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Abstract: 4-1BB (CD137) is a costimulatory
molecule involved in the activation and survival of
CD4, CD8, and natural killer cells. Although a
great deal has been learned as to how 4-1BB-
mediated signaling governs the immunity of con-
ventional T cells, the functional role of 4-1BB in
the context of CD4�CD25� regulatory T cell (Tr)
activation is largely unknown. Using 4-1BB-intact
and -deficient mice, we investigated the effect of
the 4-1BB/4-1BB ligand pathway on the suppres-
sive function of Tr cells. Our data indicate that
although 4-1BB is expressed on Tr cells, its con-
tribution to their proliferation is minimal. We also
showed that signaling through the 4-1BB receptor
inhibited the suppressive function of Tr cells in
vitro and in vivo. It is interesting that anti-4-1BB-
mediated but not anti-GITR-directed inhibition was
more potent when Tr cells were preactivated. Col-
lectively, these data indicate that 4-1BB signaling
is critical in Tr cell immunity. J. Leukoc. Biol. 75:
785–791; 2004.
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INTRODUCTION

Since their discovery, CD25� (CD4�CD25�) regulatory T (Tr)
cells have been found to play important roles in immune
function [1–3]. Upon coculture, they immunosuppress
CD4�CD25– and CD8� T cell function, presumably by down-
regulating interleukin (IL)-2 production [2–5] by a distinctive
process in that it is rendered more potent by prior activation of
the CD25� cells [2]. Despite rapid progress, the molecular
basis of the immunosuppression remains elusive. Some studies
have suggested that IL-10 and transforming growth factor-�
(TGF-�) [4] contribute to the suppressive potency of the
CD25� Tr cells, but subsequent observations of IL-10 and
TGF-�-deficient mice do not fully support this view [2, 6].
Suppression appears to be contact-dependent and is not me-
diated by IL-4 or IL-10, as CD25� Tr cells from IL-4- or
IL-10-deficient mice are as effective as those from wild-type
mice [2]. Recent data suggested that glucocorticoid-induced
tumor necrosis factor receptor family-related gene (GITR)

plays some part in inhibiting CD25� Tr cell-mediated sup-
pression [7].

4-1BB, the inducible T cell antigen (Ag) present on CD4�,
CD8�, natural killer, and dendritic cells, provides CD28-
independent costimulation of T cell activation [8–10]. 4-1BB-
mediated signaling plays a critical role in preventing activa-
tion-induced cell death, promoting the rejection of cardiac
allografts and skin transplants, enhancing integrin-mediated
cell adhesion, increasing T cell cytolytic potential, and eradi-
cating established tumors [8–14]. 4-1BB-deficient mice have
normal T and B cell numbers but have defects in Ag-specific
interferon-� expression and cytolytic T lymphocyte (CTL) ac-
tivity [15].

Although 4-1BB is constitutively expressed on CD25� Tr
cells [16, 17], the consequence of this expression is largely
unknown. In the present study, we analyzed its effect in sys-
tems involving CD4� T cell immunity. Using wild-type and
4-1BB-deficient mice, we showed that 4-1BB signaling is re-
quired to neutralize the suppressive function of CD25� Tr cells
in vitro and in vivo and that this neutralizing action is much
more potent when the CD25� Tr cells are activated. Thus,
signaling through the 4-1BB receptor is critical for CD25� Tr
cell immunity. The ability of 4-1BB-dependent regulatory pro-
cesses to counter the suppressive effect of CD25� Tr cells in
vitro and in vivo also points to a novel role for the 4-1BB
receptor.

MATERIALS AND METHODS

Mice
Female mice (5–6 weeks) were used in all experiments. Wild-type C57BL/6
mice were purchased from Harlan (Indianapolis, IN) and B6.C-H2bm12/KhEg
(bm12) mice, from The Jackson Laboratory (Bar Harbor, ME). 4-1BB-deficient
C57BL/6 mice [15] were bred and maintained under specific, pathogen-free
conditions in the animal facilities of the University of Ulsan (Korea).

Reagents and antibodies (Ab)
Anti-CD3 monoclonal Ab (mAb; 145.2C11), biotin-labeled CD25 (7D4), bi-
otin–major histocompatibility complex (MHC) II (I-Ab, AF6-120.1), Fc blocker
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(2.4G2), fluorescein isothiocyanate (FITC)-conjugated anti-CD4 (H129.19)
mAb, and isotype-control Ab were purchased from BD PharMingen (San Diego,
CA). Phycoerythrin (PE)-conjugated anti-CD25 (PC61.5) and biotin–CD8a
(53-6.7) were purchased from E-Biosciences (San Diego, CA). Anti-CD4,
anti-CD8, as well as streptavidin-conjugated microbeads, were obtained from
Miltenyi Biotec (Auburn, CA). Recombinant human (rh)IL-2 was purchased
from PeproTech (Rocky Hill, NJ). Dr. Robert S. Mittler (Emory University,
Atlanta, GA) kindly provided agonistic anti-4-1BB mAbs (3H3 and 3E1), and
production of agonistic anti-GITR mAb, DTA-1 has been described [7].

Cell isolation

Cell populations were isolated with a VarioMACS™ magnetic cell sorter
(Miltenyi Biotec), according to the manufacturer’s protocols. Briefly, red blood
cell-depleted splenocytes were combined with lymph node cell suspensions in
phosphate-buffered saline (PBS), supplemented with 0.5% bovine serum al-
bumin, and incubated with Fc receptor-blocking mAb 2.4G2 for 10 min at 4°C.
CD8� T and MHC II� cells were depleted by staining with biotinylated
anti-CD8 and anti-MHC II mAb and streptavidin microbead. The CD25� Tr
cells were enriched by incubating the CD8–MHC II– fraction with a biotinyl-
ated anti-CD25 mAb and microbeads. CD25– T cells were isolated from the
CD8–MHC II–CD25– fraction with microbead-conjugated anti-CD4 mAb. The
CD25� and CD25– populations were �90% and �96% pure, respectively. To
activate the purified CD25� Tr cells, they were plated at 2 � 106/well in
six-well plates with 0.5 �g/ml anti-CD3 mAb and 20 U/ml rhIL-2 for 3 days.
Activated CD25– T cells were prepared by adding 0.5 �g/ml anti-CD3 mAb to
the culture and incubating for 24 h. The activated cells were extensively
washed with PBS and used immediately.

Cell proliferation

CD25� Tr cells (1�105 cells/well) and CD25– T cells (2�105 cells/well) were
incubated with X-irradiated (20 Gy) splenocytes (5% with respect to total
cells/well) for 3 days in the presence 0.5 �g/ml anti-CD3 mAb alone or in
combination with 5 �g/ml 3H3 (anti-4-1BB mAb) or DTA-1 (anti-GITR mAb).
rhIL-2 (10–20 U/ml) and a different number of CD25� Tr cells were used in
some experiments. The cells were labeled with 1 �Ci/well [3H]-thymidine for
the final 8 h, harvested, and counted in a liquid scintillation counter (Packard,
Albertville, MN).

Flow cytometry

Naı̈ve CD25– T cells and CD25� Tr cells were stained with PE-conjugated
anti-CD25 and FITC-labeled anti-CD4 mAb after blocking with Fc receptor-
blocking mAb 2.4G2 for 10 min at 4°C. Expression of 4-1BB on CD25� Tr
cells was measured by staining with FITC-conjugated 3E1 mAb for 30 min at
4°C and analysis on a FACScan™ (BD Biosciences, San Jose, CA).

Induction of graft-versus-host disease (GVHD)

Recipient mice (bm12) were sublethally irradiated with 6.0 Gy (137Cs) total
body irradiation. After 6 h, the mice were intravenously infused with freshly
purified CD25– T cells (2�105) or CD25– and CD25� Tr cells (2�105) from
wild-type C57BL/6 mice. In a separate experiment, CD25– cells were prepared
from 4-1BB-deficient mice and naı̈ve CD25� Tr cells from wild-type mice and
activated as described above. The naive CD25– T cells (3�105) were injected
into bm12 recipients together with naı̈ve or activated CD25� Tr cells (3�105).
Where indicated, the recipient mice were injected intraperitoneally with 200
�g 3H3 or DTA-1 mAb. The mice were monitored daily for GVHD lethality.

RESULTS

The 4-1BB does not influence CD25� Tr
cell proliferation

CD25� Tr cells constitutively express 4-1BB at a low level and
the same increases upon activation [16]. To assess the signif-
icance of this expression, we purified CD25� Tr cells from
wild-type C57BL/6 mice as described previously (Fig. 1A).
Flow cytometric analysis confirmed constitutive- as well as
activation (with anti-CD3/IL-2)-enhanced 4-1BB expression on
the surface of naı̈ve CD25� Tr cells (Fig. 1B). Having found
that the CD25� Tr cells express 4-1BB, we tested whether this
expression was responsible for activation signals, as it is in
conventional T cells [18]. When naı̈ve CD25� Tr cells from
wild-type mice were stimulated with anti-CD3 mAb, the addi-
tion of agonistic anti-4-1BB mAb (3H3) resulted in negligible

Fig. 1. CD25� Tr cells show resistance to 4-1BB-mediated signaling. (A) The purity of CD25– and CD25� cells assessed by staining with FITC-conjugated
anti-CD4 mAb and PE-conjugated anti-CD25 mAb. (B) 4-1BB expression on naı̈ve and activated CD25� Tr cells. Cells were cultured in RPMI-1640 medium,
supplemented with 0.5 �g/ml anti-CD3 mAb and 20 U/ml IL-2 for 3 days. They were then stained with FITC-conjugated anti-4-1BB mAb (3E1) and were analyzed
with a FACScan™. (C) Freshly purified CD25– T and CD25� Tr cells were plated in 96-well culture plates at 1 � 105/well. Cells were activated with 0.5 �g/ml
anti-CD3 mAb in the absence or presence of 5 �g/ml anti-CD28 or 3H3 (anti-4-1BB mAb) for 3 days. (D) CD25– T and CD25� Tr cells were activated as described
in Materials and Methods. After washing cells with PBS, they were plated at 1 � 105/well and stimulated with 0.5 �g/ml anti-CD3 mAb in the absence or presence
of 5 �g/ml anti-CD28 or 3H3 (anti-4-1BB mAb) for 3 days. All samples were labeled with 1 �Ci [3H]-thymidine for the last 8 h.
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enhancement of proliferation, whereas proliferation of CD25– T
cells was stimulated by the addition of 3H3 mAb (Fig. 1C). If
the CD25� Tr cells were contaminated with a few effector
cells, and these cells would be expanded to a certain extent
during the proactivation step, then the anti-4-1BB stimulation
may be stimulating those activated effectors to produce IL-2
and thereby break suppression. To remove this possibility and
to test the effect of 4-1BB stimulation on the activated CD25�

Tr cells, CD25� Tr cells were activated with anti-CD3 mAb
plus IL-2 for 3 days and CD25– cells with anti-CD3 mAb alone
for 24 h, and proliferation assay was performed. Activated
CD25� Tr cells showed no significant enhancement of prolif-
eration by 3H3 mAb (Fig. 1D). Thus, signaling via the 4-1BB
in CD25� Tr cells does not result in cell proliferation as it does
in conventional CD4� or CD8� T cells [19].

Signal through the 4-1BB receptor is required to
neutralize the suppressive effect of CD25�

Tr cells in vitro

Previous results (Fig. 1B) showed that 4-1BB was expressed at
a high level on rIL-2-activated CD25� Tr cells. Thus, we
hypothesized that activation of CD25� Tr cells might be re-
quired to exert 4-1BB-mediated signaling. We tested whether
4-1BB-mediated signaling requires IL-2 to promote prolifera-
tion in coculture experiments. CD25– T cells were cultured
with CD25� Tr cells in the presence of agonistic anti-4-1BB
(3H3) mAb with and without IL-2. To establish the role of
4-1BB, CD25– T cells from 4-1BB-deficient mice were cul-
tured with CD25� Tr cells from wild-type mice to direct the
4-1BB effects to the suppressors rather than the responders.
CD25– T cell proliferation was clearly inhibited by the Tr cells,
and the 3H3 mAb permitted the proliferation of the CD25– T
cells in the presence of exogenous IL-2 (Fig. 2A). This result
suggests that 4-1BB signaling, together with exogenous IL-2,
can antagonize the suppression by CD25� Tr cells in a manner
similar to the effect of GITR ligation, which efficiently reverses
suppressive function of naı̈ve CD25� Tr cells [16]. Similar
results were obtained when CD25– T cells from 4-1BB-defi-
cient mice were cocultured with CD25� Tr cells from wild-type
mice (Fig. 2B). To determine whether 4-1BB stimulation could
neutralize the suppressive activity of activated CD25� Tr cells,
we prepared “activated” CD25� Tr cells by culturing them
with anti-CD3 mAb and IL-2 for 3 days. When naı̈ve CD25– T
cells were cocultured with activated CD25� Tr cells, agonistic
anti-4-1BB mAb (3H3) efficiently induced proliferation even in
the presence of CD25– T cells from 4-1BB-deficient mice (Fig.
2, E and F) but not in the presence of naive CD25� Tr cells as
previously reported (Fig. 2, C and D).

Signaling through 4-1BB attenuates the
suppression of activated CD25� Tr cells

To further confirm the observed, desuppressive effect of 3H3
mAb, naı̈ve CD25– T cells were cocultured with different ratios
of CD25� T cells with control IgG, 3H3, or DTA-1 mAb. As
previously reported [16], DTA-1 mAb only reversed the sup-
pression when the activated CD25� Tr cell number is low. In
contrast, the 3H3 mAb abrogated the suppression of activated
CD25� Tr cells at all ratios tested (Fig. 3A). To test the

dose-dependent effect of 3H3 mAb, naive CD25– T cells and
activated CD25� Tr cells (2:1 ratio) were cocultured with the
indicated doses of 3H3 or DTA-1 mAb. Agonistic anti-4-1BB
mAb (3H3) abrogated activated CD25� Tr cell-mediated sup-
pression in a dose-dependent manner when added to cultures
containing CD25� Tr cells and CD25– T cells (Fig. 3B).

It is possible to deduce from these results that CD25� Tr
cells express a high level of GITR even in the resting status [7],
but only a subpopulation of naı̈ve CD25� Tr cells expressed
4-1BB (Fig. 1B). In this condition, 4-1BB stimulation could not
reverse the suppression of naı̈ve CD25� Tr cells as a result of
the low level of 4-1BB, suggesting that to elicit effective
desuppression, 4-1BB must be expressed at higher levels.
Thus, we conclude that the suppression of activated but not
“resting” CD25� Tr cells is more effectively neutralized by
4-1BB than GITR stimulation.

Fig. 2. Effect of 4-1BB on the suppressive activity of CD25� Tr cells. CD25�

Tr cells were purified from wild-type C57BL/6 mice, and CD25– T cells, from
wild-type and 4-1BB-deficient C57BL/6 mice. To exclude the effect of anti-
4-1BB mAb on activated CD25– T cells, 1 � 105 wild-type CD25� Tr cells
were mixed with 2 � 105 CD25– T cells from wild-type or 4-1BB-deficient
mice and were stimulated with 0.5 �g/ml anti-CD3 mAb in the presence of 5
�g/ml rat immunoglobulin G (IgG), 3H3, DTA-1 mAb, and/or 10 U/ml rhIL-2.
(A and B) Naive 4-1BB-intact and -deficient CD25– T cells were cocultured
with naı̈ve CD25� Tr cells in the presence of 5 �g/ml control IgG, 3H3 mAb,
and/or 10 U/ml IL-2. (C and D) Naı̈ve CD25� Tr cells were mixed with freshly
isolated CD25– T cells from 4-1BB-intact and -deficient mice in the presence
of 5 �g/ml control IgG, 3H3, or DTA-1 mAb. (E and F) Activated CD25� Tr
cells were prepared as described previously and cocultured with naive CD25–

T cells from 4-1BB-intact and -deficient mice in the presence 5 �g/ml control
IgG, 3H3, or DTA-1 mAb. Proliferation was measured on the third day by
labeling with 1 �Ci [3H]-thymidine for the last 8 h.
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4-1BB stimulation renders CD25– T cells
resistant to suppression but does not fully alter
the suppressive function of CD25� Tr cells
4-1BB stimulation is known to enhance the proliferation, func-
tion, and survival of CD4� and CD8� T cells [11, 20]. We
therefore tested whether CD25– T cells stimulated by 3H3
mAb are resistant to suppression by CD25� Tr cells. Activated
CD25– T cells were prepared from wild-type and 4-1BB-
deficient mice as a negative control and were cultured with
anti-CD3 mAb for 24 h. This activation step led to the in-

creased expansion of 4-1BB-positive cells (�70%; data not
shown). Stimulation through 4-1BB rendered activated CD25–

T cells more resistant to the suppression by CD25� Tr cells but
not activated CD25– T cells from 4-1BB-deficient mice (Fig.
4, A and B). It is interesting that activated CD25– T cells were
poorly suppressed by “naı̈ve” CD25� Tr cells but not by
activated CD25� Tr cells (Fig. 4C). In a separate experiment,
we tested whether 4-1BB stimulation permanently altered the
suppressive activity of the CD25� Tr cells, which were acti-
vated with anti-CD3 mAb and IL-2 for 3 days in the presence

Fig. 3. Stimulation through the 4-1BB receptor
reverses the suppression of activated CD25� Tr
cells. (A) Naı̈ve CD25– Tr cells (2�105) from
4-1BB-deficient mice were cocultured with the in-
dicated number of activated CD25� Tr cells and
treated with 5 �g/ml control IgG, 3H3, or DTA-1
mAb. (B) Naı̈ve CD25– Tr cells (2�105) from
4-1BB-deficient mice and 2 � 105 of activated
CD25� Tr cells were mixed with the indicated
concentration of control IgG, 3H3, or DTA-1 mAb.
All samples were stimulated with 0.5 �g/ml anti-
CD3 mAb, and proliferation was measured on the
third day.

Fig. 4. Effect of signaling through 4-1BB on in vitro
suppression of activated CD25– T cells by CD25� Tr
cells. (A and B) Activated CD25– T cells were prepared
from 4-1BB-intact and -deficient mice as described
previously. Activated CD25– T cells and naı̈ve CD25�

Tr cells were mixed and stimulated with 0.5 �g/ml
anti-CD3 mAb in the presence of 5 �g/ml control IgG,
3H3, or DTA-1 mAb for 3 days. (C) Activated CD25– T
cells and CD25� Tr cells were prepared from wild-type
C57BL/6 mice, mixed, and stimulated with anti-CD3
mAb in the presence of 5 �g/ml control IgG, 3H3, or
DTA-1 mAb for 3 days. (D) CD25� Tr cells were
incubated in plates with 0.5 �g/ml anti-CD3 mAb and
20 U/ml IL-2 for 3 days in the presence or absence of
3H3 (5 �g/ml) mAb. The cells were harvested, washed
with PBS, and were then serially diluted and cocultured
with freshly isolated CD25– T cells for 3 days. Samples
were labeled with 1 �Ci [3H]-thymidine for the last 8 h,
and the extent of cellular proliferation was enumerated.

788 Journal of Leukocyte Biology Volume 75, May 2004 http://www.jleukbio.org



or absence of 3H3 mAb. Activated cells were extensively
washed and cocultured with naı̈ve CD25– T cells. We found
that they recovered their ability to suppress upon removal of
the 3H3 mAb (Fig. 4D), suggesting that sustained stimulation
through 4-1BB is required for the increased resistance of
activated CD25– T cells.

Signals through 4-1BB abrogate prolonged
survival in the face of GVHD induction by
transfer of CD25� Tr cells

We also tested whether 4-1BB stimulation can inhibit the
suppressive activity of CD25� Tr cells in vivo. We used a
system in which purified T cell subsets are introduced into
MHC-disparate, sublethally irradiated recipients [21]. We
transferred freshly purified CD25– T cells or CD25– and
CD25� Tr cells into sublethally irradiated bm12 recipients
together with control IgG, DTA-1, or 3H3 mAb. Transfer of
CD25� Tr cells delayed death from GVHD, and injection of
DTA-1 or 3H3 mAb abolished this delay (Fig. 5A). Thus,
stimulation through GITR or 4-1BB neutralized the suppres-
sive activity of CD25� Tr cells in vivo. However, 20–25% of
the mice treated with 3H3 mAb survived, perhaps because of
differences in the extent of activation of the CD25� Tr cells in
the initial immune response. We therefore prepared activated
CD25� Tr cells from wild-type C57BL/6 mice by stimulating
them with anti-CD3 mAb and exogenous IL-2 and did the same
with naı̈ve CD25– T cells from 4-1BB-deficient mice to rule out

the effect of 3H3 mAb on CD25– T cells, which from wild-type
and 4-1BB-deficient mice, behaved only slightly differently in
this GVHD system when 3 � 105 cells were transferred into
bm12 mice as described previously [22]. Therefore, in the
present study, we transferred the naı̈ve or activated CD25� Tr
cells with naı̈ve CD25– T cells into sublethally irradiated bm12
mice along with 3H3 mAb, which caused accelerated death
when activated rather than naı̈ve CD25� Tr cells, which were
transferred (Fig. 5B). Taken together, we concluded that stim-
ulation through the 4-1BB receptor has a critical role in the
neutralization of activated CD25� Tr cells.

DISCUSSION

In an exception to the activation-dependent expression pattern
of 4-1BB on conventional T cells [8], a recent study reported
that Tr cells express this receptor in a constitutive manner [16].
The significance of this expression in the regulation of Tr cells,
however, has not been explained in detail.

In this study, we present evidence that 4-1BB signaling is
critical for modulation of the suppressor function of activated
but not resting CD25� Tr cells. By contrast, GITR stimulation
regulates the activity of naı̈ve but not activated CD25� Tr cells
[7, 16]. As resting CD25� Tr cells express GITR on their
surface at much higher levels than they do 4-1BB [16], it is

Fig. 5. The effect of signaling through the 4-1BB re-
ceptor on the protective function of CD25� Tr cells
during GVHD. (A) Recipient mice (bm12) were suble-
thally irradiated with 6.0 Gy total body irradiation. Six
hours later, 2 � 105 freshly purified CD25– and/or
CD25� T cells from wild-type C57BL/6 mice were in-
fused into the bm12 recipients by tail-vein injection
together with DTA-1 or 3H3 mAb. (B) To exclude any
effect of 4-1BB on the CD25– T cells, in a separate
experiment, 3 � 105 freshly purified CD25– T cells from
4-1BB-deficient C57BL/6 mice were injected into bm12
recipients together with 3 � 105 naı̈ve or activated
CD25� Tr cells. The mice were monitored daily for death
caused by GVHD lethality.
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possible that 4-1BB must be fully expressed to efficiently
antagonize suppression of CD25� Tr cell function.

We also confirmed that agonistic anti-4-1BB mAb not only
neutralizes the function of activated CD25� Tr cells in vitro
and in vivo but also renders 4-1BB-expressing CD25– T cells
more resistant to suppression by CD25� Tr cells. In this
process, the suppressor potential of the CD25� Tr cells in-
creases, and the CD25– T cells become resistant to suppres-
sion. As a result, it may be that only activated CD25� Tr cells
are able to efficiently suppress the activated CD25– T cells. In
that case, 4-1BB, 4-1BBL, and GITR ligand-expressing cells,
which are known to be dendritic cells (unpublished), would be
important for initiation, maintenance, and fine-tuning of an
optimal immune response.

Although our present experiments suggest that 4-1BB is
critical for countering the suppression of CD25� Tr cell func-
tion, it is not clear how this is achieved. Further, although
several other molecules are involved in the modulation of
CD25� Tr cell function, including CTLA-4 [23], tumor necro-
sis factor-related activation-induced cytokine/receptor activa-
tor of nuclear factor-�B [24], inducible costimulator (ICOS)/
ICOS ligand [25], CD40/CD40 ligand [26], and B7/CD28 [27],
it remains to be determined how they regulate the suppression
of CD25� Tr cells. A possible role for CTLA-4 and pro-
grammed death-1 ligand (PD-L1) in T cell–T cell regulation
has recently been suggested [4, 28], but the surface molecules
involved have not been clearly defined [6]. Shimizu et al. [7]
report that GITR differs from CD28 or CTLA-4 in the way it
attenuates suppression and does not down-regulate CTLA-4
and TGF-� expression. To test whether 4-1BB-mediated sig-
naling of Tr cells affects PD-L1 and CTLA-4 molecules, we
performed a flow cytometric analysis: Ligation of 4-1BB had no
appreciable effect on these molecules (data not shown). We
also tested whether 4-1BB molecules affect the function and
development of CD25� Tr cells and found that 4-1BB-deficient
mice showed no deficiency of Tr cells in lymphoid and non-
lymphoid organs (data not shown). Moreover, the level of
suppression obtained with CD25� Tr cells from 4-1BB-defi-
cient mice was comparable with that achieved with CD25� Tr
cells from wild-type mice (data not shown).

In spite of intensive study of regulatory T cells, much
uncertainty remains regarding their mode of action [29]. It is
important for the development of new therapeutic approaches
to transplantation, autoimmune diseases, and infections to
understand modulation of regulatory T cells at the cellular and
molecular levels [30–33]. Our results provide novel insight
into how costimulatory molecules on the surface of CD25� Tr
cells modulate the immune response.
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