in 2D applications
since the accelerometer cannot detect the gyro’s rotation in
the gravitational direction. In [61], the authors compensated
for the gyro drift using an off-line ZAU algorithm in a gait
pace detection application. The starting and ending time of
a gait period were required before the gyro data recorded
within the period was processed. Effective drift estimation was
also accomplished by using an extra Kalman filter [62]. Yet,
introducing an additional Kalman filter to estimate the gyro
drift in our application is not computation efficient. Therefore,
a new auto-nulling algorithm is proposed in this study in which
the static status is detected using information from the gyro’s
own output.

The mean and deviation of the gyro’s output obtained in a
small time interval when the WIMU is set still can be used to
determine the static status. The two variables are defined by

μs =
M∑

k=1

sωk/M (13)

and

σs =
√∑M

k=1 (sωk − μs) ∗ (sωk − μs)′

M
(14)

where M is the number of samples. To record the data for
calculating μs and σs, a static state experiment was conducted
where the WIMU was set still at room temperature (about
23 ◦C). Before recording valid gyro data, the WIMU was
allowed to power up for a few minutes until it reached thermal
stability.

For an arbitrary angular velocity sωi recorded by the gyro
sensor, the corresponding mean and deviation are defined in
equations (15) and (16)

μ(i) =
i∑

k=i−N

sωk/N (15)

σ (i) =
√∑i

k=i−N (sωk − μ(i)) ∗ (sωk − μ(i))′

N
(16)

where i > N, and N is the sampling number gathered in a
small interval Tau right before sωi is recorded. In this study,
Tau = 1 s.

If the mean and the deviation of the gyro output within
the interval Tau are close to μs and σs, then the torch/WIMU
is considered to be in the static state. According to the ZAU
principle, the mean value, μ(i), can be thus thought of as a drift.
In our application, the possible ambient temperature variation
caused by the welding arc should be in a comparatively low
rate due to the thermal latency. Therefore, the gyro data in the
time vicinity of the static interval can be compensated using
the drift obtained in the stationary interval. If the WIMU is in a
dynamic period (μ(i) or σ (i) are much larger than μs and σs),
then compensation can be accomplished by the mean value
from the nearest static interval.

Furthermore, the drift of a gyro sensor is sensitive to
temperature, as discussed in the last section. Therefore, two
thermal coefficients are included in the auto-nulling algorithm,
ρμ and ρσ , accounting for the temperature difference between
the environment where the torch/WIMU is used and the one
where the static experiment was conducted. For the simulations
in section 5, they were set 1, since the temperature at which
the static experiment was conducted was about the same as
that in which the simulations were conducted. In the welding
experiments, they were pre-set and given reasonable values
based on estimation results. In practical applications, the two
coefficients can be empirically chosen.

Hence, if there exist

μ(i)2 � ρμμ2
s and σ (i) � ρσσs (17)

then the torch/WIMU is considered to be in stationary state,
and μ(i) is referred to as a valid drift.

Therefore, the proposed auto-nulling algorithm can be
expressed by

sωi =

⎧⎪⎨
⎪⎩

sωi − μs i � N
sωi − μ(i) WIMU is static, i > N
sωi − μ(ξ ) WIMU is dynamic, i > N

(18)

where μ(ξ ) is the nearest valid drift for sωi, ξ < i.
Using the proposed auto-nulling algorithm, no data is

required from some external sensors to compensate for the
effect of drift to the orientation estimation. The effectiveness
of the algorithm will be evaluated in section 6.

4.4. Filter design

The state vector of the proposed UKF is composed of the torch
orientation quaternion and the angular velocity.

xk = [
s
E q̃k,

sωk
]
. (19)

Using the state vector, the sensor model (equations (7)
and (8)) can be rewritten as shown in equation (20):

zk+1 = h(xk, vk) (20)

where zk+1 = [sωk+1,
s ak+1], and vk = [vω, va].

The process model represented by the state vector is

xk+1 = f (xk, wk) = [s

E
q̃k ⊗ exp(ωk) ⊗ exp(wq),

sωk + wω

]
(21)

where wk = [wq, wω] is the process noise with a covariance
matrix denoted as Qk, exp(ωk) is the increment of the rotation
in the kth sampling period, and exp(wq) is the process
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uncertainty caused by wq, which is the quaternion component
of the process noise.

In this study, the angular velocity is expected to be
fairly small, since the torch is required to be maintained in a
recommended orientation with small adjustments for possible
disturbances. Therefore, the angular velocity can be modeled
as a random walk in the process model.

Because of the nonlinear nature of the process model
(equation (21)) and the sensor model, the UKF approach is
applied [54]. For the sake of readers’ convenience, the UKF
algorithm is summarized below.

Given the estimated state vector x̂k−1 and its covariance
Pk−1 at instant k − 1, an auxiliary vector set {ψi} is defined by
equation (22):

ψi =
{

(
√

(n + λ) · (Pk−1 + Q))i i = 1, . . . , n

−(
√

(n + λ) · (Pk−1 + Q))(i−n) i = n + 1, . . . , 2n

(22)

where (
√

(n + λ) · (Pk−1 + Q))i is the ith row of the matrix
square root, and λ = α2(n + κ) − n, in which α and κ are
two scaling parameters. A subtle detail worth noting is that
the dimension of covariance Pk−1 is 6×6, since the degree of
freedom (DOF) of the state vector is 6 (the unit quaternion
constraint reduces one DOF). Therefore, the ψis are 1×6
vectors.

UKF addresses the approximation of a nonlinear system
by using a minimal set of sample points, i.e., sigma points, to
capture the mean and covariance estimates. The sigma points
set {(χk−1)i} is defined by

(χk−1)i = x̂k−1 = [
s
E
ˆ̃qk−1,

sω̂k−1
]

(23)

as i = 0, and

(χk−1)i = x̂k−1 + ψi = [
s
E
ˆ̃qk−1 ⊗ exp(ψi|q), sω̂k−1 + ψi|ω

]
(24)

when i = 1, . . . , 2n, and ψi = [ψi|q, ψi|ω] in which ψi|q is the
first three elements of ψi corresponding to the quaternion part,
and ψi|ω relates to the angular velocity. The length of state
vector x̂k−1 is 7, while ψi is a six-element vector. Thereby,
equation (24) performs a vector to quaternion conversion for
ψi|q using the quaternion exponential in equation (5).

After the sigma points {(χk−1)i} are obtained, the
process model is used to project each point ahead in time.
The propagation results are shown in equation (25), and
a priori state estimate is thus obtained in equation (26):

(χk)i = f ((χk−1)i, 0, 0) for i = 0, . . . , 2n (25)

x̂−
k =

2n∑
i=0

W (m)
i (χk)i (26)

where weights W (m)
i are defined by

W (m)
i =

{
λ/(n + λ) i = 0

λ/(2(n + λ)) i = 1, . . . , 2n.
(27)

The covariance of (χk)i is

P−
k =

2n∑
i=0

W (c)
i [(χk)i − x̂−

k ]T [(χk)i − x̂−
k ] (28)

where weights W (c)
i are defined in equation (29), and β is a

scaling parameter used to incorporate prior knowledge about
the distribution of state vector x. It should be noted that P−

k is
a 6×6 matrix, while (χk)i and x̂−

k are seven-element vectors.
A conversion is thereby performed to the right side of the
equation to transform the quaternion parts into three-element
rotation vectors [51]. This quaternion-to-rotation conversion
is a reverse procedure of equation (5):

W (c)
i =

{
λ/(n + λ) + (1 − α2 + β) i = 0

λ/(2(n + λ)) i = 1, . . . , 2n.
(29)

The results for the projected set {(χk)i} in the sensor model
are expressed by

(yk)i = h((χk)i, 0, 0) for i = 0, . . . , 2n. (30)

The measurement estimate can thus be defined in
equation (31):

ẑ−
k =

2n∑
i=0

W (m)
i (yk)i. (31)

The a posteriori state estimate is computed using

x̂k = x̂−
k + Kk(zk − ẑ−

k ) (32)

where zk is the measurement vector from WIMU, and Kk is the
Kalman gain which is defined by

Kk = Px̂kẑk
P−1

ẑk ẑk
. (33)

The cross correlation matrix Px̂kẑk
and measurement estimate

covariance Pẑkẑk
are expressed in equations (34) and (35),

respectively:

Px̂kẑk
=

2n∑
i=0

W (c)
i [(χk)i − x̂−

k ]T [(yk)i − ẑ−
k ] (34)

Pẑkẑk
=

2n∑
i=0

W (c)
i [(yk)i − ẑ−

k ]T [(yk)i − ẑ−
k ] + R. (35)

A quaternion-to-rotation conversion is performed to the term
in the second bracket of equation (34), to ensure a valid cross
correlation matrix. The estimated state covariance is updated
at instant k by

Pk = P−
k − KkPẑkẑk

KT
k . (36)

4.5. Initialization and filter parameters

For a successful UKF performance, the following parameters
are required to be determined first: Qk, R, α, β, κ . Scaling
parameters α, β, κ are empirically pre-set and given reasonable
values based on filter tests results. Rσ 2

ωI3×3 and Rσ 2
a I3×3

account for the spectral density of the sensor signal while
the sensor is lying still.

The process noise covariance Qk can be determined by

Qk = s

∫ T s

0
�(τ )Q′�T (τ ) dτ (37)

where s is a scaling parameter, �(τ ) is an approximation
to the fundamental matrix calculated by taking the Taylor-
series expansion of the system dynamic matrix, and Q′ is the
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continuous process noise matrix [63]. The covariance matrix
Q′ is expressed by

Q′ =
[
�q 0

0 �ω

]
(38)

where �q = Qσ 2
q I3×3 and �ω = Qσ 2

ωI3×3 are the covariance
matrix of the quaternion part and angular velocity part of
the process noise, respectively, which are assumed to be
uncorrelated, zero-mean white noise.

5. Simulations and experiments

5.1. Experimental equipment

The orientation estimation scheme was tested using the WIMU
detailed in section 3. Raw data was recorded, transmitted to
a desktop, and processed by the proposed scheme. A welding
robot (Universal Robot UR 5) was used to provide reference
measurements of the torch orientation. To do so, either the
torch (in welding experiments) or the WIMU (in simulations)
was rigidly mounted on the robot tool center, the center of
the plane on the robot forearm [64]. The orientation of the
tool center was calculated by the imported accompanying
software using the feedback from the robot. The obtained
reference orientation was filtered by a second-order low-pass
Butterworth filter (cut-off frequency: 15 Hz). Initial calibration
was conducted to determine the quaternion for converting
the tool center orientation to the torch/WIMU orientation.
The performance of the proposed scheme was evaluated by
comparing it with the reference measurements.

The accuracy of the reference orientation delivered by
the welding robots depends on the accuracy of the orientation
measurement of the robot tool center and on the robot-WIMU
orientation calibration. The orientation measurement error of
the robot can be estimated using the data supplied by the robots
manufacturer [64]. The repeatability of the robot is ±0.1 mm.
The robot’s shortest forearm around which the robot tool center
rotates is about 89 mm. Hence, its maximum orientation error
is about 0.06◦, which is acceptable as a measurement reference
for our target applications.

5.2. Simulations procedure

A reference 3D Cartesian coordinate frame E(XY Z) was
defined to justify valid orientation measurements: the
z-axis has been defined in section 3; the x-axis and y-axis
were arbitrarily defined by the right-hand rule. The WIMU
was mounted on the robot tool center such that its internal
coordinate frame s(XY Z) was identical to frame E(XY Z) at
the initial position.

To simulate a human hand’s behavior, the welding robot
was set in the teaching mode such that the robot tool center
could be rotated manually and smoothly around the three
axes of its internal frame. Four data sets were constructed
in simulations denoted by Ds

i , where i = 1, 2, 3, 4. To
evaluate the performance of the proposed scheme in the three
dimensions separately, the WIMU was rotated around one axis
in each simulation by the leading author. Hence, for Ds

1 to Ds
3,

the robot tool center (and the WIMU) was rotated around the
x-axis, y-axis and z-axis, respectively. The rotation sequence
in the three data sets is identical, i.e., first rotate 90◦ 5, back to
initial position, then rotate −30◦, and back to initial position
again. In each stage (at 90◦, −30◦ and the initial positions),
the robot tool center stayed still for a few seconds. It should
be noted that the stationary phases might not exactly be 90◦,
−30◦ or 0◦, since the robot tool center was manually rotated
by the leading author. Yet, it does not affect the simulation
procedure, or the estimation accuracy.

For Ds
4, the robot tool center was rotated around the three

axes together with the aforementioned rotation sequence. The
robot tool center was thought to be much steadier than a human
hand due to a human’s inherent neuro latency. To this regard,
data set Ds

4+n was further artificially constructed by introducing
two random Gaussian noises into the gyro and acceleration
data in Ds

4, respectively, in order to simulate the unsteadiness
of a human hand. The variances of the noise for the gyro and
acceleration data in Ds

4 were 5×10−2 and 5 × 10−1.
Two UKF implementations were studied, henceforth

called method A and method B. Method A incorporated
the auto-nulling algorithm, while method B did not. Two
additional trapezoidal numerical integration methods were
also included as two comparisons: method C adopted the auto-
nulling algorithm, while method D did not. Four methods were
tested at three different sampling rates: 256, 128 and 51.2 Hz.
Six repeated tests were conducted for each condition, including
both methods and sampling rates.

The performance metric adopted in this study is the root-
mean-square error (RMSEθ ) of the orientation in degree, which
is defined by

RMSEθ =
√√√√1

n

n−1∑
k=0

(
θk)2 (39)

where n is the sample number of the data set being evaluated:


θk = 2 ∗ 180

π
arccos((qtk ⊗ q∗

ek
)0) (40)

where qtk and qek are the truth-reference and estimated
quaternion. Besides the RMSEθ , the RMSEs of rotated Euler
angles in three axes were also adopted, denoted by RMSEx,
MRSEy and RMSEz, respectively.

5.3. Experimental validation

Two data sets of torch orientation used in this section,
denoted by De

1 and De
2, were obtained from welding

experiments. The data set De
1 was collected from the

GTAW experiments, containing four types of welding fit-ups
sequentially corresponding to the configurations in figure 1,
and the data set De

2 was obtained from the GMAW experiments
including the welding types as shown in figure 2. Furthermore,
two more data sets De

1+n and De
2+n were artificially constructed

by introducing the same noise mentioned in the last section
into De

1 and De
2, respectively. The tested method was method

A, which was the contest winner in the simulation trials. Six
repeated trials were conducted for each welding type.

5 The positive direction indicates a clockwise rotation as viewed from the
negative to the positive direction of one axis.
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Table 1. Major welding conditions for the GTAW experiments.

Welding parameter Conditions

Welding current (A) 60
Welding speed (mm s−1) 1 ∼ 2 (varied by the welder)
Tungsten tip-to-work distance (mm) 2 ∼ 5 (varied by the welder)
Electrode extension (mm) 3
Electrode type EWCe-2
Electrode diameter (mm) 2.38
Electrode tip geometry (deg) 30
Shielding gas Argon 100%
Flow rate of shielding gas (L min−1) 11.8
Material 2 mm thick 304 L sheet

To construct the data sets, the WIMU attached torch (as
shown figure 3) was mounted on the tool center of the welding
robot which was set in the teaching mode. The leading author
(a novice welder) was asked to hold the robot forearm and
perform the aforementioned experiments. Each welding type
lasted about 30 s. The welder took a break and set the torch
to the initial posture between every two welding trials. The
welding conditions for the GTAW experiments are listed in
table 1. No filler metal was used in the experiments. For
the GMAW experiments, not only the torch orientations were
required to be maintained, but the specific torch swing patterns
needed to be followed. In the experiments, the arc did not start
due to the limited welding skill of the leading author, i.e., the
torch was firmly held above and smoothly dragged along the
weld beam without the arc being established. The experimental
data was transmitted to a host desktop, and was processed off-
line using Matlab R2011.

A reference 3D Cartesian coordinate frame E′
(XY Z) was

defined for the experimental data. The negative direction of
E′

Z coincided with the gravitational direction. The positive
direction of E′

Y was the welding direction along the weld
seam. Axis E′

X was then determined using the right-hand rule.
In the experiments, the spatial relation between the torch and
the robot was carefully calibrated. In the initial posture, the
torch head was set such that directions of the axis in E′

(XY Z)

coincide with those in t (XY Z), respectively.

6. Results and discussion

6.1. Results

6.1.1. Simulation results. The initial parameters for the UKF
are listed in table 2. The mean and standard deviation of
the gyro’s output when the WIMU is stationary at room
temperature conditions, μs and σs, were measured using
equations (41) and (42). The coefficients ρμ and ρσ were
chosen to be 1.0 when conducting the simulations:

μs = [8.50 × 10−3 1.56 × 10−2 4.70 × 10−3] (41)

σs = [1.18 × 10−4 1.47 × 10−4 9.87 × 10−5]. (42)

The statistics of the resultant estimation of the RMSEθ are
listed in table 3. In the table, the estimated performance of the
proposed algorithm (method A) is compared with the other
three counterpart algorithms by the mean and the standard
deviation of the RMSEθ .

Table 2. Initializations of the UKF parameters for methods A and B.

Qσq
Qσω

Rσω
Rσa α β κ

Method A 0.18 0.08 0.5 0.2 1.4 1.0 0
Method B 0.27 0.18 1.2 0.4 1.0 0 3.0

The results of the orientation estimation for the three
individual axes (RMSEs [◦]) are presented in table 4. The
evaluated data sets are Ds

1, Ds
2 and Ds

3, respectively.
Figures 4 and 5 show the time functions of the Euler

angles as they were measured in the simulation trials, and
the reference measurements were from the welding robot. In
particular, figure 4 shows the estimation of the orientation
in the x-axis, y-axis and z-axis using data sets Ds

1, Ds
2 and

Ds
3, respectively. The 3D orientation estimation is presented

in figure 5, obtained using the four algorithms with data set
Ds

4. Figure 6 shows the quaternion time functions obtained
by the proposed algorithm, i.e., method A, using the data set
corresponding to figure 5. It should be noted that each of the
figures only shows one of the estimation result of the six trials
for the corresponding simulation conditions.

Tables 3 and 4 show the estimation results of slow torch
movement, in which the angular rate is about 3◦ s−1. The
orientation estimation results for an angular rate larger than
5◦ s−1 of the torch movement are presented in table 5.

6.1.2. Experimental results. One can find from the
simulation results that the proposed algorithm (method A)
produces the best performance. The sampling rate chosen
to conduct the experiments is 128 Hz, since it is the
best trade-off between estimation accuracy and computation
load. Table 6 shows the mean and standard deviation of
the estimated RMSEθ obtained from the aforementioned
experiments consisting of the two welding processes (GTAW
and GMAW), each of which includes the four welding fit-
ups. Since the welding experiments last only about 40 s on
average, the ambient temperature is not significantly changed
compared with that when the WIMU were tested for the static
drift. Therefore, thermal coefficients ρμ and ρσ were tuned
in the range between 1.2 to 2.1 (they were set at 1.0 in the
GMAW experiments).

Figures 7–10 show the typical orientation estimation
results in Euler angles. In particular, figure 7 shows the
estimation results in one GTAW process with a lap joint,
corresponding to the welding process shown in figure 1(B).
The initial posture of the torch should be 0◦ in all the three
axes. According to the related welding type (figure 1(B)),
the welder is expected to maintain the 3D orientation of
the torch at [20◦, −20◦, CR], where CR denotes ‘custom-
related’, i.e., the orientation in that particular axis depends
on the welder’s individual operation custom. One can see in
figure 7 that the torch orientation deviated about 5◦ from the
recommended torch posture as shown in figure 1(B). This is
normal since the welder, i.e., the leading author, is a novice
welder who has not mastered the torch manipulation yet.
The welding processes, the results of which are shown in
figures 8–10, are illustrated in figures 2(A)–(C), respectively.
The recommended torch postures for the three welding types

9



Meas. Sci. Technol. 25 (2014) 035010 W Zhang et al

(A) (B)

(C )

Figure 4. Estimated and reference orientation (in Euler angle) at a sampling rate of fs = 128 Hz for (A) the x-axis using data set Ds
1, (B) the

y-axis using data set Ds
2, and (C) the z-axis using data set Ds

3.

Table 3. Orientation estimation (RMSEθ ), in the form of the mean± standard deviation, obtained by the different estimation methods in the
course of the Monte Carlo performance trials. The additional distance of gyro and acceleration were artificially introduced in data set Ds

4+n.

Ds
1 Ds

2 Ds
3 Ds

4 Ds
4+n

fs = 256 Hz
A 0.53 ± 0.11 0.47 ± 0.14 0.91 ± 0.20 0.98 ± 0.25 1.35 ± 0.34
B 2.56 ± 0.17 2.74 ± 0.55 1.50 ± 0.48 2.67 ± 0.41 3.02 ± 0.58
C 4.91 ± 0.54 5.11 ± 1.36 6.43 ± 0.81 7.48 ± 0.67 7.85 ± 0.98
D 25.97 ± 2.58 19.18 ± 1.57 21.72 ± 2.27 30.14 ± 3.49 32.56 ± 3.98

fs = 128 Hz
A 0.50 ± 0.13 0.40 ± 0.16 0.94 ± 0.29 1.01 ± 0.20 1.28 ± 0.32
B 3.52 ± 0.93 2.97 ± 0.73 2.25 ± 0.47 2.21 ± 0.35 2.45 ± 0.47
C 5.27 ± 1.18 6.12 ± 1.57 5.73 ± 0.36 7.14 ± 0.58 8.01 ± 0.79
D 28.39 ± 5.17 23.59 ± 4.18 29.42 ± 1.31 31.30 ± 4.78 41.44 ± 5.36

fs = 51.2 Hz
A 0.67 ± 0.03 0.52 ± 0.08 1.57 ± 0.32 2.59 ± 0.24 2.81 ± 0.22
B 2.21 ± 0.28 3.74 ± 0.42 3.17 ± 0.52 3.75 ± 0.27 4.11 ± 0.31
C 5.45 ± 1.71 7.94 ± 3.84 8.49 ± 3.67 9.42 ± 3.65 9.84 ± 4.22
D 19.64 ± 3.82 18.12 ± 2.57 23.44 ± 5.12 25.14 ± 4.25 27.51 ± 4.44
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(A) (B)

(C)

Figure 5. The RMSEs of orientation in the Euler angle at a sample rate of fs = 51.2 Hz for (A) RMSEx, (B) RMSEy and (C) RMSEz using
data set Ds

4.

Figure 6. The obtained unit-norm quaternion of rotation from data
set Ds

4 using method A at a sampling rate fs = 51.2 Hz. The
quaternion components are dimensionless.

Table 4. Orientation estimation (RMSEs (◦)), in the form of mean ±
standard deviation, obtained by the different estimation methods in
the course of six repeated trials for each simulation.

Ds
1 Ds

2 Ds
3

fs = 256 Hz RMSEx RMSEy RMSEz

A 0.23 ± 0.01 0.16 ± 0.01 0.49 ± 0.04
B 0.26 ± 0.05 0.46 ± 0.29 1.14 ± 0.37
C 4.77 ± 0.58 4.60 ± 1.25 4.97 ± 0.71
D 12.86 ± 2.55 10.62 ± 1.30 13.42 ± 2.10

fs = 128 Hz
A 0.32 ± 0.02 0.25 ± 0.02 0.76 ± 0.14
B 0.34 ± 0.02 0.70 ± 0.03 1.72 ± 0.31
C 4.69 ± 0.69 4.34 ± 0.94 5.16 ± 0.23
D 15.39 ± 2.58 10.86 ± 2.46 20.34 ± 1.51

fs = 51.2 Hz
A 0.60 ± 0.02 0.46 ± 0.05 0.81 ± 0.18
B 0.62 ± 0.02 0.49 ± 0.05 2.24 ± 0.41
C 4.99 ± 1.39 6.68 ± 3.21 7.16 ± 2.33
D 10.97 ± 8.22 9.95 ± 1.64 24.79 ± 3.10
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(A) (B)

(C ) (D)

Figure 7. Orientation estimations in (A) the x-axis, (B) the y-axis and (C) the z-axis, and (D) the unit-norm quaternion components in a
GTAW experiment using the proposed estimation algorithm, i.e., method A. The used data set is De

1. The weld type is a lap joint
corresponding to figure 1(B).

Table 5. Dynamic Orientation estimation [RMSEθ ](◦), in the form
of mean± standard deviation, obtained by method A. The angular
rate is larger than 5◦.

fs = 51.2 fs = 128 fs = 256

Ds
1 1.40 ± 0.06 0.89 ± 0.18 0.61 ± 0.08

Ds
2 1.74 ± 0.07 0.91 ± 0.19 0.54 ± 0.11

Ds
3 1.89 ± 0.28 1.25 ± 0.35 1.10 ± 0.38

Ds
4 3.28 ± 0.29 1.62 ± 0.35 1.25 ± 0.26

Ds
4+n 3.56 ± 0.45 1.94 ± 0.41 1.55 ± 0.35

are [10◦ ∼ 20◦, −45◦, CR], [80◦, 0◦, 0◦], and [100◦, 0◦,
0◦], respectively. Similarly, the orientation deviations from the
corresponding recommendations are observed in the resultant
figures. Nevertheless, those deviations do not affect the
estimation accuracy of the proposed algorithm.

6.2. Discussion

In the proposed measurement, i.e., method A, the auto-nulling
algorithm is incorporated in the effort to compensate the

Table 6. Orientation estimation [RMSEθ ](◦), produced by different
data sets using method A with a sampling rate of fs = 128 Hz. The
four types of welding account for those in figure 1 (for data set De

1
and De

1+n), and in figure 2 (for data set De
2 and De

2+n).

Type A Type B Type C Type D

De
1 2.59 ± 0.37 3.10 ± 0.44 2.67 ± 0.46 2.78 ± 0.42

De
2 2.37 ± 0.42 2.11 ± 0.59 2.14 ± 0.35 3.40 ± 0.54

De
1+n 3.74 ± 0.51 3.46 ± 0.45 3.44 ± 0.45 3.32 ± 0.48

De
2+n 4.04 ± 0.31 3.57 ± 0.41 3.84 ± 0.39 3.62 ± 0.51

possible time-varying gyro drift during the simulations and
the welding experiments; while for the in-line self-calibration
of the accelerometer, multiple postures are required. However,
the torch orientation is expected to be maintained at the
recommended postures throughout the welding experiments.
There are thus not enough postures in a single experiment for
the accelerometer to conduct the calibration.

The UKF parameter initialization listed in table 2 is found
to work well after running an extensive number of simulations
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(A) (B)

(C ) (D)

Figure 8. Orientation estimations in (A) the x-axis, (B) the y-axis and (C) the z-axis, and (D) the unit-norm quaternion components in a
GMAW experiment using the proposed estimation algorithm, i.e., method A. The used data set is De

2. The weld type is a horizontal–vertical
fillet corresponding to figure 2(A).

or experiments, even in the presence of the incorporated noises.
The WIMU was calibrated well before use. In addition, the
auto-nulling algorithm was also incorporated in method A to
compensate for the gyro drift. Hence the covariances of the
measurement noise and the process noise chosen for method
A are comparatively small; while the covariances in method B
are selected to be larger than those in A due to the absence of
the auto-nulling algorithm. It is expected that increasing the
process noise should be able to compensate for the disturbance
of the inaccurate modeling and to improve the tracking ability
of the filter.

The results reported in tables 3 and 4 show that the
combination of the UKF and the auto-nulling algorithm
give the best performance. Results for the x-axis and y-axis
orientation estimations are comparable in accuracy. Yet, the
z-axis estimation shows comparatively poor accuracy. It is
arguable that because the accelerometer cannot provide the
torch’s orientation information in the z-axis, estimations in
the UKF solely rely on the accuracy of the gyro outputs

themselves. The performance is thus relatively poor without
aid from the acceleration data. Another interesting observation
can be found in table 4 by comparing the performance of
method A and method B: the RMSExs and RMSEys yielded
by the two methods are comparable, yet, the corresponding
RMSEθ obtained using method A is significantly smaller.
One can conclude from this observation: (1) the main source
of RMSEθ is from the estimation for the z-axis (heading);
(2) significant improvement in estimation accuracy can be
obtained by applying the proposed auto-nulling algorithm to
compensate for the gyro drift.

Data from a magnetic sensor could be fused into
the UKF to improve the estimation accuracy in the
z-axis. However, with the existence of the strong magnetic
interference from the welding machine and welding arc, the
accuracy of the orientation estimation may not be guaranteed.
Thus, incorporating an additional magnetic sensor, it might
not be a good choice for applications in the welding fields.
Fortunately, even without an extra magnetic sensor, the 3D
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(A) (B)

(C ) (D)

Figure 9. Orientation estimations in (A) the x-axis, (B) the y-axis and (C) the z-axis, and (D) the unit-norm quaternion components in one
GMAW experiment using the proposed estimation algorithm, i.e., method A. The used data set is De

2. The weld type is a vertical up root pass
corresponding to figure 2(B).

estimation errors reported in tables 3 and 6 are acceptable
compared with state-of-art research in other academic
communities [30, 35, 38]. Furthermore, only accelerometers
and gyroscopes are applied in the proposed method, while
other methods added magnetometers.

Degradations in estimation accuracy are observed in both
tables 3 and 6 after injecting the noise into the gyro data and
acceleration data. The auto-nulling algorithm should be able
to compensate for the noise in the gyro data. However, the
contaminated acceleration data contains both the gravitation
and the fake acceleration induced by the injected noise, while
the acceleration of the WIMU is considered as a disturbance in
the sensor model (equation (8)). The sensor model thus tends to
be less accurate with the existence of the acceleration, and that
leads to a degraded orientation estimation. Similar results can
be found in table 5. As the torch movement becomes faster, the
accelerometer is more likely to detect the acceleration of the
torch’s movement. The estimation accuracy is thus degraded.

Within the limits of our analysis, increasing the sampling
rate does improve the estimation accuracy, but its effect is
not prominent. Unlike the EKF, which usually requires a high
sampling rate to avoid the possible filter instability, the UKF
has no such stability issue. Increasing the sampling rate is
a huge computation and energy assumption burden for the
battery-powered WIMU. Therefore, the sampling rate was set
at 128 Hz in the welding experiments.

One can find that some of the recommended torch
orientations do not require specifications for the z-axis posture,
such as those for the welding types in figure 1. This is because
the torch posture in the z-axis does not necessarily relate to
weld quality in some welding processes. On the other hand,
a proper z-axis torch posture is recommended for weld types
like those shown in figure 2, in order to perform a qualified
weld. Furthermore, in the applications mentioned in section 1,
an accurate totally 3D orientation estimation might be highly
appreciated.
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(A) (B)

(C ) (D)

Figure 10. Orientation estimations in (A) the x-axis, (B) the y-axis and (C) the z-axis, and (D) the unit-norm quaternion components in a
GMAW experiment using the proposed estimation algorithm, i.e., method A. The used data set is De

2. The weld type is a vertical up root pass
corresponding to figure 2(C).

The effect of the torch’s swing motions to the torch
orientation can be found by comparing figure 7 and figures 8–
10: more ripples are observed in the torch orientation curves as
torch swing motions are augmented. Yet, in this study, no extra
errors were observed to be yielded in the orientation estimation
due to the swing motions.

7. Conclusion and future work

An innovative measurement scheme for the 3D welding
torch orientation, which can be conveniently adapted into a
manual arc welding process or a welder training system, is
developed in this paper. The proposed measurement scheme
is composed of a quaternion-based UKF incorporated by an
auto-nulling algorithm. The UKF aims for the estimation of
the 3D welding torch orientation using a miniature WIMU
endowed with a tri-axis gyro and a tri-axis accelerometer.
The auto-nulling algorithm serves as an in-line calibration
procedure to compensate for the gyro drift, which has been

verified to significantly improve the estimation accuracy
in three-dimensions, especially in the heading estimation.
It has been found that the proposed scheme is able to
provide an accurate orientation estimation without aid from
an extra magnetometer. The accuracy of the estimation using
the proposed scheme has been validated by simulation and
welding experiments. Statistics show that the estimation error
in welding experiments is in the order of 3◦.

The future work of the authors is to incorporate the WIMU
along with the proposed UKF in a manual welding process
such that the welder’s torch manipulations can be recorded,
studied and modeled in relation to weld quality characters,
such as the weld beam appearance and the weld penetration
depth.
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