Jun-Yan Zhu

Jun-Yan Zhu
Carnegie Mellon University | CMU · School of Computer Science

Doctor of Philosophy

About

151
Publications
121,946
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
99,224
Citations
Introduction
I am an Assistant Professor at the School of Computer Science of Carnegie Mellon University. I study computer vision, computer graphics, machine learning, and computational photography, with the goal of building intelligent machines, capable of recreating our visual world. I was a Research Scientist at Adobe Research. I did a postdoc at MIT CSAIL. I obtained my Ph.D. from UC Berkeley, and my B.E. from Tsinghua University. Personal website: https://www.cs.cmu.edu/~junyanz/
Additional affiliations
September 2020 - present
Carnegie Mellon University
Position
  • Professor (Assistant)
September 2019 - September 2020
Adobe Inc.
Position
  • Researcher
January 2018 - August 2019
Massachusetts Institute of Technology
Position
  • PostDoc Position

Publications

Publications (151)
Conference Paper
Full-text available
Realistic image manipulation is challenging because it requires modifying the image appearance in a user-controlled way, while preserving the realism of the result. Unless the user has considerable artistic skill, it is easy to "fall off" the manifold of natural images while editing. In this paper, we propose to learn the natural image manifold dir...
Article
Full-text available
Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to...
Preprint
Full-text available
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, visualization and understanding of GANs is largely missing. How does a GAN represent our visual world internally? What causes the a...
Preprint
Full-text available
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, using a framework based on contrastive learning. The method encourages two elements (corresponding patch...
Preprint
Full-text available
A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper, we introduce a new problem setting: manipulation of specific rules encoded by a deep generative mo...
Preprint
Full-text available
Customization of text-to-image models enables users to insert custom concepts and generate the concepts in unseen settings. Existing methods either rely on costly test-time optimization or train encoders on single-image training datasets without multi-image supervision, leading to worse image quality. We propose a simple approach that addresses bot...
Preprint
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personali...
Preprint
Full-text available
We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of...
Preprint
Full-text available
Diffusion models have been proven highly effective at generating high-quality images. However, as these models grow larger, they require significantly more memory and suffer from higher latency, posing substantial challenges for deployment. In this work, we aim to accelerate diffusion models by quantizing their weights and activations to 4 bits. At...
Preprint
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a...
Preprint
Full-text available
The goal of data attribution for text-to-image models is to identify the training images that most influence the generation of a new image. We can define "influence" by saying that, for a given output, if a model is retrained from scratch without that output's most influential images, the model should then fail to generate that output image. Unfort...
Article
During image editing, existing deep generative models tend to re-synthesize the entire output from scratch, including the unedited regions. This leads to a significant waste of computation, especially for minor editing operations. In this work, we present Spatially Sparse Inference (SSI), a general-purpose technique that selectively performs comput...
Preprint
Full-text available
While large text-to-image models are able to synthesize "novel" images, these images are necessarily a reflection of the training data. The problem of data attribution in such models -- which of the images in the training set are most responsible for the appearance of a given generated image -- is a difficult yet important one. As an initial step t...
Preprint
Dataset Distillation aims to distill an entire dataset's knowledge into a few synthetic images. The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data. Despite recent progress in the field, existing dataset distilla...
Preprint
Full-text available
We explore the task of embodied view synthesis from monocular videos of deformable scenes. Given a minute-long RGBD video of people interacting with their pets, we render the scene from novel camera trajectories derived from in-scene motion of actors: (1) egocentric cameras that simulate the point of view of a target actor and (2) 3rd-person camera...
Preprint
Full-text available
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text promp...
Preprint
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability. However, these models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos. Furthermore, they have been found to replicate the style of various living...
Preprint
The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and d...
Preprint
Full-text available
We propose pix2pix3D, a 3D-aware conditional generative model for controllable photorealistic image synthesis. Given a 2D label map, such as a segmentation or edge map, our model learns to synthesize a corresponding image from different viewpoints. To enable explicit 3D user control, we extend conditional generative models with neural radiance fiel...
Preprint
Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the...
Preprint
Full-text available
Can one inject new concepts into an already trained generative model, while respecting its existing structure and knowledge? We propose a new task - domain expansion - to address this. Given a pretrained generator and novel (but related) domains, we expand the generator to jointly model all domains, old and new, harmoniously. First, we note the gen...
Preprint
Full-text available
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts togeth...
Preprint
Full-text available
During image editing, existing deep generative models tend to re-synthesize the entire output from scratch, including the unedited regions. This leads to a significant waste of computation, especially for minor editing operations. In this work, we present Spatially Sparse Inference (SSI), a general-purpose technique that selectively performs comput...
Preprint
Full-text available
The growing proliferation of pretrained generative models has made it infeasible for a user to be fully cognizant of every model in existence. To address this need, we introduce the task of content-based model search: given a query and a large set of generative models, find the models that best match the query. Because each generative model produce...
Preprint
Full-text available
Deep generative models make visual content creation more accessible to novice users by automating the synthesis of diverse, realistic content based on a collected dataset. However, the current machine learning approaches miss a key element of the creative process -- the ability to synthesize things that go far beyond the data distribution and every...
Article
Deep generative models make visual content creation more accessible to novice users by automating the synthesis of diverse, realistic content based on a collected dataset. However, the current machine learning approaches miss a key element of the creative process - the ability to synthesize things that go far beyond the data distribution and everyd...
Preprint
Existing GAN inversion and editing methods work well for aligned objects with a clean background, such as portraits and animal faces, but often struggle for more difficult categories with complex scene layouts and object occlusions, such as cars, animals, and outdoor images. We propose a new method to invert and edit such complex images in the late...
Preprint
Dataset distillation is the task of synthesizing a small dataset such that a model trained on the synthetic set will match the test accuracy of the model trained on the full dataset. In this paper, we propose a new formulation that optimizes our distilled data to guide networks to a similar state as those trained on real data across many training s...
Preprint
Full-text available
The advent of large-scale training has produced a cornucopia of powerful visual recognition models. However, generative models, such as GANs, have traditionally been trained from scratch in an unsupervised manner. Can the collective "knowledge" from a large bank of pretrained vision models be leveraged to improve GAN training? If so, with so many m...
Preprint
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unalig...
Preprint
Full-text available
Training supervised image synthesis models requires a critic to compare two images: the ground truth to the result. Yet, this basic functionality remains an open problem. A popular line of approaches uses the L1 (mean absolute error) loss, either in the pixel or the feature space of pretrained deep networks. However, we observe that these losses te...
Article
Conditional Generative Adversarial Networks (cGANs) have enabled controllable image synthesis for many vision and graphics applications. However, recent cGANs are 1-2 orders of magnitude more compute-intensive than modern recognition CNNs. For example, GauGAN consumes 281G MACs per image, compared to 0.44G MACs for MobileNet-v3, making it difficult...
Preprint
Full-text available
Can a user create a deep generative model by sketching a single example? Traditionally, creating a GAN model has required the collection of a large-scale dataset of exemplars and specialized knowledge in deep learning. In contrast, sketching is possibly the most universally accessible way to convey a visual concept. In this work, we present a metho...
Preprint
Full-text available
A neural radiance field (NeRF) is a scene model supporting high-quality view synthesis, optimized per scene. In this paper, we explore enabling user editing of a category-level NeRF - also known as a conditional radiance field - trained on a shape category. Specifically, we introduce a method for propagating coarse 2D user scribbles to the 3D space...
Preprint
Full-text available
Recent generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose, simply by learning from unlabeled image collections. Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification. Using a pretrained gene...
Preprint
We investigate the sensitivity of the Fr\'echet Inception Distance (FID) score to inconsistent and often incorrect implementations across different image processing libraries. FID score is widely used to evaluate generative models, but each FID implementation uses a different low-level image processing process. Image resizing functions in commonly-...
Preprint
Generative adversarial networks (GANs) have enabled photorealistic image synthesis and editing. However, due to the high computational cost of large-scale generators (e.g., StyleGAN2), it usually takes seconds to see the results of a single edit on edge devices, prohibiting interactive user experience. In this paper, we take inspirations from moder...
Conference Paper
Full-text available
The performance of generative adversarial networks (GANs) heavily deteriorates given a limited amount of training data. This is mainly because the discriminator is memorizing the exact training set. To combat it, we propose Differentiable Augmentation (DiffAugment), a simple method that improves the data efficiency of GANs by imposing various types...
Chapter
Existing disentanglement methods for deep generative models rely on hand-picked priors and complex encoder-based architectures. In this paper, we propose the Hessian Penalty, a simple regularization term that encourages the Hessian of a generative model with respect to its input to be diagonal. We introduce a model-agnostic, unbiased stochastic app...
Chapter
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so – maximizing mutual information between the two, using a framework based on contrastive learning. The method encourages two elements (corresponding patche...
Chapter
We present a method for projecting an input image into the space of a class-conditional generative neural network. We propose a method that optimizes for transformation to counteract the model biases in generative neural networks. Specifically, we demonstrate that one can solve for image translation, scale, and global color transformation, during t...
Chapter
A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper, we introduce a new problem setting: manipulation of specific rules encoded by a deep generative mo...
Book
Existing disentanglement methods for deep generative models rely on hand-picked priors and complex encoder-based architectures. In this paper, we propose the Hessian Penalty, a simple regularization term that encourages the Hessian of a generative model with respect to its input to be diagonal. We introduce a model-agnostic, unbiased stochastic app...
Article
2019 IEEE. Despite the success of Generative Adversarial Networks (GANs), mode collapse remains a serious issue during GAN training. To date, little work has focused on understanding and quantifying which modes have been dropped by a model. In this work, we visualize mode collapse at both the distribution level and the instance level. First, we dep...
Preprint
Full-text available
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large data sets. How can we humans understand these learned representations? In this work, we present network dissection, an analytic framework to systematically identify the semantics of individual hidden units within image classification and image gen...